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Introduction générale 

1. Contexte de l’étude  

Les systèmes embarqués envahissent notre quotidien : il s’agit d’une réalité du monde 

moderne. En effet, ces systèmes servent des domaines très variés tels que l’automobile, les 

télécommunications, les multimédias et évoluent tous les jours comme par magie. Ainsi, on 

découvre chaque jour de nouveaux systèmes plus sophistiqués ayant, à la fois, des capacités 

plus élevées et des tailles plus réduites. À l'égard de cette révolution, plusieurs questions se 

posent. Néanmoins, la plus captivante reste la suivante : « Quel est le mystère qui se cache 

derrière tous ces systèmes ? ». 

La réponse est toute simple. C’est la puce électronique qui, conduite par l’évolution 

phénoménale de la technologie submicronique et notamment de la technologie de fabrication 

des circuits intégrés, se voit être à l’origine de cette révolution. Une puce est capable d’intégrer 

plusieurs ressources ayant différentes fonctions. Ces ressources peuvent être des processeurs, 

des composants hétérogènes (des mémoires, des périphériques, des unités numériques 

spécialisés), du logiciel et souvent des circuits mixtes. Tous ces composants matériels sont 

interconnectés à l’aide de mécanismes de communication très sophistiqués (Cesa et al., 

2002). On parle alors des systèmes multiprocesseurs sur puce dénotés MPSoCs 

(MultiProcessor Systems on Chip).  

Une autre question s’impose par rapport à cette dépendance croissante et elle est exprimée 

explicitement par J.C Laprie (Laprie, 1990) : « Do you have enough confidence in computer 

systems that we let them handle our most valuable goods, namely our life and our money? ». En 

réalité, la dépendance des humains vis-à-vis des systèmes techniques n’est pas corrélée à une 

vraie conscience des conséquences que peut avoir un dysfonctionnement aléatoire de ces 

systèmes ; or la puce contrôle non seulement le système dans lequel elle est implantée mais 

aussi nos vies. 

Ainsi, le niveau de confiance des humains par rapport à ces systèmes dépend 

essentiellement du degré de vérification auquel ils étaient soumis. Il faut noter que la 

vérification d’un système matériel ou d’une puce s’avère comme l’une des tâches les plus 

fastidieuses lors de sa conception. On montre même que la vérification d’un circuit fait appel à 

un nombre d’ingénieurs largement supérieur au nombre de concepteurs (au moins deux fois 

supérieur) et consomme 60 à 70% du temps de conception (Nobl, 2002).  
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De ce fait, les industriels ont de plus en plus recours à des méthodes de vérification dites 

« intelligentes » en opposition avec la méthode traditionnelle par simulation numérique qui a 

déjà montré ses limites face à des systèmes complexes. A cet effet, la nouvelle tendance dans 

la vérification s’oriente alors vers l’utilisation des méthodes formelles. 

Dans la section suivante, nous présentons les contributions attendues de notre travail de 

mastère. 

2. Contributions  

Par l’effet de la complexité croissante des systèmes multiprocesseurs sur puce (MPSoCs) 

en général, et l’augmentation du nombre de composants sur la puce en particulier, les 

architectures de communication sur la puce (on-chip) ont dû évoluer. Comme alternative 

prometteuse aux bus classiques, les réseaux sur puce appelés aussi NoCs, ont témoigné d’un 

niveau de performance assez élevé. 

L’exploration actuelle des NoCs se limite à des réseaux de type statiques. Une innovation 

dans ce domaine serait l’exploitation des réseaux dynamiques dans des MPSoCs. Comme 

l’idée est assez récente, il n’existe pas à notre connaissance de travaux qui touchent la 

vérification formelle de ce dernier type de réseau (sur puce). 

Une spécification de type informel est souvent à l’origine de la mise en place des services 

dans les réseaux dynamiques. Toutefois, pour une multitude de raisons, l’aspect informel s’est 

avéré très insuffisant. Ainsi, afin de rendre les processus de configuration et de tests plus 

rapides, plus efficaces et plus sécuritaires, il faut apporter des solutions qui permettront 

d’élever le niveau d’abstraction de la représentation des configurations des services du réseau. 

Une solution possible consisterait en la vérification de certaines propriétés pertinentes au 

fonctionnement de ces  réseaux après construction du modèle formel correspondant. 

Les différentes étapes de la démarche de l’étude faite, ainsi que la structure du manuscrit, 

seront illustrées dans ce qui suit. 

3. Structure du manuscrit et démarche de l’étude  

Notre travail de mastère vise le développement d’un modèle formel pour des réseaux multi-

étages dédiés aux systèmes multiprocesseurs sur puce. En effet, nous souhaitons à la fois 

construire et vérifier formellement un modèle décrivant les communications dans les réseaux 
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dynamiques multi-étages dédiés aux MPSOCs. Nous organisons notre travail selon les 

grandes étapes suivantes : 

-  Une exploration exhaustive des travaux de vérification formelle des réseaux sur puce, des 

réseaux multi-étages et des outils formels, 

-  L’identification et la traduction dans la logique de l’outil de vérification choisi la 

spécification des communications dans les réseaux multi-étages dédiés aux MPSoCs, 

-  La validation du modèle formel par la vérification d’une ou de plusieurs propriétés 

pertinentes pour le fonctionnement des réseaux multi-étages. 
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Chapitre 1 : Contexte de l’étude 

1. Introduction 

Afin de surmonter les problèmes de communication rencontrés dans les systèmes 

multiprocesseur sur puce (Ho et al., 2001), les chercheurs se sont investis dans la conception 

de nouvelles plateformes d’interconnexion fiable, à énergie réduite et à rendement élevé, 

baptisés réseaux sur puce ou NoCs (Networks on Chip).  

Il est évident que l’intégration d’un NoC dans un système multiprocesseur sur puce 

(MPSoC) ne peut se faire sans sa vérification. Cette dernière a pour principal objectif de 

montrer la conformité de la conception d’un niveau donné avec les spécifications du niveau 

précédent. 

Nous insisterons dans ce chapitre sur l’importance de l’aspect vérification dans la 

conception des systèmes multiprocesseur sur puce (MPSoCs) en général, et dans celui des 

réseaux sur puce en particulier. Nous exposerons ainsi plusieurs travaux relatifs à la 

vérification formelle de réseaux sur puce existants. 

2. La vérification des MPSoCs : utilité et techniques 

Avant d’aborder l’aspect vérification dans les MPSoCs, nous présentons ici un aperçu de 

l’évolution de la technologie correspondante, ainsi que les deux architectures les plus 

répandues et quelques uns des réalisations dans ce domaine. 

2.1. Evolution de la technologie submicronique 

Les densités d’intégration actuelles permettent d’assembler sur une même puce un système 

numérique complet.  

D’une part, les systèmes sur puce ou SoCs (Systems on Chip) deviennent de plus en plus 

complexes, l’ITRS (Zei et al., 2005) prévoit en 2012 l’intégration de systèmes électroniques 

de 4 milliards de transistors pour des fréquences proches de 10 GHz, comme l’illustre le 

tableau 1. L’enjeu de la prochaine décennie dans le secteur des semi-conducteurs est alors 

d’intégrer sur une même puce un système multiprocesseur hétérogène (Multiprocessors 

System-on-Chip). 
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Tableau 1. Prévisions de l’ITRS 

 

De façon générale, les interconnexions des composants sur la puce se font par bus central 

(figure 1). Cependant, malgré la simplicité de mise en œuvre qui caractérise les bus, ils ont 

montré très vite leurs limites. En effet, un bus central est une ressource partagée ; son 

extensibilité est donc très mauvaise. De plus, si le nombre de composants (mémoire, 

processeur, DSP, IP...) sur le bus augmente, la bande passante disponible pour chacun décroît.  

Dans ce cas, les capacités parasites vont également augmenter et la fréquence d’utilisation du 

bus sera limitée. Puis, le bus perd aussi en performances s’il a beaucoup de blocs à satisfaire 

puisque le temps alloué à chacun diminue alors que le temps d’arbitrage augmente. Enfin, les 

interconnexions physiques actuelles à base de bus sont des facteurs limitant de performance 

des SoCs (longueur des interconnexions, bande passante, consommation d’énergie).  

 

 

Figure 1. Une architecture à bus central 

D’autre part, les réseaux sur puce ou NoC (Network on Chip) sont susceptibles de proposer 

des solutions efficaces aux problèmes d’intégration complexes des systèmes sur puce (Beni et 

al., 2002). Ces architectures d’interconnexions devront tout de même, faire face à de 

nombreuses contraintes : consommation d’énergie, surface de silicium, performances, 

synchronisation... De plus, le coût et les caractéristiques de ces réseaux sur puce dépendent 

des applications considérées (Ateris, 2005).   
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Par ailleurs, l’industrie des semi-conducteurs qui est à l’origine de la fabrication des 

systèmes sur puce, a focalisé ses activités en deux domaines importants : les architectures à 

usage général (les processeurs) et les systèmes embarqués. Ces deux types d’architectures 

seront détaillés dans les deux sections suivantes. 

2.1.1. Les architectures à usage général  

Les architectures à usage général sont utilisées essentiellement dans les ordinateurs 

personnels où la haute performance et la fiabilité sont des critères considérés comme prioritaires 

par rapport aux autres facteurs tels que la consommation d'énergie et le coût de fabrication. 

Ainsi, dans le but d’augmenter la performance de ce type d’architecture à une fréquence 

d’horloge relativement stable, la tendance courante est d’implanter sur la même puce plusieurs 

processeurs identiques. Ceci permet sûrement d'exécuter des tâches en parallèle et donc une 

augmentation recherchée de la performance. Par exemple, le processeur  « the Itanium 2 

Montecito dual core » est une illustration du progrès réalisé pour les architectures à usage 

général (figure 2). En effet, il a pu intégrer en 2006, 1.7 milliards de transistors pour une 

puissance de 100W à une fréquences de 1.6 GHz, une taille de la puce est 580mm2, pour une 

technologie de 90nm (Intel, 2006).   

 

 

Figure 2. Le processeur the Itanium 2 Montecito dual core 

Dans la suite, nous présentons les systèmes embarqués qui constituent le deuxième type 

d’architecture exposée. 
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2.1.2. Les systèmes embarqués    

Les systèmes embarqués (embedded systems) sont des systèmes à la fois électroniques et 

informatiques (numériques) autonomes dans lesquels le matériel et le logiciel sont intimement 

liés.  Le logiciel est généralement dédié à une fonctionnalité bien précise, alors que le matériel 

peut comporter plusieurs composants tels que des circuits numériques FPGA, ASIC ou des 

circuits analogiques, et ceci dans le but d’augmenter les performances de l’application ou sa 

fiabilité. Ces composants matériels sont interconnectés par des mécanismes de 

communication très sophistiqués.  

La conception des systèmes embarqués requiert une approche à base de plateforme. De plus, 

le développement du matériel et du logiciel est fait simultanément dans les différents niveaux 

d'abstraction. En effet, ce développement doit satisfaire plusieurs contraintes à la fois comme la 

consommation d’énergie, la surface, les performances, la synchronisation, le coût et le temps 

de fabrication.  

Ainsi, la plateforme conçue par Sony, Toshiba et IBM  est une architecture embarquée de 

haute performance (Kahl, 2005). Par exemple, les jeux « playstation3 » et les téléviseurs hautes 

définitions utilisent ce système renfermant sur la même puce un processeur et 8 coprocesseurs 

graphiques (figure 3). La taille de la puce est de 221mm2 pour 8 niveaux de métal. 

 

 

Figure 3. La plateforme Cell 

Par ailleurs, l’IMEC a développé un système multiprocesseur sur puce baptisée 3MF 

(figure 4).  Cette plateforme supporte les standards de compression vidéo et audio (MPEG4, 

AVC, SVC, 3D-graphics) (IMEC, 2006). La puce renferme plusieurs processeurs ADRES, un 

DSP, des mémoires, et un module d'entrée/sortie. L’interconnexion des composants est faite 

par un réseau sur puce. La puissance dissipée est de 700mW à une tension d’alimentation de 

1.0 V, pour une technologie de 90nm. 
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Figure 4. La plateforme 3MF 

La diversité et le nombre de ressources qui composent un système multiprocesseur sur puce, 

n’ont fait qu’augmenter sa complexité de conception. Cette complexité sera illustrée dans le 

paragraphe suivant. 

2.2. Complexité conceptuelle des MPSoCs 

Vu l’hétérogénéité des composants formant la puce, il devient crucial de maîtriser la 

conception de tels systèmes tout en respectant les contraintes de mise sur le marché et les 

objectifs de qualité. La conception des systèmes multiprocesseurs sur puce doit se faire 

conformément à une démarche spécifique illustrée à la figure 5. Chacune des étapes du flot 

décrit un niveau d’abstraction donné. En réalité, l’abstraction est le concept clé de toute la 

conception des MPSoCs. A chaque étape, on s’occupe d’un aspect du système à concevoir : on 

fait apparaître les détails liés à cet aspect et on camoufle d’autres inutiles à ce niveau. Ce flot 

part alors d’une spécification de niveau système réalisée grâce à des langages dits aussi système 

(VHDL, Verilog, System C) pour obtenir une spécification fonctionnelle. L’étape suivante est 

l’exploration architecturale. Il s’agit ici d’explorer l’espace de solutions en terme d’architectures 

pour déterminer les parties qui seront implémentées en logiciel et celles en matériel. 

L’architecture retenue devrait être celle qui répond le mieux aux exigences du système. Ensuite, 

chacune des parties logicielles et matérielles seront raffinées séparément pour arriver enfin à les 

intégrer dans un système unique.  
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Figure 5. Flot de conception des systèmes monopuces 

Dans son livre « Introduction to Formal Hardware Verification » (Kropf, 1999), Thomas 

Kropf partitionne le processus de conception en montrant clairement la relation qui doit 

exister entre les différentes étapes de la conception. En effet, l’implémentation de la 

spécification résultante d’une certaine étape joue le rôle de spécification pour l’étape suivante. 

Ainsi, une implémentation de la spécification de niveau architectural constitue la spécification 

du niveau transfert de registres (RTL) suivant. 

Les multiples contraintes sur les MPSoCs ont dû renforcer la place de la vérification dans 

leur flot de conception. D’ailleurs, nous pouvons remarquer d’après la figure 5 que la 

vérification accompagne chacune des étapes de conception. En visant une meilleure 

crédibilité des systèmes sur puce, notamment ceux qui sont critiques, l’une des méthodes 

robustes est la vérification formelle. Cette méthode sera illustrée dans la suite. 
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2.3. Les techniques de vérification des circuits numériques  

La correction absolue du flot de conception de la figure 5 pour un système donné est 

garantie si et seulement si la spécification initiale est valide et le passage d’un niveau à un 

autre est vérifié. Plusieurs techniques de vérification existent. Dans ce qui suit, nous 

établirons une comparaison entre la technique classique par simulation et les nouvelles 

techniques à base de formalisme, et ceci après les avoir présenté. 

2.3.1. La vérification par simulation 

La simulation soumet le système à des vecteurs de tests, compare les résultats obtenus aux 

résultats attendus et corrige les éventuelles erreurs. Les valeurs de tests sont générées 

manuellement ou par un logiciel dédié. Même si la simulation est une technique qui a 

l’avantage d’être naturelle et simple, elle présente des performances limitées. En réalité, dès 

qu’il s’agit de l’appliquer à un bas niveau d’abstraction pour des systèmes assez complexes, 

les temps de réponse deviennent énormes. En plus, la simulation ne peut être que partielle : il 

est quasiment impossible de couvrir toutes les valeurs possibles pour les entrées. Autrement 

dit, les tests ne peuvent jamais être exhaustifs. Par conséquent, la garantie d’un système fiable 

par simulation est impossible.   

2.3.2. La vérification formelle  

Si l’intérêt porté par les industriels au « formel » est assez récent, l’idée en revanche ne 

date pas d’aujourd’hui. En 1962, J. McCarthy formulait déjà les principes de la vérification 

formelle automatique donnant ainsi naissance aux « machines raisonnant sur des machines » 

(McCa, 1962). D’ailleurs, auparavant, l’utilisation de telles méthodes se limitait à quelques 

domaines et nécessitait un apprentissage effectif. Récemment, ce n’est plus le cas. Les 

méthodes formelles sont devenues d’usage courant (Clar, 1996).  

Vérifier formellement un circuit consiste en la preuve mathématique qu’un modèle de ce 

circuit se comporte conformément aux propriétés exigées. Une telle vérification est possible à 

tous les stades de la conception du futur système via deux approches principales : la 

vérification de modèles (model checking) et la démonstration de théorèmes (theorem 

proving). 

Il a été démontré que l’utilisation des formalismes mène à une réduction des coûts de 

maintenance. Leurs techniques ont l’avantage d’être applicables à tout type de système en 

assurant un développement fiable et en minimisant le risque de pertes économiques et 
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humaines. Les méthodes formelles ont en outre la possibilité de couvrir implicitement tous les 

cas de tests. Nous illustrerons dans la suite comment cela est possible à travers un exemple 

concret. 

2.3.3. La simulation vs la vérification formelle  

Une différence fondamentale existe entre la simulation classique et la vérification formelle. 

Nous reprenons ici un exemple très répandu dans la littérature mettant en évidence cette 

différence (Gord, 1989). Supposons que l’on souhaite démontrer que la formule (1-1) est 

correcte c'est-à-dire que les deux termes de l’égalité donnent la même valeur et ceci pour 

toutes les entrées possibles. 

 

(x + 1)2 = x2 + 2x + 1                                                                                                        (1-1) 

 

Une approche par simulation consisterait à prendre plusieurs valeurs de x et de tester la 

validité de l’égalité pour ce x. Cette approche est illustrée dans le tableau 2. 

Tableau 2. Les résultats de simulation de (1-1) 

x (x + 1)2 x2 + 2x + 1 

0 1 1 

1 4 4 

2 9 9 

3 16 16 

9 100 100 

67 4624 4624 

… … … 

 

La formule (1-1) doit être démontrée pour tous les nombres sans exception. La simulation 

ne produit ici que des résultats pour les nombres entiers, elle ne peut pas couvrir toutes les 

valeurs des nombres : il y aura une infinité de cas à tester. La simulation est alors incapable de 

valider la formule en question. L’approche formelle, quant à elle, démontre l’égalité sans pour 

autant émettre une restriction sur les valeurs possibles de x et ceci en appliquant des 

transformations d’ordre mathématique rapporté dans le tableau 3. 

Dans le reste de ce chapitre, nous illustrerons plusieurs travaux de vérification formelle de 

NoCs, et ceci après une présentation de quelques notions générales liées aux réseaux sur puce. 
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Tableau 3. La preuve mathématique de (1-1) 

1. (x + 1)2 = (x + 1) (x + 1) définition de la puissance 

2. (x + 1) (x + 1) = (x + 1)x +  (x + 1)1 distributivité 

3. (x + 1)2 = (x + 1)x + (x + 1)1 substitution de 2 dans 1 

4. (x + 1)1 = (x + 1) élément neutre 1 pour x 

5. (x + 1)x = xx + 1x Distributivité 

6. (x + 1)2 = xx + 1x + x + 1 substitution de 4 et 5 dans 3 

7. 1x = x élément neutre 1 pour x 

8. (x + 1)2 = xx + x + x + 1 substitution de 7 dans 6 

9. xx = x2 définition de la puissance 

10. x + x = 2x définition de  2x 

11. (x + 1)2 = x2 + 2x + 1 substitution de 9 et 10 dans 8 

 

3. Les réseaux sur puce : un nouveau paradigme 

3.1. Introduction 

La façon avec laquelle sont organisées les interconnexions entre les différents unités d’un 

système sur puce, définit ce qu’on appelle sa topologie physique. Dans le cas des MPSoCs, 

les deux topologies physiques dominantes sont les bus et les réseaux. Les réseaux sur puce ont 

été inventés dans le principal but de remédier aux inconvénients connus des systèmes 

d’interconnexion classiques c'est-à-dire les bus. D’une conception assez délicate, les réseaux 

sur puce (NoC) sont soumis à plusieurs contraintes de performance comme la latence, le débit 

et doivent être en plus flexibles en offrant une bonne qualité de service. Dans la suite, nous 

détaillerons une classification des réseaux sur puce par topologie. 

3.2. Classification des NoCs   

3.2.1. Les critères de classification  

Le critère incontournable de classification des réseaux sur puce (NoCs) est la topologie 

(Bjer et al., 2006). Toutefois, en plus d’une classification suivant la forme des liens, on peut 

aussi ajouter d’autres critères de classification telles que le type des nœuds (direct, indirect), 

le nature des liens (unidirectionnel, bidirectionnel), le nombre d’étages (à zéro étage, à un 

étage, multi-étages), le type de réseau (statique, dynamique), la régularité du réseau (régulier, 
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irrégulier). Nous présentons ici une simple classification des réseaux sur puce par topologie 

sans pour autant se soucier des critères additionnels. 

3.2.2. Classification par topologie 

Les topologies dominantes pour implémenter les  NoCs sont les bus et les réseaux. 

- La topologie en bus : elle est réalisée physiquement grâce à un médium unique partagé 

par plusieurs unités (cf. figure 1). Sur ce médium, les données ne circulent pas de façon 

arbitraire mais elles suivent plutôt une logique bien déterminée, c’est ce qu’on appelle la 

topologie logique. Par exemple, dans le cas des réseaux d’ordinateurs ayant une topologie 

physique en bus, la topologie logique courante est l’Ethernet. Bien que d’extensibilité très 

limitée avec un faible degré de parallélisme, l’architecture en bus reste fréquemment utilisé vu 

sa simplicité de mise en œuvre et de fonctionnement. Plusieurs extensions du bus partagé ont 

été implémentées afin d’améliorer ses performances (bus matriciel). 

 

 

Figure 6. Quelques topologies 

- La topologie en réseau : dans sa définition la plus simple,  un réseau est un ensemble de 

nœuds connectés par des liens de communication. Dans le cas des systèmes sur puce, un 

noeud peut contenir un ou plusieurs composants tels que des processeurs, des mémoires ou 

encore des périphériques d’entrée/sortie. Les principales topologies utilisées pour les réseaux 

sur puce sont les grilles et les cubes. Dans une grille, les nœuds sont identifiés par des 

coordonnées. Deux nœuds x et y de la grille sont connectés si et seulement leurs coordonnées 

respectives sont identiques sauf sur une dimension. Suivant cette dernière, les identificateurs 

de x et y ne doivent différer que de 1. La figure 6 illustre quelques types de grilles telles que la 

grille 1D (graphe linéaire) et la grille 2D. Pour les réseaux en cube, ils ont la même structure 
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qu’un cube où un nœud est aussi identifié par ses coordonnées. La figure 6 présente un 

exemple de cube 2D. La topologie tore 2D illustré dans cette même figure n’est autre qu’une 

grille dans laquelle on connecte les nœuds des deux extrémités.  

3.3. Les travaux de formalisation des réseaux sur puce (NoCs) 

Un système sur puce typique est composé d’un ensemble d’unités interconnectées par un 

système de communication. Sachant que chaque unité constitue souvent une sorte de « boîte 

noire » pré-validée (IP),  un aspect essentiel de la validation du système en entier est celui de 

la validation des interactions entre ces IPs via le système de communication (Spir, 2004). 

Cette partie s’intéresse aux travaux relatifs à la validation des réseaux sur puce par 

vérification formelle. Pour chacun de ces travaux, nous commencerons par une présentation 

brève du réseau sur puce vérifié, ensuite, nous exposerons un exemple de formalisation dont il 

a fait objet. 

3.3.1. Le bus AMBA, ARM 

3.3.1.1.  Présentation  

La figure 7 montre la façon avec laquelle on peut utiliser un bus AMBA AHB/ASB en 

conjonction avec un bus APB. Cette conjonction est réalisée grâce à un pont (bridge). En 

réalité, le système AMBA (The Advanced Microcontroller Bus Architecture) est défini en 

fonction de trois types de bus (ARM, 1999) : 

- Advanced High-performance Bus (AHB) : c’est un bus utilisé pour établir les 

communications entre les modules du système de fréquence élevée (les processeurs) et les 

modules nécessitant une grande bande passante (les mémoires on-chip et les mémoires off-

chip). Il a l’avantage d’avoir un rendement élevé. De plus, il est spécifié de façon à bien 

s’intégrer dans un flot de conception qui utilise les techniques de synthèse et de tests 

automatisés. 

- Advanced System Bus (ASB) : quand les rendements élevés du bus AHB ne sont pas 

exigés, le bus ASB peut le remplacer. Pour accélérer les échanges, ASB intègre juste le 

« pipeline » des opérations. 

- Advanced Peripheral Bus (APB) : c’est un bus périphérique utilisé pour interconnecter des 

dispositifs à consommation réduite et nécessitant une faible bande passante. 
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Figure 7. Un microcontrôleur typique basé sur AMBA 

3.3.1.2.  Formalisation 

Le système AMBA d’ARM a fait l’objet de plusieurs travaux de formalisation. Le but 

principal de tous ces travaux est de vérifier la validité de certaines propriétés sur le bus. 

Roychoudhury et al. se sont intéressés en particulier au protocole AMBA AHB (Royc et al., 

2003).  Leur travail de vérification a été accompli en appliquant la technique de vérification 

de modèles via le model-checker SMV (Symbolic Model Verifier). Les modules qui 

composent le système ont été alors décrits sous forme de machine à états finis. La deuxième 

phase de la formalisation a concerné la spécification manuelle des propriétés à vérifier dans la 

logique CTL (Computation Tree Logic) ; une logique qui est supportée par le vérificateur de 

modèles SMV. On a dû alors définir formellement la propriété de non famine (non 

starvation) : « peu importe le maître m souhaitant utiliser le bus, il sera toujours autorisé à y 

accéder ». En définitive, au bout de 0.17 secondes, SMV a pu automatiquement détecter un 

scénario de famine. Un master, ayant été  momentanément suspendu par un signal « split », ne 

sera plus jamais autorisé à accéder au bus. La configuration de vérification utilisée comportait 

2 masters et 1 slave.  

La conclusion tirée par Roychoudhury et al. est que le scénario détecté provient de la façon 

dont l’arbitre se rend compte d’un transfert de type « split ». Ainsi, on peut dire que le 

protocole de communication utilisé par AMBA n’entraîne pas des situations de famine 

réelles. Cette famine aurait pu être évité si l’arbitre utilisé sur le bus sait se rendre compte 

d’un transfert de type « split ». 
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3.3.2. Æthereal 

3.3.2.1.  Présentation  

 Le réseau sur puce Æthereal a été développé au laboratoire de recherches de Philips aux 

Pays Bas (Rijp, 2003). Il est basé sur une topologie irrégulière (figure 8). Les ressources 

(processeur, mémoire, IP,…) sont connectées au routeurs par des interfaces-réseaux. Le 

routeur Æthereal utilise un routage de source déterministe (source routing), une commutation 

de type Wormhole et une mémorisation de paquets en entrée. Chaque paquet est découpé en 

« flits » de 32 bits, le premier « flit » renferme l’entête (identification de paquet, taille, 

chemin, fenêtre d’anticipation, indicateur de fin de paquet). Æthereal fournit un transfert 

fiable de données via des routeurs opérant en deux catégories de trafic (établissement de 

connexion de bout en bout puis échange de données). Les interfaces-réseaux assurent 

plusieurs fonctions telles que le contrôle de flux, le paquetage de données, la connexion avec 

les protocoles standard d’interface, ainsi que l’ordonnancement des transactions. 

 

 

 

 

 

 

 

 

 

Figure 8. Synoptique d’Æthereal 

3.3.2.2.  Formalisation 

Le but principal du réseau sur puce Æthereal est fournir un service « garanti » dans un 

micro réseau.  Ce type de service se base sur la réservation des ressources pour la durée 

entière de la communication. Une fois la connexion établie, les données peuvent circuler 

facilement sur le chemin préétabli. Comme chaque nœud du réseau possède un nombre fini de 

« buffers », des scénarios d’interblocage peuvent alors facilement avoir lieu. Dans ce cadre, 

des travaux visant la vérification formelle  de la propriété d’interblocage dans le réseau 
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Æthereal, ont été développé. Le travail de (Gebr et al., 2005) a utilisé l’outil PVS pour 

démontrer que l’interblocage ne peut pas avoir lieu pour une version abstraite du NoC 

Æthereal. 

3.3.3. Octagon, ST-Microelectonics  

3.3.3.1.  Présentation  

Le modèle du réseau direct d’Octagon, proposé par Karim (Kari et al., 2001), est basé sur 

une  topologie en anneaux raccordés (figure 9). Chaque anneau renferme huit nœuds. Les 

fonctionnalités de routage et de commutation sont co-implantées avec le processeur. Le 

paquet circulant à travers le réseau est de taille variable, l’entête du paquet renferme trois bits 

dédiés pour le contrôle (bits d’adresses). Ce réseau utilise la commutation de paquets et de 

circuits. La technique de routage adoptée est de type distribuée et adaptative. La 

communication entre deux nœuds quelconques d’un anneau exige au plus deux liens 

intermédiaires. La bande passante de ce réseau peut atteindre 40Gbits/s, ce qui permet 

d’obtenir des circuits à rendement élevé. 

 

 

 

 

 

 

 

Figure 9. Le réseau Octagon 

3.3.3.2.  Formalisation 

Le réseau Octagon a été formellement vérifié dans le cadre d’un travail de modélisation 

générique basé sur la technique de démonstration de théorèmes (Schm et al., 2006). Un 

modèle générique dénoté GeNoC (Generic Network on Chip) décrit dans une notation 

complètement formelle les communications sur puce. Ce modèle représente les principaux 

composants de toute architecture de communication sur puce : la topologie (les nœuds), le 

routage et l’ordonnancement. Son critère de correction est la fiabilité du réseau : « Tout 

message émis depuis une source du réseau atteint sa destination sans modification de son 
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contenu ». Pour montrer l’adéquation du modèle générique avec la réalité, il a fallu le valider 

sur des réseaux concrets tels que l’Octagon et le Mesh 2D. 

Le tableau 4 montre le nombre de fonctions et théorèmes et le temps de preuve pour la 

définition et la validation de l’Octagon dans la logique du démonstrateur ACL2. La 

modélisation des nœuds et de l’algorithme de routage a nécessité 21 fonctions. La preuve de 

conformité avec GeNoC a nécessité quant à elle 13 théorèmes.  

Tableau 4. Fonctions, théorèmes et temps de preuve pour la définition et la validation de 
l’Octagon 

 

3.3.4. Le réseau Hermes 

3.3.4.1.  Présentation  

L’architecture du réseau Hermes adopte la topologie en grille 2D. Chaque ressource 

(processeur, IP) est connectée à un routeur (figure 10). Ce dernier est composé de cinq ports 

(est, ouest, nord, sud et local). Le port local est relié à la ressource alors que les autres ports 

sont reliés aux routeurs voisins. Chaque port possède une file d’attente en entrée pour stocker 

provisoirement les données. La technique de commutation utilisée est de type Wormhole afin 

de diminuer la latence et l’utilisation de mémoires tampons. Les paquets circulant dans le 

réseau contiennent des données, un en-tête qui renferme l’adresse destination et un compteur 

indiquant le nombre de mots dans le paquet. L’acheminement des paquets dans le réseau se 

fait suivant une stratégie de routage arithmétique basée sur l’adresse du routeur exprimé en 

XY, où X représente sa position horizontale et Y sa position verticale. Les avantages 

primordiaux de cette plate-forme sont sa performance, notamment en terme de latence et 

débit, ainsi que sa flexibilité du fait que les files d’attente et la taille des paquets sont 

paramétrables. 
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Figure 10. Le réseau Hermes 

3.3.4.2.  Formalisation  

Le réseau Hermes a été validé avec approximativement la même approche que l’Octagon. 

En effet, par l’application du modèle générique GeNoC étendu (cf. la section 3.3.3.2.), on a 

pu démontrer que le réseau Hermes est fiable (Borr et al., 2006). Cette validation a nécessité 

l’extension du modèle GeNoC afin de décrire des aspects plus concrets des communications 

sur puce. Ainsi, il a fallu par exemple redéfinir certains types de données relatifs à GeNoC. 

4. Conclusion 

Tout au long de ce premier chapitre, nous avons insisté sur l’utilité de la vérification 

formelle en montrant les limites de la simulation classique à travers un exemple concret. Nous 

avons aussi passé en revue plusieurs travaux de vérification formelle de réseaux sur puce 

(NoCs). En définitive, ces travaux serviront à guider nos choix dans la conception et 

l’implémentation de notre modèle formel des réseaux multi-étages dédiés aux systèmes 

multiprocesseur sur puce (MPSoCs). 
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Chapitre 2 : Concepts et outils de la vérification formelle des circuits 
numériques 

1. Introduction 

Certes, le célèbre « bug » du Pentuim II survenu en 1994 au niveau de son unité de 

division de virgule flottante, a fait perdre à Intel 475 millions de Dollars (Mark, 1994). 

Cependant, c’est en grande partie « grâce » à cet incident que le monde de l’ingénierie des 

systèmes a vécu un bouleversement de ses techniques de vérification. Si l’erreur du Pentuim 

II n’a causé que des pertes économiques, d’autres incidents aussi célèbres comme : 

l’explosion de la fusée ARIANE5 en juin 1996 (Aria, 1996), le « bug » de la machine de 

radiothérapie THERAC-25 causant entre 1985 et 1987 le décès de 6 patients (Leve et al., 

1993), le crash répété d’avions tels que Airbus, sont des incidents catastrophiques dont les 

conséquences sont plutôt humaines. Devant l’insuffisance des méthodes traditionnelles de 

vérification et la complexité croissante des systèmes numériques développés, la solution était 

alors d’utiliser une vérification à caractère formel comme alternative complémentaire à la 

vérification classique par simulation. 

Nous présentons dans ce chapitre les concepts de la vérification formelle : ses fondements 

et quelques uns de ses outils, en détaillant dans sa dernière section l’outil formel choisi pour 

notre travail. Dans notre cas d’étude, nous nous intéressons à l’application des techniques de 

vérification formelle à des systèmes multiprocesseurs sur puce (MPSoCs). 

2. La vérification formelle des systèmes sur puce 

2.1. Définition  

La vérification formelle d’un système ou d’un circuit consiste en la preuve mathématique 

qu’il se comporte conformément à un ensemble de besoins formulés (Kropf, 1999). 

2.2. Démarche globale 

Indépendamment de la méthode de vérification, le travail formalisation se fait en général 

en deux grandes phases. La première consiste à spécifier un modèle formel du système à 

partir d’un ensemble de besoins. La deuxième phase se préoccupe de vérifier les propriétés 
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modélisées. Ces propriétés modélisant par exemple l’absence d’un type d’erreur, sont 

concrétisées par des formules logiques et doivent exprimer une compréhension de la 

correction de ce système. Pour réussir cette dernière phase, il faut essayer de préciser au 

maximum les notations informelles et d’identifier les hypothèses implicites. Cette phase inclut 

aussi l’exploration des documents de spécification, l’expérimentation du système réel si 

possible et enfin, les discussions avec les concepteurs du système.  

Les équipes de conception et de vérification formelle ont des approches très différentes 

pour aborder le système. Par conséquent, un ingénieur de vérification formelle doit être 

prudent lors de son contact avec des concepteurs. Il ne doit pas être très influencé par « ce que 

disent les concepteurs ». En fait, la tâche de conception n’a pas vraiment de critère de 

correction. Le plus important pour les concepteurs est le fait que « le système tourne » en 

ayant le moins de « bugs » ou d’erreurs dans son implémentation. Les ingénieurs de 

vérification formelle, quant à eux, doivent rassembler le plus d’informations afin de pouvoir 

déceler des propriétés subtiles du système. 

2.3. Objectifs 

La vérification formelle a pour principal but de montrer qu’un système ou plutôt un modèle 

du système est correct. Un système correct signifie un system exempt d’erreurs, appelées 

aussi « bugs ». Pour des systèmes critiques tels que les voitures, les appareils médicaux, les 

banques ou les avions, une propriété telle que celle de l’absence de bugs est indispensable et 

sa non-satisfiabilité peut être fatale. Plusieurs types d’erreurs peuvent exister. On peut vouloir 

prouver qu’un système ne se « plante » jamais, autrement qu’il n’est jamais induit en un type 

donné d’erreur (blocage, famine…). La vérification formelle n’est donc réellement utile que 

pour vérifier la non-existence d’erreurs dites « critiques » ou encore l’existence inévitable de 

situations souhaitables ou vitales. Par exemple, il serait très intéressant de détecter de façon 

formelle qu’un système risque d’être bloqué alors que conformément à ses spécifications, ce 

même système ne doit jamais être induit dans une telle situation. 

Des normes telles que la norme ISO/CEI 9126 (ISO) ont été spécialement développées 

dans le but de décrire les exigences qualité d’un système telles que sa capacité fonctionnelle, 

sa fiabilité et sa facilité d’utilisation. D’ailleurs, depuis 1995, l’usage des méthodes formelles 

est devenu une exigence imposée par les ITSEC (Information Technology Security 

Evaluation Criteria) et ceci à partir d’un certain niveau de sécurité. 
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2.4. Les types de formalisation 

Il existe deux grands types de formalisation (Kropf, 1999) : la formalisation des 

spécifications et la formalisation de l’implémentation. 

2.4.1. Formalisation des spécifications 

La spécification formelle d’un système est une description concise et abstraite de son 

comportement et de ses propriétés. Elle doit décrire dans une notation mathématique « ce que 

le système est supposé faire » et non pas « comment le système doit être implémenté ». Donc, 

la spécification formelle d’un système se doit d’être assez générale en éliminant tous les 

détails relatifs à l’implémentation et qui sont inutiles à ce stade.  

La figure 11 illustre les deux grandes phases de la formalisation des spécifications : la 

génération et la validation. La génération se fait à partir des descriptions informelles du 

système. Ces dernières sont constituées souvent de texte et de diagrammes. Il est assez 

courant d’avoir des descriptions informelles qui semblent être assez précise alors qu’une fois 

considérées le point de départ de la formalisation, se dévoilent plutôt vagues, incomplètes et 

mal organisés. La deuxième phase présentée à la consiste en la preuve de correction ou la 

validation de la spécification générée. Pour y arriver deux alternatives sont possibles : 

procéder par simulation du modèle fonctionnel construit ou vérifier formellement certaines 

propriétés par rapport à la fiabilité ou la consistance du système. 

 

 

Figure 11.  Etapes de la spécification formelle 

La formalisation des spécifications est une étape très importante dans la conception d’un 

circuit. En effet, elle est le point de départ de toute la conception et permet d’avoir une vue 

assez abstraite et précise du système. Il est vrai que sa démarche semble être simple. 

Cependant, compte tenu de la qualité que peut avoir les spécifications informelles, le 



Développement d’un modèle formel des MINs dédiés aux MPSOCs                               Maïssa Elleuch 

 29 

processus de génération des descriptions formelles devient très difficile. En plus, l’étape de 

validation est en réalité une étape délicate : d’une part la capture de propriétés utiles au 

système n’est pas immédiate, et d’autre part, on n’est pas toujours sûr que la spécification 

formelle décrit la totalité du comportement attendu vu qu’elle s’appuie sur des descriptions 

informelles.  

2.4.2. Formalisation de l’implémentation 

La formalisation de l’implémentation d’un système consiste en la construction d’un 

modèle formel de l’implémentation du système à partir de son programme source codé en 

VHDL ou Verilog. Elle se fait en deux étapes : la production de sa spécification formelle et la 

preuve de sa correction.  

Dans ce contexte, deux aspects sont très importants : le niveau d’abstraction et la solidité 

(soundness) du modèle développé. Le niveau d’abstraction signifie le niveau de détails dans 

lequel on décrit le modèle formel de l’implémentation. Le programme en code source 

contenant tout ce qui concerne le système dans ses moindres détails,  il faut alors savoir ne 

modéliser que les parties dont on a vraiment besoin. En réalité, se lancer dans une 

formalisation complète de l’implémentation peut rendre complexe le modèle et par la suite 

fastidieux le processus de vérification. Toutefois, il faut aussi savoir ne pas négliger des 

détails de taille dont l’absence peut entraîner facilement une modélisation erronée. Par 

exemple, en modélisant un circuit au niveau des portes logiques (gate level), il serait 

complètement absurde de ne pas prendre en considération le délai des portes. Enfin, il s’agit 

ici de trouver un compromis entre ce qu’on souhaite vérifier et le niveau de détail établi dans 

le modèle.  

La vérification du modèle formel de l’implémentation commence par établir le lien entre 

l’implémentation et la spécification donnant ainsi la nature du théorème de correction à 

établir. Il s’agit d’un théorème d’équivalence (↔) si l’implémentation et la spécification 

décrivent exactement le même comportement. C’est un théorème d’implication (→) si la 

spécification est partielle c’est à dire ne décrit que quelques propriétés. 

2.5. Avantages et inconvénients de la vérification formelle 

Quand les aspects de la conception à vérifier sont subtiles ou compliqués, seule la 

vérification formelle est capable de donner une réponse complète (Kauf et al., 2000). Grâce à 

ses notations mathématiques, ce type de vérification ne peut être que concis et l’ambiguïté n’a 
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pas de place. Son principal atout est celui de pousser le concepteur à poser « la bonne 

question » à un stade plus au moins avancé de la conception du système vérifié. Par 

conséquent, la vérification formelle assure un examen très rigoureux du système permettant 

ainsi une livraison plus rapide et moins coûteuse (Hall, 1990). Enfin, les systèmes soumis à 

des tests formels ne peuvent avoir qu’un degré de fiabilité plus grand que ceux testés par 

simple simulation (Kropf, 1997). 

Malgré les multiples avantages que peut avoir la vérification formelle du matériel, il faut 

aussi être conscient de ses limitations (Kropf, 1999). En réalité, il est impossible de garantir 

par vérification formelle qu’un système est correct dans l’absolu c'est-à-dire « le zéro erreur ». 

En outre, le processus de vérification peut être induit en erreur à cause de spécifications 

formelles ou informelles incomplètes voire erronées, ou encore par inconsistance dans le 

modèle d’implémentation. De plus, la portée de la vérification formelle est toujours limitée à 

la conception : elle ne permet de détecter que les fautes de conception (design faults) mais 

jamais des fautes reliées à la fabrication du produit ou à son utilisation.  

Une autre limitation de la vérification formelle consiste en l’impossibilité de 

l’accomplissement de cette tâche à l’intégralité du système. Quand on vise à appliquer ce type 

de vérification à un système cela ne veut pas dire qu’on cherche à démontrer formellement la 

correction du système en entier. Souvent, la vérification formelle ne se fait que pour certains 

composants. Il s’agit là de vérifier une propriété d’un modèle de ce composant. La propriété à 

vérifier ici est souvent critique. Malheureusement, même les composants vérifiés 

formellement peuvent être facilement induit en erreur. Par exemple, il suffit que le composant 

vérifié reçoive en entrée des données invalides en provenance d’un autre composant non 

vérifié.  

3. Un peu de logique 

Les outils de vérification formelle sont toujours fondés sur l’utilisation de logiques. Il 

existe plusieurs logiques différentes. Parmi elles, on trouve la logique classique dont la 

logique propositionnelle est une composante. Nous présentons dans la suite quelques notions 

sur la logique propositionnelle qui est souvent la base des démonstrateurs de théorèmes. Par la 

suite, nous aborderons brièvement les logiques temporelles qui constituent quant à elles la 

base des vérificateurs de modèles. 

 

 



Développement d’un modèle formel des MINs dédiés aux MPSOCs                               Maïssa Elleuch 

 31 

3.1. La logique propositionnelle 

La logique propositionnelle est l’une des logiques les plus simples. Elle permet de 

représenter de façon abrégée et non ambiguë des « réalités » qui sont souvent des 

affirmations. La logique propositionnelle offre aussi des opérateurs de coordination 

permettant de réaliser différents arrangements plus au moins complexes entre les variables 

(tableau 5). 

- Un petit exemple : une affirmation du type « Je suis étudiant » est représentée par une 

variable p dont la valeur ne peut prendre que les deux valeurs : vrai ou faux. Elle ne prendra la 

valeur « vrai » que si je suis effectivement étudiant en ce moment. Dans le cas contraire, elle 

prendra la valeur « faux ».  

- Axiome : les axiomes constituent la base de la logique propositionnelle. Un axiome est une 

expression  qu’on assume être un théorème sans pour autant donner sa démonstration. Une 

liste exhaustive d’axiomes est disponible dans (Gries et al., 1994). 

- Théorème : un théorème est soit un axiome, soit la conclusion d’une règle dont les 

prémisses sont des théorèmes, soit une expression dont on démontre qu’elle est égale à un 

axiome ou à un théorème précédemment démontré  (Desh, 2000). La démonstration d’un 

théorème est possible par un processus de dérivation en appliquant des règles appelées règles 

d’inférence à certains axiomes. Puisque les axiomes ont la propriété d’être vrai et on sait déjà 

que les règles d’inférence préservent cette propriété, alors un théorème est toujours évalué à 

vrai. Il s’agit là d’une propriété fondamentale pour les théorèmes (Kauf et al., 2000).   

- La syntaxe de la logique propositionnelle : la logique propositionnelle possède une 

syntaxe bien déterminée. En utilisant cette syntaxe, il est possible de traduire les phrases ou 

les descriptions informelles telles que « Je suis étudiant et je travaille » en des axiomes du 

type « p ∧ q » en représentant le fait que « je suis étudiant » par la variable p et le fait que « je 

travaille » par q. La connexion entre les deux variables p et q est possible grâce au connecteur 

« ∧ » qui dénote « et ». La liste de tous les autres connecteurs utilisée dans la logique 

propositionnelle est présentée dans le tableau 5. Tableau 5 

- Avantage et limite : il est clair que la logique propositionnelle permet de traduire des 

phrases informelles en fournissant un bon degré d’abstraction. Cependant, c’est une logique 

qui reste très peu expressive puisqu’elle ne permet pas d’exprimer des notions telles que le 

temps. 
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Tableau 5. Syntaxe de la logique propositionnelle 

 

3.2. Les logiques temporelles 

Il existe deux grandes catégories de logiques temporelles : qualitatives et quantitatives. 

3.2.1. Les logiques temporelles qualitatives  

Les logiques temporelles qualitatives ont été introduites par (Man, 1982) afin d’exprimer 

des propriétés dynamiques des programmes séquentiels et concurrents, telles que « toute 

exécution d’un programme commençant à un état initial doit atteindre un état terminal ».  

L’inconvénient principal de ce type de logique est leur expressivité limitée de l’aspect 

temporel. En réalité, elle exprime l’aspect « temps » de façon très abstraite : il n’est pas 

possible par exemple de modéliser à quel instant se produit un état ou un évènement, ni sa 

durée, ni la durée qui le sépare d’un autre évènement… 

Il existe dans la littérature plusieurs logiques temporelles qualitatives. Parmi elles, on peut 

citer CTL (Computational Tree Logic) (Clar et al., 1986), FIL (Future Interval Logic) (Kut, 

1994). 

3.2.2. Les logiques temporelles quantitatives 

La seconde classe de logique est constituée des logiques temporelles quantitatives (à temps 

discret ou à temps continu). C’est une classe qui garde les propriétés de la classe précédente 

en permettant en plus d’exprimer le temps de façon explicite. Ainsi, le temps est simulé par le 

nombre entier de fois où un état apparaît dans une séquence (temps discret) ou par une 

variable quelconque réelle (temps continu). MTL (Koy, 1990) et CTL*[DC] (Pandya, 2001) 

sont des exemples de logiques temporelles quantitatives. 
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4. Les méthodes de vérification formelle  

Il existe plusieurs catégories de méthodes permettant d’effectuer la vérification formelle. 

Dans ce qui suit, nous allons nous intéresser de près aux 2 techniques de base : la vérification 

de modèles et la démonstration de théorèmes. Nous étalerons ainsi les principes, les 

avantages, les inconvénients et quelques uns des outils relatifs à chacune de ces techniques. 

Les autres techniques existantes sont en général de type hybrides combinant la vérification de 

modèles ou la démonstration de théorèmes avec la simulation numérique. 

4.1. Les méthodes basées sur la vérification de modèles 

4.1.1. Principe 

La vérification de modèles (model checking) modélise d’une part le système à vérifier par 

un automate à états finis (AFS), et d’autre part la propriété à vérifier par une formule logique. 

La vérification se base ensuite sur l’exploration de l’espace d’états de l’automate afin de 

vérifier s’il satisfait ou non la propriété modélisée.  

En pratique, la technique de vérification de modèles est réalisable de deux façons : 

l’équivalence de modèles et la vérification temporelle de modèles. La première technique 

appelée aussi « equivalence checking » consiste à vérifier si deux descriptions matérielles 

possèdent des spécifications fonctionnelles équivalentes. Par opposition, la vérification 

temporelle de modèles  « temporel model checking » vérifie si une contrainte temporelle, 

exprimée dans une logique temporelle donnée, est respectée par une description matérielle.  

4.1.2. Quelques vérificateurs de modèles 

La diversité des algorithmes d’exploration de l’espace d’états du système à vérifier, a 

donné naissance à une multitude de vérificateurs de modèles ou « model checkers ». Suivant 

le type de la logique utilisée, on peut classer ces model-checkers en deux grandes catégories : 

les model-checkers qualitatifs et les model-checkers quantitatifs. Nous présentons brièvement 

ici un exemple de vérificateur de chaque classe mais nous ne donnerons pas plus de détails 

dans la mesure où nous ne nous intéresserons pas aux techniques basées sur la vérification de 

modèles dans la suite. 

- Les model-checkers qualitatifs : un model-checker qualitatif se base sur l’utilisation des 

logiques temporelles qualitatives lors de la description du comportement du système et des 

propriétés à vérifier. Un exemple de vérificateur de modèles qualitatif est SMV (Symbolic 
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Model Verifier). Développé par K. L. McMillan à l’université Carnegie-Mellon (McMill, 

1992), SMV est basé sur les automates non temporisés. Il permet d’exprimer les propriétés à 

vérifier telles que « ordre d’événement » et  « fin de tâche » dans la logique CTL. A la fin de 

la vérification, SMV indique en sortie si la propriété considérée est satisfaite par le système 

modélisé. En cas d’échec, il fournit un contre exemple. Bien qu’il est de type qualitatif et ne 

donne pas une notion explicite du temps,  SMV est considéré comme étant le langage complet 

pour la description matérielle.  

- Les model-checkers quantitatifs : pour vérifier une propriété de vivacité bornée du type 

« Toute requête finira par être satisfaite en au moins de 5 mn. » pour un système,  on a besoin 

de model-checkers quantitatifs. Un vérificateur de modèles quantitatif est basé sur une 

logique temporelle quantitative. Il modélise le système par des automates temporisés ou 

hybrides rajoutant des structures permettant de calculer le temps. 

Parmi les model-checkers quantitatifs, on peut citer DCVALID qui permet la vérification des 

formules exprimées en CTL [DC] (Pandya, 2001), UPPAAL (UPPAAL) qui est un ensemble 

d’outils pour la vérification automatique des propriétés de sûreté et de vivacité bornée, des 

systèmes temps réel. 

4.1.3. Avantages et inconvénients du model-checking 

Grâce à la méthode basée sur la vérification de modèles, il est possible de couvrir 

entièrement l’espace d’états du système. Cette couverture complète de l’espace d’états n’était 

pas possible par simulation classique. Ainsi, cette technique s’avère beaucoup plus efficace 

que la simulation classique. De plus, la vérification de modèles a l’avantage d’être 

automatique et rapide. Une fois, le model-checker est lancé sur la vérification de la propriété 

modélisée, il n’est plus possible de l’arrêter jusqu’à ce que soit il donne un contre exemple 

montrant la non-satisfiabilité de la propriété, soit qu’il admet que la propriété est vérifiée. 

Toutefois, la technique de vérification de modèles présente aussi beaucoup 

d’inconvénients. En réalité, la vérification de modèles n’est autre qu’une simulation 

exhaustive de l’espace d’états du système à l’aide d’algorithmes astucieux. Donc, une fois que 

cet espace d’états devient très grand, les algorithmes d’exploration montrent leurs limites 

entraînant ainsi une limitation majeure pour ce type de technique. Ce genre de problème est 

plus connu sous le nom du problème d’explosion d’états. Des solutions potentielles à ce 

problème consistent en l’utilisation des diagrammes de décision binaire (BDD) (Bry, 1986), 
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ou encore en la réduction  modèle à vérifier de façon à le restreindre aux parties concernées 

par la propriété à vérifier (Ber et al., 1998). 

4.2. Les méthodes basées sur la démonstration de théorèmes 

4.2.1. Principe 

Les méthodes basées sur la démonstration de théorèmes ont pour but de démontrer qu’un 

énoncé est la conséquence logique d’un ensemble d’énoncés (les axiomes et les hypothèses).  

Tous les énoncés doivent être formulées dans le langage logique du démonstrateur. Le moteur 

de preuve tente ensuite de démontrer la conjecture à partir des axiomes, des règles, des 

définitions dérivées à partir des lemmes intermédiaires et des hypothèses. Le processus de 

démonstration est basé sur l’utilisation de techniques telles que de la déduction logique, la 

réécriture et encore la récurrence…  

4.2.2. Etude de quelques démonstrateurs de théorèmes 

Deux cent dix-neuf outils différents de démonstration de théorèmes sont énumérés par 

Freek Wiedijk (Freek) dans une liste intitulée « overview of systems implementing 

mathematics in the computer ». Parmi ces outils, quatre-vingt ont été vérifiés dans la 

recherche de (Bol, 2001). Nous nous sommes principalement inspiré de cette recherche pour 

présenter quelques outils de démonstration de théorèmes. Un récapitulatif de ces 

démonstrateurs est illustré au tableau  6.  

- Isabelle : c’est un démontreur de théorème générique populaire développé à l'université de 

Cambridge et au TU Munich (Isabel). Les logiques existantes comme Isabelle/HOL 

fournissent un environnement de démonstrateur de théorème prêt à être utilisé pour des 

applications de taille. Isabelle peut également servir comme châssis pour un prototypage 

rapide de systèmes déductifs. Il est présenté avec une grande bibliothèque comprenant 

Isabelle/HOL (logique classique d'ordre supérieur), Isabelle/HOLFS (Logique de Scott pour 

des fonctions calculatoire avec HOL), Isabelle/FOL (logique du premier ordre classique et 

intuitive), et Isabelle/ZF (ensemble de théories de Zermelo-Fraenkel au dessus de FOL). 

- PVS : l’outil PVS (PVS) est un prouveur pouvant être utilisé pour réaliser de la vérification 

du matériel (Owre et al., 1994 ). Il a montré son efficacité lors de son application à des 

systèmes industriels assez complexes tels que la vérification d’un processeur destiné à être 

embarqué dans des avions (Miller et al., 1995) et l’analyse d’un switch ATM (Rajan, 1997). 
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- ACL2 : ACL2 (A Computational Logic for Applicative Common LISP) est à la fois un 

langage de programmation, un langage de spécification basé sur GCL (GNU Common Lisp) 

et une logique mathématique formelle permettant la démonstration de théorèmes semi-

automatique (ACL2). Le système ACL2 est considéré comme l’un des démonstrateurs les 

plus fiables. En 2005, on lui a décerné « l’ACM Software Award » (ACM, 2006) le nommant 

comme le plus efficace des démonstrateurs pour la vérification des systèmes logiciels et 

matériels critiques (« for pioneering and engineering a most effective theorem prover (...) as a 

formal methods tool for verifying safety-critical hardware and software »). L’outil ACL2 sera 

abordé avec plus de détails dans la section 4 de ce chapitre. 

- Z/EVES : créé par ORA Canada lors d’un projet débuté en 1996 (Zeves), Z-eves est un 

logiciel gratuit basé sur un système automatique de preuve appelé NEVER. Il réunit la 

puissance du démonstrateur Eves (ORA, 1999) avec le langage de spécification Z (Spiv, 

1992). D’un apprentissage relativement facile, Z-eves a l’avantage de tourner sur les deux 

plateformes Unix et Windows. En plus, ses preuves avec la théorie des ensembles présentent 

un bon degré d’automatisme.  

- Coq : Coq est un démonstrateur de théorèmes (Coq). Il permet ainsi d’énoncer des 

spécifications de programmes sous forme de théorèmes mathématiques et  de développer 

interactivement les preuves formelles de ces théorèmes ou spécifications au moyen de 

« tactiques ». Coq intègre en plus un langage de programmation fonctionnelle. Il permet aussi 

la communication avec des logiciels externes tels que les systèmes de calcul formel ou les 

prouveurs automatiques.  

 

Tableau 6. Récapitulatif de quelques démonstrateurs 

Outil Type de logique Plate forme 
Langage de 

base 
Site web 

PVS classique Unix - 
http://pvs.csl.sri.com/ 

 

Isabelle 
classique et 

intuitionniste 
Linux, Solaris 

Standard 

ML 

http://www.cl.cam.ac.uk/Research/HVG/Isabel

le/ 

 

ACL2 - 

Unix, 

Windows, 

Macintosh 

Common 

Lisp 

http://www.cs.utexas.edu/users/moore/acl2/acl

2-doc.html 
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Z-eves classique Unix, Windows 
Common 

Lisp 

http://www.ora.on.ca/z-eves/welcome.html 

 

Coq constructive Unix, Windows 
Objective 

CAML 
http://pauillac.inria.fr/coq/ 

4.2.3. Avantages et inconvénients du theorem-proving 

Capable de démontrer des propriétés algorithmiques complexes, la technique de 

vérification par démonstration de théorèmes a prouvé son efficacité dans le domaine de la 

vérification des composants matériels. Elle s’applique à tous les niveaux d’abstraction et elle 

est particulièrement efficace à un haut niveau d’abstraction pour des systèmes très 

complexes (la taille des données n’a plus d’importance) et ceci indépendamment du type du 

système ou du circuit considéré (séquentiel ou combinatoire). 

Cependant, le principal inconvénient des démonstrateurs de théorèmes est leur faible degré 

d’automatisme. En réalité, l’utilisateur doit nécessairement assister l’outil de preuves lors des 

démonstrations non triviales, et les démonstrations reflétant souvent des propriétés 

complexes, risquent d’être lentes et difficiles. On évoque dans ce contexte le problème du 

« chapeau mexicain » repris à la figure 12. Pour arriver à démontrer le théorème final, cela 

nécessite souvent une énorme quantité de lemmes intermédiaires qui sont en général non 

réutilisables. De ce fait, pour une grande majorité des démonstrateurs, l’interactivité entre 

l’utilisateur et l’outil peut nécessiter un temps d’apprentissage assez long. 

De plus, la majorité des démonstrateurs souffrent d’un problème d’incomplétude. Ainsi, si 

une preuve de la formule proposée existe alors la formule est un théorème. Dans le cas où la 

preuve échoue, le démonstrateur est incapable de décider que la formule non démontrée n’est 

pas un théorème. Néanmoins, l’idéal serait d’avoir des démonstrateurs complets où on peut  

affirmer qu’une formule à démontrer est un théorème en retournant la preuve correspondante 

ou décider de la non-existence de la preuve.  
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Figure 12. Chapeau mexicain 

 

4.3. Le choix de la méthode de vérification formelle 

Le choix de la méthode de vérification formelle doit se faire principalement en fonction de 

la nature du problème de vérification. Dans (Kropf, 1997), T. Kropf donne tout un diagramme 

de décision permettant de sélectionner l’approche de vérification la plus appropriée suivant le 

type de circuit en question. Un chapitre est consacré pour chacune des techniques identifiées. 

De façon similaire, le choix de l’outil (model-checker ou theorem-prover) est 

principalement guidé par le type de systèmes qu’il supporte (temps réel ou non pour les 

model-checkers) et par le type de propriétés que peut modéliser l’outil. En réalité, il n’est pas 

toujours possible de tout représenter dans un model-checker et les propriétés à vérifier varient 

entre l’atteignabilité, la sûreté, le non-bFlocage et la vivacité. La même limitation peut 

survenir aussi pour les démonstrateurs. Le fait que sa logique se limite à une logique de 

premier ordre peut amener à convertir tout ce qui doit être exprimer dans une logique d’ordre 

supérieur à une logique de premier ordre. Dans le cas où cette conversion induit à une perte 

dans les concepts qu’on souhaite formuler alors il est obligatoire de choisir un autre outil plus 

expressif tel que HOL (HOL) ou PVS (PVS). Les critères de performance tels que le temps 

consommé ou le blocage lors de la vérification, peuvent aussi être des critères déterministes.  

Dans notre cas d’étude, le but étant le développement d’un modèle formel des réseaux 

multi-étages dédiés aux MPSoCs, nous avons alors opté pour une méthode basée sur la 

démonstration de théorèmes. En effet, nous souhaitons traduire dans une notation formelle les 

spécifications informelles de ce type de réseaux tout en tenant compte des contraintes des 

systèmes sur puce. Autrement dit, il s’agit de formaliser des spécifications afin de vérifier 

ensuite une ou quelques propriétés sur le modèle (cf. la section  2.4.1.). D’autres 

considérations ont dû aussi guider ce choix. Elles seront illustrées dans le chapitre 4. Dans ce 

qui suit, nous détaillons l’outil choisi pour notre travail de formalisation. 

5. Le système ACL2 

Dans cette partie, nous exposons l’outil de démonstration de théorèmes ACL2 que nous 

avons choisi dans le cadre de notre travail. 
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5.1. Présentation d’ACL2 

ACL2 ou « A Computational Logic for Applicative Common LISP » est la réunion d’un 

langage de programmation fonctionnelle, une logique mathématique et un démonstrateur de 

théorèmes au sein d’un même outil. La logique ACL2 n’est autre qu’un sous ensemble du 

langage de programmation Common LISP, alors que le démonstrateur de théorèmes est une 

version industrielle puissante du démonstrateur de théorèmes de Boyer et Moore Nqthm 

(Kauf et al., 1996). ACL2 a été développé dans le principal but de répondre aux difficultés 

trouvées par les utilisateurs de Nqthm  en appliquant ce dernier à des projets formels de 

grande échelle. Comme son prédécesseur, ACL2 a été aussi conçu à Austin au Texas. Sa 

première version a vu le jour en 1989 et elle a été réalisée par R. Boyer et J. Moore. En 1995, 

Moore et Kaufmann ont pu donner naissance à la première version publique d’ACL2.  

Le démonstrateur d’ACL2 est un programme qui prend en entrée un théorème potentiel et 

essaie de trouver la preuve mathématique correspondante. Une preuve est définie comme une 

structure finie montrant la dérivation du théorème à partir des axiomes. ACL2 ne crée pas une 

preuve réellement formelle. Il vérifie plutôt que la preuve en sortie peut en principe être 

transformée en une preuve formelle. Lors de la preuve, le démonstrateur se réfère au monde 

logique qui est constitué essentiellement d’axiomes, de définitions et de théorèmes 

préalablement démontrés.  

Selon (Kauf et al., 2000), les théorèmes à démontrer par ACL2 doivent être à la fois 

intéressants et difficiles à prouver. Autrement, des petits théorèmes de valeur et non trivial 

traitant des parties de systèmes très compliqués. 

L’une des difficultés majeures que rencontre l’utilisateur ACL2, notamment le novice, est 

de procurer de l’aide à un démonstrateur ayant échoué lors d’une preuve. Les développeurs 

d’ACL2 sont conscients de cette difficulté. Pour cela, ils ont essayé de traiter cet aspect en 

fournissant toute une méthodologie pour aborder de façon efficace les démonstrations (Kauf 

et al.a, 2000). 

5.2. La démarche dans ACL2 

Afin d’accomplir la vérification formelle d’un système dans ACL2, l’utilisateur doit suivre 

la démarche illustrée par la figure 13. Il doit alors commencer par spécifier le modèle 

fonctionnel du système qui est représenté par des fonctions définies dans le langage de 

programmation fonctionnelle d’ACL2 (sous ensemble du langage Common Lisp). 
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L’utilisateur a alors la possibilité de simuler le model fonctionnel ainsi construit à travers un 

environnement d’exécution (execution environment). Dans une deuxième phase, la 

vérification requiert de traduire les théorèmes (proposed definitions conjectures) concernant le 

modèle dans la logique du démonstrateur. Enfin,  l’utilisateur peut procèder à la preuve de ces 

théorèmes par le biais du démonstrateur fournit (theorem prover). Au cours des 

démonstrations, ACL2 fait appel à des règles (rules) stockées préalablement dans sa base de 

données (database). En plus, il doit être guidé par une stratégie spécifique inspirée par 

l’utilisateur. Une fois démontré, un théorème peut être converti sous le contrôle de 

l’utilisateur en une règle (rule generator) qui va mettre à jour le monde logique. Si la preuve 

échoue, l’utilisateur doit avoir recours à deux alternatives : reformuler le théorème ou donner 

des guides additionnelles (proposed advices) au démonstrateur et ceci en examinant les 

tentatives de preuves ayant échoué. Les guides additionnelles sont des conseils formulés sous 

la forme de lemmes intermédiaires.  

 

Figure 13. Démarche générale (ACL2) 

- Les mécanismes de preuve : ACL2 utilise des techniques variées pour démontrer des 

théorèmes de premier ordre. Parmi ces techniques, on trouve la réécriture, la simplification 

par la substitution répétée de « equals for equals », les procédures de décision, l’induction 

mathématique et d’autres techniques de preuves exprimées pour des fonctions définies 

récursivement et pour des objets construits de façon inductive. 
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- Les propriétés du démonstrateur : comme la majorité des démonstrateurs de théorèmes, 

ACL2 est interactif : il doit être guidé par l’utilisateur. Ce dernier est le seul responsable de la 

stratégie utilisée dans une preuve.  L’aspect interactivité dans ACL2 impose que l’utilisateur 

soit capable de comprendre l’intégralité des tentatives de preuves pour pouvoir fournir l’aide 

nécessaire au démonstrateur. ACL2 est aussi automatique. Une fois il est lancé sur une preuve 

alors il n’est pas possible de l’interrompre. Cependant, des preuves directes sans interactivité 

avec l’utilisateur ne sont valables que pour des théorèmes simples. Pour des problèmes 

compliqués, les preuves directes sont impossibles. En fait, le démonstrateur de théorèmes se 

trouve limité par des considérations pratiques telles que le temps de calcul. 

5.3. Quelques principes dans ACL2  

5.3.1. Le principe de définition  

Le langage de programmation fonctionnelle d’ACL2 ne contient pas les structures de 

contrôle itératives telles que for, foreach, while… La programmation des fonctions se base 

alors sur les définitions récursives pour remédier à ce manque. Dans ACL2, une fonction 

récursive ne peut être admise que si pour chacun des appels récursifs qu’elle contient, on peut 

trouver un argument ou une combinaison d’arguments dont la mesure décroît selon une 

relation bien fondée.  

Un exemple de relation bien fondée est  « < » sur le domaine des entiers naturels. ACL2 

utilise EO-ORD pour admettre une fonction récursive ayant des arguments de type entier. De 

plus, ACL2 utilise une mesure appelée ACL2-COUNT pour ordonner les termes de même 

type entre eux.  ACL2-COUNT peut être une mesure assez évidente comme dans le cas des 

entiers, ACL2-COUNT est la valeur d’un entier, ou dans le cas des listes, la mesure vaut la 

longueur d’une liste. Cependant, dans le cas où la mesure n’est pas immédiate, il faut fournir 

de l’aide à ACL2 en lui indiquant la mesure qu’il doit utiliser. 

5.3.2. Le principe d’induction  

Le principe d’induction généralisant le principe de récurrence, se base sur la notion de 

relation bien fondée. Ainsi, la propriété P à démontrer est vérifiée pour le cas de base de x 

sachant que x est la variable d’induction. Ensuite, on suppose que P est vrai pour un élément y 

dont la mesure est inférieure à celle de x et on essaie de montrer que P est vrai pour x. 

5.3.3. Le principe d’encapsulation 
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Le principe d’encapsulation est un principe avancé dans ACL2. Il permet d’introduire des 

fonctions ne possédant pas de définitions explicites. Ce sont des fonctions définies par un 

ensemble de contraintes qui sont exprimées par des théorèmes. Il est obligatoire de fournir à 

la commande « encapsulate » des fonctions locales, appelées aussi fonctions témoins, qui 

vérifient les contraintes. Les fonctions témoins conservent la cohérence de la logique lors de 

l’introduction de symboles de fonctions encapsulées. 

5.4. Exemples de travaux réalisés avec ACL2 

ACL2 a prouvé réellement son efficacité quand il a été déployé pour produire des preuves 

pour des composants de systèmes très compliqués tels que : 

-  le circuit arithmétique élémentaire de calcul flottant du processeur AMD Athlon : 

vérification que la description RTL de ce circuit respecte le standard IEEE correspondant 

(Russ, 1998). Le même travail a été effectué sur le processeur AMD K5 (Moore et al., 1998),  

- le DSP de Motorola : vérification qu’un modèle micro architectural de ce DSP implémente 

un microcode donné et que le microcode spécifique extrait à partir de la ROM implémente 

certains algorithmes des DSP (Broc et al., 1999),  

- le compilateur javac de Sun : vérification que le « JVM bytecode » produit par ce 

compilateur pour de simples classes, implémente les fonctionnalités désirées (Moore, 2003),  

- le démonstrateur Ivy du National Argonne Labs ; vérification de la propriété de 

« soundness » d’un programme Lisp qui vérifie les preuves produites par ce démonstrateur 

(Kauf et al., 2000)  

6. Conclusion 

Les industriels des systèmes sur puce sont de plus en plus conscients du danger et du risque 

qu’il peut y avoir en négligeant l’étape de vérification lors de la conception de leurs produits. 

L’intégration des méthodes formelles dans leur cycle de développement se fait donc 

progressivement. Les techniques hybrides combinant model-checking et simulation 

numérique et la technique de vérification de modèles se trouvent largement utilisée par ces 

industriels. Actuellement, on cite même des produits de vérification formelle produit par des 

entreprises géantes de la microélectronique tels Cadence, Synopsis, IBM et Intel. En 

revanche, vu les difficultés d’apprentissage que présente la technique de démonstration de 

théorèmes, il est moins fréquent d’entendre parler d’industriels utilisant cette dernière.   
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Dans le cadre de notre travail, nous avons choisi de travailler avec la technique de 

démonstration de théorèmes et ceci afin de vérifier formellement les réseaux multi-étages 

dédiés aux MPSoCs. Dans le chapitre suivant, nous présenterons une étude détaillée des 

réseaux multi-étages (MINs). 

Chapitre 3 : Etude des réseaux multi-étages dédiés aux MPSoCs 

1. Introduction 

Les réseaux multi-étages dénotés MINs pour Multistage Interconnection Networks, ont été 

fréquemment utilisés au sein des systèmes multiprocesseurs classiques, ainsi que dans les 

commutateurs du réseau ATM. 

Dans ce chapitre, nous présenterons les réseaux multi-étages : leur architecture, leurs 

propriétés et leur technique de routage. Nous allons en particulier insister sur une sous-classe 

très intéressante de ces réseaux formés par la famille Delta. Nous dresserons notamment un 

résumé des différentes permutations possibles dans les Delta MINs. 

2. Architecture des réseaux multi-étages (MINs) 

2.1. Les réseaux statiques vs les réseaux dynamiques 

Les réseaux statiques sur puce possèdent des liens fixes entre les processeurs et un 

algorithme de routage prédéterminé. Le réseau point à point de la figure 14 est un exemple  de 

réseau statique. Ce type de réseaux est approprié pour des applications structurées dans 

lesquelles les patrons de communication sont prévisibles. Dans tous les autres cas, le fait 

d’avoir un réseau fixe peut être désavantageux. Par exemple, pour des applications non 

structurées demandant de la flexibilité (e.g. contraintes temporelles variables sur différents 

processus), il serait plus intéressant d’avoir un réseau adaptable aux besoins dynamiques en 

communications. Pour ce faire, les noeuds de calcul ne doivent plus être reliés de façon 

permanente.  
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Figure 14. Réseau point à point  

Dans un réseau dynamique, il y a plutôt un « commutateur global » (réseau de 

commutation formé de plusieurs commutateurs) liant les différents processeurs, ce qui permet 

de configurer de façon dynamique les liens directs entre les processeurs c'est-à-dire la 

topologie du réseau. Après que les commutateurs du réseau de commutation soient activés, un 

ou plusieurs liens directs existent entre les noeuds. L’activation des commutateurs correspond 

donc, à la fois, à la formation d’un réseau adapté à la communication désirée et au routage du 

ou des messages.  

Les réseaux dynamiques peuvent être à un étage ou à plusieurs. On appelle les réseaux à un 

étage réseaux « Crossbar » (figure 15). Le réseau « Crossbar » est caractérisé par une bonne 

performance. Toutefois, son nombre de liens est aussi élevé que celui d’un réseau point à 

point. C’est un nombre qui devient excessif pour des réseaux de grande taille. Pour les 

réseaux à plusieurs étages ou multi-étages dénotés aussi MINs (Multi-stage Interconnection 

Networks), on compte plusieurs colonnes de commutateurs qui sont reliés entre eux et avec 

les noeuds de calcul. Les MINs se situe entre la connexité minimale des réseaux en bus et la 

connexité maximale des réseaux de commutation matricielle. Ces réseaux seront abordés avec 

plus de détails dans le reste de ce chapitre.  

 

 

Figure 15. Réseau crossbar 
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Tableau 7. Comparaison de quelques topologies 

Propriété Bus Crossbar Multi-étages 
Vitesse basse élevée élevée 
Coût bas élevé moyen 
Fiabilité basse élevée élevée 
Configurabilité élevée basse moyenne 
Complexité basse élevée moyenne 

 
Le tableau 7 compare trois topologies parmi les plus populaires au moyen de quelques 

propriétés intéressantes. On remarque que sur les trois citées, les réseaux multi-étages 

présentent les critères les plus intéressants : une vitesse et une fiabilité élevées avec un coût 

moyen. Dans ce qui suit, nous allons nous intéresser de près à ce type de réseaux. 

2.2. L’historique des MINs 

Les réseaux multi-étages sont utilisés depuis longtemps dans les systèmes multiprocesseurs 

pour connecter des processeurs aux modules mémoires (Gott et al., 1983) (Pfis et al., 

1985). Ils sont par exemple fréquemment utilisé dans les machines parallèles tels IBMSP 

(Stun et al., 1995) et CRAY Y-MP (Cheu et al., 1986). 

Les  MINs de type banyan ont en plus servi pour réaliser les interconnexions à l’intérieur 

des commutateurs ATM (Zegu, 1993) (Giac et al., 1991).  Ils étaient par exemple proposés 

pour le réseau Broadband ISDN (B-ISDN). Dans une architecture multi-étages, le switch n’est 

plus formé d’un seul étage mais de plusieurs. Les paquets en provenance du réseau passent à 

travers les différents étages composés de commutateurs (switches) élémentaires. De cette 

manière, le switch peut profiter d’un certain degré de parallélisme.  

2.3. Formalisme de description des réseaux multi-étages 

Un réseau multi-étages NxM  est un réseau d’interconnexion dynamique reliant N entrées à 

M sorties et construit par des commutateurs de taille a x b. Ces commutateurs sont ordonnés 

en étages (Stgd,Stg(d-1),...,Stg0) interconnectés par des étages de connexions (Cd,C(d-1),...,C1,C0).  

Ces derniers sont réalisés grâce à des permutations. Une permutation est en général une 

permutation sur les bits formant l’adresse d’un nœud. 
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Figure 16. Architecture de MIN générique 

La majorité de MINs utilisés sont de taille N et de degré r. On dit que ce sont des MINs 

(N,r) où N et M sont égaux et les commutateurs sont de degré r. La figure 16 illustre 

l’architecture d’un MIN générique NxN utilisant des crossbars de degré 2x2. Toutefois, il 

reste toujours possible de travailler avec des MINs tels que N et M sont différents. Ainsi, si N 

strictement supérieur à M, des commutateurs axb avec a supérieur à b (a > b) seront utilisés. 

Ces commutateurs sont appelés des commutateurs de concentration (concentration switches). 

Dans le cas où on a N est strictement inférieur à M, on utilisera des commutateurs avec a 

inférieur à b (a < b). De tels commutateurs sont appelés des commutateurs de distribution 

(distribution switches). Le Delta MIN de la figure 17 est un MIN de taille N égal à 6 utilisant 

des commutateurs 3x3 sur son premier étage. 

 

 

Figure 17. Un Delta MIN de taille 6 
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2.4. Classification des MINs 

Il existe divers critères de classification des réseaux multi-étages (Szym et al., 1994). En 

effet, on peut distinguer plusieurs classes de MINs suivant les types de commutateurs utilisés 

et / ou les types de permutation. Avant de présenter la classification choisie pour les MINs, il 

est important de commencer par explorer quelques définitions. Un réseau multi-étages est dit : 

-  banyan : s’il offre un chemin unique entre n’importe quelle entrée et n’importe quelle 

sortie. Il est appelé aussi « unipath network ». 

-  uniforme : si tous les commutateurs d’un même étage sont du même degré r. 

-   carré ou « square » : si les étages (Stgd,Stg(d-1),...,Stg0) sont constitués de commutateurs 

du même degré r. On l’appelle aussi MIN de degré r. 

-  rectangulaire : c’est un MIN ayant le même nombre d’entrées et de sorties c'est-à-dire N 

est égale à M. 

-  bloquant : s’il n’est pas toujours possible d’établir une connexion entre un couple 

d’entrée-sortie même lorsque la sortie en question n’est pas en cours d’utilisation. 

-  non bloquant : Si de toute entrée inactive il existe toujours un chemin vers toute sortie 

inactive. On peut donc effectuer n'importe quelle permutation en cours d'exécution. Un 

exemple populaire de réseau sans blocage est le réseau de Clos. 

 

 

Figure 18. Classification topologique des MINs 



Développement d’un modèle formel des MINs dédiés aux MPSOCs                               Maïssa Elleuch 

 48 

La figure 18 représente une classification topologique des MINs. En réalité, un MIN peut 

posséder ou non la propriété banyan. Dans un MIN banyan non uniforme (Banyan Non-

Uniform), il existe au moins un étage renfermant des  commutateurs de degré différent. Donc, 

il est clair que ce type de MIN est non carré (Non-Square). Les MINs banyan peuvent avoir 

ou non la propriété Delta. C’est une propriété qui décrit une sous-classe importante de réseaux 

banyans appelé les réseaux Delta.  

Les MINs qui présentent de multiples chemins entre toute paire de source-destination 

forment la classe des MINs non banyan. Ils ont l’avantage d’être tolérants aux fautes mais ils 

sont généralement plus coûteux et plus complexe à contrôler que les MINs banyan. 

 

2.5. Construction d’un  réseau MIN 

Une permutation est une application (mapping) bijective N:N où chacun des N éléments 

d’entrée (source) est relié à un et un seul des N éléments de sortie (destination) et 

réciproquement. En assignant à chaque élément d’entrée et de sortie une étiquette ou adresse 

entre 0 et N-1, la permutation peut être définie par une modification de l’adresse de chaque 

élément d’entrée pour produire l’adresse de l’élément de sortie correspondant. En général, on 

utilise une adresse binaire et la permutation correspond à une opération sur les bits formant 

l’adresse. Dans un réseau MIN, les liens à chaque étage et à la sortie sont agencés en fonction 

d’une permutation parmi plusieurs types standard. Les différents types de permutations 

utilisés dans les MINs seront détaillés plutard au cours de ce chapitre. 

2.6. Propriétés d’un  réseau MIN 

Le réseau d’interconnexion multi étages possède les propriétés d’être :  

−−−− Dynamique et réarrangeable : il permet plus d’un chemin pour établir une liaison entre une 

entrée libre et une sortie libre. 

−−−− Tolérant aux pannes : on peut  établir tous les chemins même avec le blocage d’un 

commutateur au niveau de chaque sous-réseau qui le constitue. 

−−−− Efficace et plus pratique et moins coûteux pour augmenter le nombre de processeurs. 

2.7. Les réseaux Delta 
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2.7.1.  Définition 

Les réseaux Delta proposés par Patel (Patel, 1981) sont construits à l’aide de crossbars axb. 

La propriété Delta est définie comme suit : on désigne par Oi  (i= 0,1,… ,b-1) l’output d’index 

i d’un crossbar dans un MIN, si un input d’un crossbar de l’étage j est connecté à l’output Oi 

d’un crossbar de l’étage j-1, alors tous les autres inputs de ce crossbar doivent être connectés 

à l’étage précédent en des outputs de crossbars ayant le même indice i. De façon générale, on 

peut dire qu’un réseau Banyan est un réseau Delta si tous ses étages ont la propriété Delta. 

La figure 19 illustre la propriété Delta sur une portion d’un réseau MIN. On note que 

l’input O0 du crossbar 3 est connecté à un output d’indice 0 de l’étage j-1. La propriété Delta 

exige que tous les inputs du crossbar 3 soient connectés à l’étage j-1 en des outputs ayant le 

même index 0. Ce qui est le cas puisque l’input I1 du crossbar 3 est connecté à un output 

d’index 0 de l’étage j-1. 

 

 

Figure 19. Illustration de la propriété Delta 

2.7.2. Propriétés des réseaux Delta 

Les réseaux multi étages de type Delta ont des propriétés très intéressantes : 

-  une connexité moyenne : un nombre de commutateurs de l’ordre de NlogkN qui reste plus 

faible que N2  pour les réseaux matriciels, 

−−−− un accès total : les types de permutations  utilisées pour construire les étages de connexion, 

doivent garantir l’accès total au réseau. Ainsi, par une configuration correcte des 

commutateurs à chaque étage, n’importe quelle entrée doit être capable d’atteindre n’importe 

quelle sortie, 

−−−− un routage simple : un routage distribué qui se fait en fonction de l’adresse de destination et 

ceci indépendamment de la source, 
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−−−− une équivalence topologique : il a été prouvé dans (Arga, 1983), (Wu et al., 1980) et (Coll, 

2002) que tous les MINs Delta sont équivalents du point de vue topologique. Il suffit de 

réordonner les positions des commutateurs sans rompre les connexions pour passer d’un 

réseau à un autre. 

2.7.3. Panorama des réseaux Delta 

Plusieurs types de réseaux Delta sont définis en fonction des types de permutations 

utilisées. Il existe plusieurs formes (types) de réseaux Delta, dépendamment de leurs 

connexions. Dans ce qui suit, nous détaillerons les Delta MINs les plus utilisés ainsi que les 

réseaux inverses correspondants (reverse). Pour obtenir d’un réseau inverse, il suffit de 

regarder le schéma du réseau original de gauche à droite ou juste inverser la numérotation 

adoptée. 

Les réseaux présentés sont de taille N et constitués de d étages de commutateurs de degré 2 

chacun. Nous adopterons la numérotation utilisée dans la figure 16. 

-  Le réseau Oméga : sa connexion C0 utilise la permutation identité I  qui ne produit aucune 

permutation, alors que toutes les autres connexions utilisent la permutation « perfect shuffle » 

σ 
k 
. Cette dernière consiste en un décalage cyclique de tous les bits de l’index d’une position 

vers la gauche (formule 3-1). Ainsi, le réseau Oméga est décrit mathématiquement par la 

formule (3-2). La figure 20 illustre un Oméga (16,2). 

 σ 
k ( xn-1  xn-2 …x1 x0  ) = xn-2  …x1 x0 xn-1                                                                                        (3-1) 

 

Définition 1. Modèle de connexion du réseau Oméga 

            Pour 1 ≤ i ≤ d,       Ci = σ 
k
 

                                                                            Pour i = 0,             C0 = I                                            (3-2) 
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Figure 20. Un réseau Oméga (16,2) 

-  Le réseau Flip : il est considéré comme l’image miroir du réseau Oméga, le réseau Flip 

utilise la  permutation inverse du « perfect-shuffle ». Dans ce cas, le décalage cyclique est 

effectué vers   la droite et appelé σ k  
-1

 (formule 3-3). Le modèle de connexion du réseau Flip 

est décrit par la formule (3-4).  

σ k  
-1

  ( xn-1  xn-2 …x1 x0  ) = x0 xn-1 xn-2 ...x2  x1                                                                                                              (3-3) 

Définition 2. Modèle de connexion du réseau Flip 

  Pour 0 ≤ i ≤ d-1,  Ci = σ k  
-1   

 

  Pour i= d,            Cd = I                                            

 (3-4) 

 

-  Le réseau Butterfly : c’est un réseau qui utilise la permutation identité I au premier étage 

et en sortie et la permutation « butterfly » dans tous les autres étages. La permutation 

« butterfly » est un échange entre le ième bit et le bit 0. Elle est par la formule (3-5). Un 

exemple de réseau Butterfly est illustré par la figure 21. De façon générale, le réseau Butterfly 

est défini par les permutations présentées dans la définition 3. 

ßi
k ( xn-1  xn-2 … xi+1  xi  xi -1  …   x1 x0  ) =  xn-1  xn-2 … xi+1  x0   xi -1  …   x1 xi.                              (3-5) 
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Définition 3. Modèle de connexion du réseau Butterfly 

   Pour i = d, Cd = σ 
k
  

               Pour (1 ≤ i ≤ d-1), Ci =  ßi
 k

 
 

                                                              Pour i=0, C0, ß0 
k 
                                                    

         (3-6) 

-  Le réseau Reverse Butterfly : le réseau Reverse Butterfly qui n’est autre que l’image 

miroir du Butterfy, est décrit par la définition 4.  

Définition 4. Modèle de connexion du réseau reverse Butterfly 

Pour i=d,  Cd = ß0 
k
 

            Pour (1 ≤ i ≤ n-1), Ci = ß(d-i)
 k  

                                                           Pour i = 0,     C0 = σ k  
-1

                                             

          (3-7) 

 

 

 

Figure 21. Un réseau Butterfly (16, 2) 

-  Le réseau Baseline : il  est définie à l’aide de la permutation δi
k . Elle consiste en un 

décalage cyclique d’une position vers la droite, des (i+1) bits les moins significatifs de 
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l’index (formule 3-8). La figure 22 illustre un exemple de Baseline (8,2). Ainsi, le réseau 

Baseline est défini par les permutations suivantes de la formule (3-9).  

 

δi
k 
( xn-1  xn-2 … xi+1  xi  xi -1  …   x1 x0  ) =  xn-1  xn-2 … xi+1  x0  xi  xi -1  …   x1                                                (3-8)          

Définition 5. Modèle de connexion du réseau  Baseline 

             Pour i = d, Cd = I   

Pour (1 ≤ i ≤ d-1), Ci = δi
k
 
 
 

Pour i = 0, C0 = I                                                      

 (3-9)      

-  Le réseau Reverse Baseline : il est l’image miroir du Baseline. Il utilise alors la 

permutation inverse de δi
k  appelée δi

k  
-1

.  δi
k  

-1

 est un décalage cyclique d’une position vers la 

gauche, des (i+1) bits les moins significatifs de l’index (formule 3-10). La formule (3-11) 

décrit le mode de connexion du Reverse Baseline. 

δi
k  

-1

 ( xn-1  xn-2 … xi+1  xi  xi -1  …   x1 x0  ) =  xn-1  xn-2 … xi+1  xi -1  …   x1 x0  xi                            (3-10) 

Définition 6. Modèle de connexion du réseau  reverse Baseline 

   Pour i = d, Cd = I  

               Pour (0 ≤ i ≤ d-1), Ci = δ(d-i)
k  

-1
 

                                                              Pour i = 0, C0= I                                                     

                  (3-11) 
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Figure 22. Un réseau Baseline (16,2) 

2.7.4. Synthèse des formalismes de description des Delta MINs  

Le tableau 8 résume les différents types de réseaux Delta, alors que le tableau 9 représente 

les définitions formelles des permutations qui sont utilisées pour construire ces réseaux. Il est 

à noter que les permutations ß0 
k
, δ0

k
 et

 
δ0

k  
-1

représentent la fonction identité I. 

 

 

 

 

Tableau 8. Panorama des réseaux Delta 

                                permutation Ck 

 
réseau Delta 

Cd Ci [1..d-1] C0 

Oméga σ 
k
 σ 

k
 I 

Flip I σ k  
-1

 σ k  
-1

 

Butterfly σ 
k
 ßi

 k I 

Reverse Butterfly I ß(d-i)
 k σ k  

-1
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Baseline I δi
k
 I 

Reverse Baseline I 
δ(d-i)

k  
-1

 I 

 
 

Tableau 9. Formalisme de description des permutations 

Fct Définition formelle Explication 

σ 
k
 

 

σ 
k ( xn-1  xn-2 …x1 x0  ) = xn-2  …x1 x0 xn-1 

 

décalage cyclique de tous les 

bits de l’index d’une position 

vers la gauche 

σ k  
-1

 

 

σ k  
-1

  ( xn-1  xn-2 …x1 x0  ) = x0 xn-1 xn-2 ...x2  x1 

 

décalage cyclique de tous les 

bits de l’index d’une position 

vers la droite 

ßi

k
 

 

ßi

k ( xn-1… xi+1  xi  xi -1  …   x1 x0  ) =  xn-1… xi+1  x0   xi -1  …   x1 xi. 

 

échange entre le ième bit et le 

bit 0 

δi

k
 

δi

k 
( xn-1 … xi+1  xi  xi -1  …   x1 x0  ) =  xn-1 … xi+1  x0  xi  xi -1  …   x1 

 

décalage cyclique d’une 

position vers la droite, des 

(i+1) bits les moins 

significatifs de l’index  

δi
k  

-1

 
δi

k  
-1 

( xn-1 … xi+1  xi  xi -1  …   x1 x0  ) =  xn-1 … xi+1  xi -1  …   x1 x0  xi 

 

décalage cyclique d’une 

position vers la gauche, des 

(i+1) bits les moins 

significatifs de l’index  

 

2.7.5. Le routage dans les réseaux Delta 

Les réseaux Delta sont caractérisés par un mode de routage qui est très simple. L’adresse 

destination présentée dans la base r où r est le degré du réseau, va servir comme étant une 

séquence de contrôle pour router le message à travers les différents commutateurs. Le 

message à livrer va être alors commuté à l’output d’indice i  du commutateur courant, si le 

digit correspondant de la séquence de contrôle est égal à i. 
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Pour aller de gauche à droite, la séquence de contrôle est considérée dans le même sens, 

c'est-à-dire de gauche à droite. Par contre, pour aller de droite à gauche, il faudra considérer 

l’adresse destination k bits par k bits dans le sens contraire. D’ailleurs, pour que l’algorithme 

de self-routing marche dans un réseau de type « reverse Delta MIN », il faudrait considérer 

l’adresse destination de droite à gauche. 

On associe donc aux réseaux MINs de type Delta la propriété d’auto routage (self-routing) 

dans le sens que le canal de sortie choisi à chaque commutateur ne dépend pas de la source 

mais seulement de la destination. La figure 23 illustre le routage d’un message de l’entrée 

d’adresse 001 vers la sortie d’adresse 110 et ceci dans un Delta MIN (8,2).  

 

 

Figure 23. Routage dans un Delta MIN (8,2) 

3. Conclusion 

Dans ce chapitre, nous avons passé en revue les différentes notions relatives aux réseaux 

multi-étages (MINs). Nous avons insisté en particulier sur les réseaux de la famille Delta. Vu 

les propriétés intéressantes que possède cette dernière classe de réseaux, notre travail de 

formalisation se focalisera sur cette famille de réseaux. 

 

 

 

Chapitre 4 : Formalisation générique des réseaux sur puce  

1. Introduction 
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Dans le premier chapitre de ce manuscrit, nous avons étudié différents travaux de 

formalisation relatifs aux réseaux sur puce. Nous avons alors constaté que ces travaux 

pourraient être classé en deux catégories : spécifique et générique. La première catégorie est 

taillée pour le système à vérifier, elle ne permet pas donc la réutilisation du modèle formel 

construit (Æthereal, AMBA). Par opposition à cette première catégorie, la seconde est 

caractérisée par une approche commune valable pour tous les réseaux sur puce (Octagon, 

Hermes). C’est une approche illustrée à travers le modèle générique GeNoC (Generic 

Networks on Chip).  

Nous présenterons dans ce chapitre la conception de l’extension du modèle GeNoC dans le 

cadre de la formalisation des réseaux multi-étages dédiés aux MPSoCs. Une étude détaillée de 

GeNoC sera aussi exposée. 

2. Formalisation générique : GeNoC 

GeNoC représente un modèle formel générique décrivant les communications dans les 

réseaux sur puce (Schm, 2006). Les architectures de communication ont plusieurs concepts en 

commun tels que les interfaces, la topologie, le routage et l’ordonnancement. GeNoC 

modélise dans un style fonctionnel ces notions clés en ne faisant aucune hypothèse sur la 

topologie, le type de routage ou de l’ordonnancement. Son critère de correction est la non 

modification d’un message transmis depuis une source vers une destination. 

2.1. Les fonctions de GeNoC 

En réalité, GeNoC est un modèle défini en fonction de quatre fonctions clés (figure 24). 

Ces dernières n’ont pas une définition explicite mais elles sont plutôt exprimées en fonction 

de contraintes à satisfaire.  

2.1.1. Les fonctions « Send » et « Recv »  

Avant l’envoi d’un message sur le réseau, la couche interface du nœud source applique la 

fonction « Send » pour encapsuler ce message dans une trame (ou frame). Pour récupérer le 

message au niveau du nœud distant, la couche interface effectue l’opération inverse en 

appliquant la fonction « Recv ». Le codage et le décodage des trames se fait selon le modèle 

OSI (Open System Interconnection). La contrainte principale à satisfaire par ces deux 
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fonctions est la suivante : le récepteur doit être capable d’extraire l’information codée c’est à 

dire (Recv ο Send) est égale au message initiale. 

2.1.2. La fonction « Routing » 

C’est la fonction responsable du routage des trames. Pour chacune de ces trames, elle va 

calculer la liste des routes autorisées. Ce calcul se base sur le principe des déplacements 

unitaires. La contrainte principale de la fonction « Routing » est que toute route entre un 

couple source-destination débute réellement à la source et emprunte uniquement les nœuds 

existants du réseau pour aboutir à la destination. 

2.1.3. La fonction « Scheduling »  

La fonction « Scheduling » modélise l’ordonnancement des trames. En ayant une liste de 

trames à ordonnancer, elle extrait la sous-liste de trames pouvant voyager simultanément sur 

le réseau. La définition de cette fonction exige d’assurer l’exclusion mutuelle entre les trames 

ordonnancées (Scheduled) et celles retardées (Delayed). 

 

 

Figure 24. GeNoC : un réseau générique 

2.2. Déroulement de la fonction GeNoC 
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La figure 25 illustre la logique du déroulement de la fonction GeNoC, ainsi que les 

différents objets manipulés. Cette figure est commentée comme suit : 

-  Un message à envoyer (msg) est une opération de communication modélisée par une 

transaction t. Cette transaction  doit avoir une forme particulière : « id s msg d », où id 

représente l’identificateur de t du message, s, le nœud source, d, le nœud destination et enfin 

msg,  le message à envoyer. L’identificateur id doit être unique. La liste de toutes les 

transactions de toutes les applications actives forme l’ensemble T. La validité de T est 

reconnue par un prédicat dénoté Tlstp, 

-  La fonction « ComputeMissives » applique la fonction « Send » de l’interface pour former 

la trame à partir du message msg. La trame construite est mise dans une missive m ayant la 

même forme que la transaction initiale t, la seule différence est que le message (msg) est 

remplacé par la trame (frm) correspondante. L’ensemble de toutes les missives M est reconnu 

par le prédicat Mlstp, 

-  L’application de la fonction « Routing » donne pour chaque missive m, un voyage v. Un 

voyage v est un triplet constitué de l’identificateur (id) et de la trame (frm) de la missive 

initiale et de la liste des routes possibles dans le réseau (Routes). L’ensemble de tous les 

voyages forme V, 

-  L’ordonnancement de l’ensemble V dépend de la fonction « Scheduling ». Cette dernière 

divise V en deux sous-ensembles : une liste de voyages à effectuer (Scheduled) et une liste de 

voyages à retarder (Delayed). Les voyages retardés seront reconvertis en missives (par la 

fonction « ToMissives ») et repassés à la fonction de routage. Un nombre de tentatives est 

associé à chaque nœud pour qu’il puisse renvoyer ses messages retardés. Une fois ce nombre 

expire c'est-à-dire atteint 0, ces messages retardés seront considérés comme avortés et feront 

partie de l’ensemble résultat A. Les voyages valides sont reconnus par le prédicat Vlstp, 

-  La fonction « ComputeResults » fait appel à la fonction « Recv » au niveau de l’interface 

du nœud récepteur. Ainsi, elle forme les messages résultats à partir des trames de l’ensemble 

« Scheduled ». Un message résultat noté r doit être égale à la transaction initiale moins le 

nœud source. La validité de l’ensemble résultat R est reconnue par le prédicat Rlstp.  
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Figure 25. Déroulement de GeNoC 

2.3. Formalisation de GeNoC 

La formalisation concerne les nœuds, les interfaces, le routage et enfin l’ordonnancement  

des communications d’un réseau sur puce générique. Dans la suite, nous nous limiterons à la 

présentation des deux composantes qui intéressent notre travail : les nœuds et le routage. 

2.3.1. Formalisation des nœuds 

Le domaine de définition de tous les nœuds est GenNodeSet. Les éléments de ce domaine 

sont reconnus par le prédicat ValidNodep. NodeSet est un sous-ensemble de GenNodeSet, il 

forme les nœuds d’un réseau particulier. La fonction NodeSetGen prend en argument un 

paramètre pms valide c'est-à-dire reconnu par le prédicat ValidParamsp et génère un nœud de 

NodeSet. La définition de l’ensemble NodeSet doit vérifier le théorème 4-1. Cette obligation 

exprime le fait que pour tout paramètre pms valide, tout élément produit par la fonction 

NodeSetGen doit être un élément du domaine  GenNodeSet ; c’est à dire vérifie le prédicat 

ValidNodep. 

Théorème 4-1. Définition de NodeSet 

∀ pms, ValidParamsp(pms) ⇒∀ x∈ NodeSetGen(pms), ValidNodep(x)                               

           (4-1) 
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2.3.2. Formalisation du routage 

Le routage désigne le mécanisme avec lequel les données sont acheminées depuis un nœud 

source jusqu’à la destination. Deux types d’algorithmes de routage : déterministe ou adaptatif. 

Le routage déterministe fournit un unique nœud constituant la prochaine étape dans la route 

de s vers d. Par opposition au routage déterministe, le routage adaptatif donne au niveau de 

chaque nœud intermédiaire une liste de prochains nœuds.  

Que le routage soit déterministe ou adaptatif, il applique généralement une fonction ρ qui 

effectue le calcul des routes possibles entre un nœud source et un noeud destination. Pour 

chaque missive m de la liste M, la fonction « Routing » (définition 4-1) applique la fonction ρ 

pour calculer la liste des routes réalisables. Elle forme alors la liste des voyages V. Dans la 

définition 4-1, on utilise les symboles IdM, FrmM, OrgM et DestM qui sont des fonctions 

GeNoC permettant l’accès respectif aux éléments d’une missive : l’identificateur (id), le 

contenu du message (frm), l’origine (Org) et la destination (Dest). 

Définition 4-1. Définition de « Routing » 

Routing (M, NodeSet) =  ∧  (List (IdM(m),FrmM(m),ρ(OrgM (m), DestM (m)))                    
                                     m ∈ M  

           (4-2) 

La correction de la fonction « Routing » est exprimée par quatre obligations de preuve. 

Nous nous limitons ici aux trois obligations qui nous intéressent dans le cadre de ce travail : 

-  Le prédicat ValidRoutep reconnaît une route valide (définition 4-2). Une route r est valide 

que si elle débute au nœud source, se termine au nœud destination, tous les nœuds de la route 

sont inclus dans NodeSet et que la route comprend au moins deux nœuds. L’obligation de 

preuve de la validité des routes produites par ρ est donnée par le théorème 4-2. Elle exprime 

le fait que pour chaque missive m  appartenant à un ensemble M  valide, toute route r produite 

par la fonction ρ doit être valide (vérifie ValidRoutep). La longueur de la route serait égale 

exactement à deux si les deux nœuds la source et la destination du message sont directement 

reliés dans le réseau. 

Définition 4-2. Définition du prédicat « Ext-ValidRoutep » 

ValidRoutep (r, m, NodeSet)  = ∧    r[0] = OrgM (m)  
                                                         r[l-1] = DestM (m) 
                                                         r ⊆  NodeSet  ∧  (len(r) ≥ 2) 

           (4-3) 
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Théorème 4-2. Validité des routes produites par la fonction  ρ 

∀ M, Mlstp (M,NodeSet)  

⇒ ∀ m ∈  M, ∀ r ∈  ρ (OrgM (m), DestM (m)), ValidRoutep (r, m,NodeSet)                     

           (4-4) 

-  Il faut montrer aussi que la liste des voyages générés à partir d’une liste de missives 

valides, est valide (reconnu par Vlstp). D’où l’obligation de preuve de la formule (4-5), 

Théorème 4-3. Validité des voyages produits par la fonction  « Routing » 

∀ M, Mlstp (M,NodeSet)  ⇒ Vlstp (Routing (M, NodeSet))                                              

           (4-5) 

-  La troisième contrainte concerne la correspondance entre une missive et un voyage calculé 

par la fonction « Routing ». Ainsi, à chaque voyage calculé par la fonction de routage lui 

correspond une unique missive  (théorème 4-4), 

Théorème 4-4. Correspondance entre missives et voyages  

∀ M, Mlstp (M,NodeSet)  

 ⇒ ∀ v ∈ Routing (M, NodeSet), ∀ m ∈  M, IdV(v)= IdM(m), FrmV(v)= FrmM(m)                   

           (4-6) 

2.4. Analyse critique de la fonction GeNoC 

En plus des messages à router, la fonction « Routing » de GeNoC ne prend en 

considération que l’ensemble de nœuds (NodeSet), et ceci en faisant abstraction des 

connexions qui peuvent être entre les différents nœuds du réseau. Une telle définition suppose 

en fait l’existence implicite des connexions entre deux nœuds successifs d’une route calculée. 

Ainsi, si l’algorithme de routage du réseau à vérifier permet d’aller d’un nœud A vers un 

nœud B, il existe alors une connexion implicite dans la topologie qui permet de joindre B à 

partir de A. 

Le modèle GeNoC s’est montré très efficace lors de la validation formelle de réseaux sur 

puce tels que l’Octogon et l’Hermes. En réalité, les algorithmes de routage de ces NoCs 

donne explicitement le prochain nœud d’une route. Toutefois, l’algorithme de routage dans 

les réseaux multi-étages de type Delta est différent. En donnant seulement le port à travers 

lequel le message doit être commuté, le « self routing » ne donne aucune indication sur la 
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position du prochain commutateur. Pour connaître cette position, il faudra faire intervenir 

concrètement la connexion qui relie ce commutateur à l’étage suivant (Elle et al., 2008). 

En conséquence, et compte tenu de l’importance de l’aspect topologie dans les Delta MINs 

(soulignée dans le chapitre précédent), nous remarquons que l’application du modèle actuel de 

GeNoC pour valider ce type de réseau est impossible. Il faudra prendre en compte la 

composante topologie de façon plus explicite en faisant intervenir en plus des nœuds, les 

connexions.  

3. Formalisation générique par extension du modèle GeNoC 

Comme il a été mentionné plus haut, appliquer la version actuelle du modèle GeNoC pour 

valider de façon formelle les réseaux sur puce de type Delta MINs est impossible sans tenir 

compte réellement de l’aspect topologique des réseaux. L’idée est alors d’étendre le modèle 

générique GeNoC en lui ajoutant une composante topologie et en développant la composante 

routage étendu résultante de cette extension. Comme l’ensemble de nœuds a été déjà pris en 

considération dans le modèle GeNoC, nous nous focaliserons sur la généralisation des 

connexions. Par ailleurs, nous gardons la même notation GeNoC concernant la formalisation 

de l’ensemble de nœuds NodeSet  exposée dans la section 2.3.1 de ce chapitre. 

3.1. L’aspect générique dans ACL2 

La traduction des définitions génériques dans ACL2 est possible grâce au principe 

d’encapsulation (Kauf et al., 2001). Ce principe introduit sous certaines contraintes, des 

symboles de fonctions n’ayant pas une définition explicite. Les contraintes sont des 

théorèmes. Dans l’exemple ci-dessous, lorsque la fonction f encapsulée est admise, la théorie 

d’ACL2 est étendue par l’événement suivant « la fonction f est contrainte par l’axiome φ ». 

Ainsi, la fonction f ne possède pas une définition explicite mais on sait qu’elle possède la 

propriété φ à satisfaire. Par conséquence, une fonction g est une instance de la fonction 

encapsulée f, si et seulement, g satisfait les mêmes contraintes que f. Autrement dit, tous les 

théorèmes exprimés au niveau générique pour f, doivent être prouvés pour g.  

 

(encapsulate (((f x1...xn) => *)) 
    (local (defun f (x1 ...xn)    β)) 
    (defthm thm-1 φ))  
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3.2. La composante topologie générique 

En prenant en considération les aspects communs à toutes les architectures de 

communication des réseaux sur puce, nous détaillons ici la formalisation d’une composante 

générique décrivant leurs topologies (Elle et al.a, 2008). 

3.2.1. Principe 

La disposition des éléments (nœuds et liens) d’un réseau sur puce, en particulier les 

interconnexions physiques (réelles) et logiques (virtuelles) entre les noeuds, définit sa 

topologie. L’étude de la topologie physique du réseau est souvent assimilée à l’étude d’un 

graphe (G) dont les sommets sont les nœuds du réseau et les arcs sont les liens entre les paires 

de sommets. Ainsi, un graphe est d’habitude défini de façon statique par une collection de 

sommets (V) et une collection d’arêtes (E) (Gro et al., 2005). Notre approche est différente. 

Elle est plutôt basée sur l’identification des fonctions d’interconnexions qui doivent être 

appliquées pour relier un nœud à un autre dans un graphe direct de la topologie. 

En réalité, un graphe de type direct est caractérisé par des arcs qui sont orientés d’un 

sommet vers l'autre. Un sommet x du graphe peut être connecté à un ou plusieurs autres 

sommets. Pour générer un lien à partir du sommet x, on doit appliquer une fonction 

mathématique dénotée fp. Cette dernière exprime la relation entre le sommet x et l’un de ses 

arcs sortants. Tous les arcs sortants de x sont alors le résultat de l’application d’une liste de 

fonctions désignée par lfpx. Nous supposons que, pour chaque sommet du graphe, une telle 

liste de fonctions mathématiques existe.  

La figure 26 illustre un graphe simple de la topologie d’un Octagon à huit nœuds où 

chaque nœud est représenté par un nombre naturel (NodeSet = (0,1,2,..,7)). On pose N le 

nombre total de nœuds dans ce réseau, soit ici 8. En orientant le graphe dans le sens indiqué 

sur la figure, on peut identifier pour chaque nœud les trois fonctions de connexions à 

considérer. Ainsi, pour le nœud « 1 », on devra appliquer une fonction incrémentale « +1 » 

(connexion (1,2)), une fonction de décrémentation « -1 » (connexion (1,0)) et une fonction du 

type « + N/2 = + 4 » (connexion (1,5)). 

Pour générer toutes les connexions d’un graphe donné, il existe deux alternatives. La 

première consiste en une procédure d’itération par nœud dans laquelle on identifiera pour 

chaque nœud la liste de fonctions de connexions qui doit lui être appliquée. L’inconvénient de 

cette alternative est le fait de devoir éliminer les connexions redondantes après avoir procéder 

par nœud ; ce qui peut être un peu lourd dans le cas où le réseau comporte beaucoup de 
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nœuds. Une deuxième alternative consisterait à identifier tous les nœuds auxquels on doit 

appliquer la même fonction de connexions fp. Cet ensemble formera un sous-ensemble de 

l’ensemble initial de nœuds. Les connexions obtenues par application de la fonction fp 

formeront quant à eux une sorte de sous-topologie de la topologie finale. 

 Dans le cadre de notre spécification générique, nous avons opté pour la deuxième 

alternative. Une façon de spécifier les connexions du réseau de la figure 26 selon cette 

dernière alternative, aboutit à l’identification de trois sous-ensembles de noeuds appelé ici X, 

Y et Z. X est l’ensemble formé par les nœuds (0,1,2,3,4,5,6) pour lesquels il faut appliquer la 

fonction de connexion incrémentale « +1 ». Le second ensemble Y est constitué des nœuds 

(0,1,2,3).  Pour obtenir les connexions partant de ce sous-ensemble, il faut appliquer la 

fonction de connexion « + N/2 = + 4 ». Le troisième ensemble Z contient le singleton 7 à 

partir du quel on décrit la dernière connexion (7,0) par une fonction du type « -(N-1) = -7 ». 

 

 

Figure 26. Un graphe topologique du réseau Octagon  

3.2.2. Spécification 

On définit la fonction notée Gen-Cnx qui génère tous les arcs sortants d’un sommet x à 

partir de la liste de fonctions de connexions correspondante notée lfpx. Gen-Cnx itère sur la 

liste lfpx pour appliquer chacune de ses fonctions et obtenir ainsi toutes les connexions du 

nœud x. Le prédicat Validlfp reconnaît la validité d’une liste lfpx.  

On désigne aussi par gen-top la fonction qui sert pour générer tous les arcs (liens) d’un 

réseau. Elle prend en entrée un seul paramètre qu’on nomme pms-top. Ce dernier est une liste 

constituée de couples ayant la forme (X, fp) où fp est la fonction de connexion qui doit être 

appliquée à tous les nœuds contenus dans X. La fonction gen-top fait appel à une fonction 

génératrice des différentes sous-topologies désignée par gen-top-1 (définition 4-3). 

 
X = (0,1,2,3,4,5,6) : fp = « + 1 » 
 
Y = (0,1,2,3)          : fp =  « +N/2 » = «  + 4 » 
 
Z = (7)                   : fp = «  - (N - 1) » = «  - 7 » 
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Définition 4-3. Définition de la fonction gen-top-1 

gen-top (pms-top) =   ∧     (List (gen-top-1 (X, fp))) 
                                               X ⊆  NodeSet 
               fp ∈ Listfp 

                                                                                                                                               (4-7) 

3.2.3. Critères de correction 

La principale contrainte à vérifier sur le graphe d’une topologie quelconque est qu’un 

sommet v produit par une fonction de connexion donnée fp, fait réellement partie de  

l’ensemble des noeuds (NodeSet). Le théorème 4-5 exprime la correction de n’importe quelle 

liste de fonctions de connexions. Cette dernière n’est valable que si, pour toute connexion cnx 

produite à partir d’un nœud x de NodeSet et de sa liste de connexions lfpx, la seconde 

extrémité de cnx appartient à NodeSet. L’accès à la deuxième extrémité d’une connexion cnx 

est possible via la fonction ext2. 

Théorème 4-5. Validité des fonctions de connexions 

∀ x ∈ NodeSet, ∀ lfpx, Validlfp (lfpx) ⇒ ∀ cnx  ∈  Gen-Cnx (x, lfpx), ext2 (cnx) ∈ NodeSet                                                        

             (4-8) 

La contrainte 4-6 servira comme un lemme intermédiaire. En effet, pour ne pas avoir à 

vérifier pour chaque nœud du réseau, on préfère plutôt vérifier le théorème 4-6. Ce dernier est 

défini pour l’ensemble des nœuds formant les extrémités des connexions de la topologie. Le 

prédicat ValidParams-top sert pour vérifier la validité des paramètres de génération de la 

topologie. La fonction ext2s-top donne accès aux nœuds extrémités des connexions. 

Théorème 4-6. Validité des extrémités générées par les fonctions de connexion 

∀ pms, ∀ pms-top, (ValidParamsp pms) ∧ (ValidParamsp-top pms-top) 

⇒  (ext2s-top (gen-top pms-top))  ⊆  (NodesetGenerator pms) 

             (4-9) 

La validité de toute la topologie du point de vue représentation, est définie par le théorème 

4-7. Ainsi, pour tout paramètre pms-top (reconnu par le prédicat ValidParams-top), toute 

connexion produite par la fonction gen-top doit être correcte, c’est-à-dire reconnue par le 

prédicat ValidCnxp. ValidTop est le prédicat associé à la validité de toute la topologie.  

 

 

 



Développement d’un modèle formel des MINs dédiés aux MPSOCs                               Maïssa Elleuch 

 67 

Théorème 4-7. Validité de la topologie 

∀ x ∈ NodeSet,∀ pms-top, (ValidParamsp-top pms-top)  

⇒ ∀ cnx ∈ gen-top (pms-top),  ValidCnxp  (cnx)      

                                                                                                                                             (4-10) 

3.2.4. Traduction dans la logique ACL2 

Dans cette partie, nous retraçons l’expression de tous les théorèmes décrivant la correction 

de la topologie générique. Des précisions sur la syntaxe ACL2 sont disponibles en annexe de 

ce manuscrit. La fonction params-t servira pour extraire les paramètres topologie à partir des 

paramètres des nœuds. 

Expression du théorème 4-5. Validité des fonctions de connexion (en locale) 

(local(defthm ext2-lfpx-in-nodeset 
 (let* ((nodeset (NodeSetGenerator pms)) 
        (cnx (Gen-Cnx x lfpx)) 
        (ext2 (ext2 cnx)))  
   (implies (and (ValidParamsp pms)(member-equal x nodes)  
                 (Validlfp lfpx)) 
            (member-equal ext2 nodeset))))) 
 

Expression du théorème 4-6. Validité des noeuds  extrémités des connexions 

(defthm gen-top-generates-nodes-in-nodeset  
 (let* ((nodeset (NodesetGenerator pms)) 
        (pms-top (params-top pms)) 
        (top (gen-top pms-top))  
        (ext2s (ext2s-top top))) 
   (implies (and (ValidParamsp pms) (ValidParamsp-t op pms-top) 
                 (valid-ext2s ext2s)) 
            (subsetp-equal ext2s nodeset)))) 
 

Expression du théorème 4-7. Validité de la topologie  

(defthm gen-top-generates-valid-top-1 
 (let* ((pms-t (params-t pms))) 
    (implies (ValidParamsp-top pms) 
             (valid-top (gen-top pms-t)))))        
 
                      
Preuves : Dans ACL2, les preuves de trois théorèmes précédents sont assez instantanées. 

ACL2 ne pourra admettre le fichier générique que si on lui fournit en locale des définitions 

qui vérifient ces théorèmes. Il suffit donc de considérer les plus simples définitions possibles 

des fonctions locales. ACL2 s’assure ainsi qu’il existe au moins une instance de chaque 

fonction générique vérifiant les contraintes qui découlent des théorèmes ou des contraintes 

imposées sur ces fonctions. 
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3.3. La composante routage générique étendue  

La fonction de routage défini dans GeNoC considère la seule information des nœuds 

(NodeSet) pour effectuer le routage. Ainsi, pour chaque missive m de l’ensemble M, la 

fonction « Routing » calcule toutes les routes possibles entre l’origine de la missive (OrgM) et 

sa destination (DestM).  

3.3.1. Principe 

La conception de la nouvelle composante topologie au niveau générique entraîne 

nécessairement des modifications dans la fonction « Routing ». Nous avons alors redéfini 

cette fonction de façon à ce qu’elle prenne en compte toute la topologie (Top) composée des 

nœuds et des connexions. En particulier, nous allons redéfinir la fonction ρ qui calcule les 

routes entre toute paire source-destination du réseau générique. La nouvelle route calculée r 

n’est plus composée de nœuds mais de connexions faisant intervenir des paires de nœuds. 

3.3.2. Spécification 

Nous avons redéfini le prédicat ValidRoutep de façon à y inclure explicitement la 

composante connexion (définition 4-4). On note alors par r[i]  le ième élément d’une route et 

par l la longueur de r. Le nouveau prédicat Ext-ValidRoutep exige que la longueur (len) de l 

soit supérieur ou égale à 1, que le premier élément (First) de la première connexion 

composant r (r[0]) soit égale à l’origine de la missive et que la route r ne soit composée que 

de connexions  faisant partie de la topologie (r[i] ⊆  Top). La fonction étendue de routage est 

désignée par Ext-Routing (définition 4-5). Elle tient compte de la nouvelle fonction de calcul 

des routes ρ-ext (Elle et al.a, 2008). 

Définition 4-4. Définition du prédicat « Ext-ValidRoutep » 

Ext-ValidRoutep (r, m, Top) = ∧     (First (r[0])  = OrgM (m)  
                                                          
                                                         r ⊆  Top  ∧  (len(r) ≥ 1) 

           (4-11) 

Définition 4-5. Définition de la fonction « Routing » étendu 

Ext-Routing (Top,M)=    ∧       (List (IdM(m),FrmM(m),ρ-ext(OrgM (m), DestM (m), Top))  
                                   m ∈ M  

           (4-12) 
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3.3.3. Critères de correction 

GeNoC décrit trois contraintes sur la fonction de routage (cf. les théorèmes 4-2, 4-3 et 4-4). 

Dans le cadre de notre extension, nous nous intéressons uniquement aux deux premières 

contraintes. Ainsi, le théorème 4-2, décrit en fonction du prédicat ValidRoutep, est redéfinit à 

travers le théorème 4-8 en fonction du nouveau prédicat « Ext-ValidRoutep ».  

La deuxième contrainte sur la fonction « Routing » ne fera pas l’objet de grandes 

modifications. En réalité, il suffit de remplacer la composante nœuds (NodeSet) par la 

composante topologie (Top) pour avoir le théorème 4-9. On redéfinit en plus le prédicat de 

validité des missives Mlstp en fonction de la topologie (Top). 

Théorème 4-8. Validité des routes produites par la fonction ρ-ext 

∀ M, Mlstp (M,Top)  

⇒ ∀ m ∈  M, ∀ r ∈  ρ-ext (OrgM (m),DestM (m),Top), Ext-ValidRoutep (r,m,Top)  

           (4-13) 

Théorème 4-9. Validité des voyages produits par la fonction  « Routing » 

∀ M, Mlstp (M,Top)  ⇒ Vlstp (Ext-Routing (M,Top))                                              

           (4-14) 

4. Conclusion 

Nous avons exposé tout au long de ce chapitre notre conception d’une composante 

topologie générique et d’une composante routage étendue afin de les intégrer dans le modèle 

générique GeNoC. Au début de ce travail, nous avons cru que l’approche du modèle 

générique GeNoC pouvait être appliquée telle qu’elle est pour valider les MINs de la famille 

Delta. Cependant, après une étude exhaustive du modèle et une exploration des réseaux déjà 

validés à travers cette approche et des réseaux multi-étages, nous avons constaté qu’une 

extension au niveau générique du modèle est indispensable. Nous détaillerons dans le chapitre 

suivant notre modèle formel des Delta MINs, ainsi que sa validation à travers le modèle 

générique étendu.  
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Chapitre 5 : Vérification formelle des réseaux multi-étages de la famille 
Delta : Etude de cas 

1. Introduction 

Nous avons défini dans le chapitre précèdent l’extension au niveau générique du modèle 

GeNoC. Cette extension a été nécessaire pour que des réseaux sur puce ne faisant pas 

intervenir explicitement la notion de « connexions » dans leurs algorithmes de routage, 

puissent être validés en appliquant l’approche générique étendue. Ainsi, il nous est possible 

maintenant de valider formellement les communications dans des réseaux multi-étages dédiés 

aux systèmes multiprocesseurs sur puce (MPSoCs).  

Nous exposons dans ce chapitre la spécification formelle développée pour décrire les MINs 

de la famille Delta. Au fur et à mesure de cette spécification formelle, nous dévoilerons les 

différents théorèmes développés pour la validation formelle. 

2. Formalisation des réseaux Delta MINs  dédiés aux MPSoCs 

Dans cette partie, nous détaillons dans la logique du démonstrateur de théorèmes ACL2 les 

différentes étapes suivies pour la formalisation des réseaux multi-étages de la famille Delta 

dédiés aux MPSoCs. Nous formalisons dans ce contexte les deux composantes topologie et 

routage en effectuant une validation suivant le modèle GeNoC étendu. Cette formalisation est 

réalisée à partir des descriptions informelles disponibles dans la littérature sous forme de 

textes et schémas (voir chapitre 3).  

Nous appuierons notre travail par les fonctions et théorèmes principaux définis dans la 

logique ACL2. Nous essayerons à chaque fois de simuler ces définitions en les commentant 

par des descriptions textuelles détaillées. Néanmoins, il se peut que la logique ACL2 semble 

un peu ambiguë ou que certaines fonctions dépendent d’autres fonctions qui ne sont pas 

présentées ici. Dans ce cas, une revue brève de la syntaxe ACL2 disponible en annexe peut 

sembler nécessaire. 

2.1. La logique ACL2 : des précisions 

Il est à noter que nous nous intéressons uniquement aux preuves vérifiées par ordinateur, 

c'est-à-dire par l’assistant de preuves d’ACL2. Ainsi, un théorème soumis au prouveur est soit 
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automatiquement admis, soit doit être enrichi par des lemmes intermédiaires. Cet 

enrichissement dénote les tactiques à suivre lors de la démonstration (application de 

théorème, réécriture, simplification…) pour faire comprendre et accepter à l’assistant toutes 

les étapes de raisonnement.  

Vu que le démonstrateur ne formalise qu’un sous ensemble du langage Common Lisp, il 

est courant qu’une preuve soit très difficile à établir dans ACL2. C’est pour cette raison qu’il 

est souhaitable d’enrichir le monde logique du démonstrateur par les différentes bibliothèques 

disponibles sous forme de « books ». Deux bibliothèques que les experts ACL2 conseillent 

toujours d’inclure sont le « book » d’arithmétique (arithmetic 3) et le « book » manipulant les 

structures de données (data-structures). Il s’avère très bénéfique d’inclure dans ACL2 ces 

deux « books » surtout pour les novices. Toutefois, l’ajout de ces « books » peut aussi ralentir 

l’admission des théorèmes à démontrer. D’ailleurs, on dit toujours que « plus grand le monde 

logique, plus lentement ACL2 fonctionnera ». En effet, pour accomplir une démonstration, 

ACL2 doit mettre en pratique toutes les règles (rules) figurant dans sa base de données et qui 

lui semble applicables. Ainsi, plus la base de données est grande, plus l’espace de recherche 

sera grand et plus ACL2 ira moins vite dans ses démonstrations. Une méthode se basant sur 

un mécanisme d’activation (enable) et de désactivation (disable) locale des règles inutiles 

peut néanmoins accélérer considérablement le processus d’admission. Cette méthode sera 

illustrée dans ce qui suit.  

(local  
   (in-theory (disable elim-dieze-l assoc OUR-DIGIT -CHAR-P NONNEGATIVE-
INTEGER-QUOTIENT DEFAULT-+-2 DEFAULT-+-1 DEFAULT-*- 2 DEFAULT-UNARY-MINUS 
NFIX DEFAULT-<-2 DEFAULT-<-1 ASSOCIATIVITY-OF-+ ZP- OPEN))) 

2.2. La composante topologie d’un Delta MIN 

L’approche du modèle générique étendue détaillée dans le chapitre précédent, nécessite de 

spécifier et de valider dans un premier temps la contrainte sur l’ensemble des nœuds du 

réseau (théorème 4-1), ensuite de décrire et de vérifier formellement l’ensemble des 

connexions par les théorèmes 4-5, 4-6 et 4-7 (Elle et al.a, 2008). 

2.2.1. Formalisation de l’ensemble de nœuds 

Avant de présenter la formalisation de l’ensemble des nœuds d’un Delta MIN, nous 

commencerons par la spécification d’un nœud élémentaire du réseau. 
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2.2.1.1.  Spécification d’un nœud   

-  Principe : un nœud du réseau est représenté par une paire de coordonnées (X Y). La 

coordonnée X est décimale et représente l’étage de commutateurs auquel appartienne le 

noeud. La coordonnée Y est binaire et elle décrit la position du nœud à l’intérieur de cet étage.  

Pour générer la coordonnée binaire Y, on a utilisé la fonction ACL2 explode-nonnegative-

integer. Cette fonction permet de faire la conversion d’un nombre n non négatif dans une  

base r donnée. Les valeurs possibles de la base sont  2, 8, 10 et 16. On peut remarquer d’après 

l’exemple donné ci-dessous que cette conversion n’est pas aussi directe puisqu’elle ne donne 

pas exactement le nombre binaire (1 1 1) mais plutôt une liste de caractères associés à des 

« # ». Il a fallu alors plusieurs autres fonctions pour arriver à la représentation voulue. Il est à 

noter que nous avons opté pour une représentation binaire de la coordonnée Y du nœud pour 

faciliter par la suite l’application des fonctions de permutations lors de la génération des 

connexions.  

Exemple : explode-nonnegative-integer 

ACL2 !>(explode-nonnegative-integer 7 2 nil) > ‘(#1  #1 #1) 

-  Spécification : on définit la fonction y-gen-node qui fait appel à toute une série de 

fonctions élémentaires pour donner la représentation définitive de la coordonnée Y du nœud. 

Cette fonction prend en entrée i, la position décimale du nœud dans l’étage, et d, le nombre de 

bits sur lequel doit être représenté le nombre binaire en sortie. On définit aussi la fonction 

gen-node qui produit le format souhaité du nœud et ceci en faisant appel à la fonction 

secondaire y-gen-node. Finalement, on pose le prédicat valid-node-dmin qui reconnaît la 

validité d’un nœud. Ce prédicat a pour rôle de vérifier que la représentation d’un nœud est 

correcte c'est-à-dire a exactement la forme ((X) (Y)).  

-  Expression dans ACL2 : la traduction des fonctions spécifiées précédemment dans ACL2 

est donnée à travers les définitions 5-1. Les résultats de simulation correspondants à ces 

fonctions sont donnés à la suite. 

Définitions 5-1. Spécification d’un nœud  dans ACL2 

;;fct de génération de la coordonnée y 
(defun y-gen-node (d i) 
  (let* ((l (elim-dieze-l (explode-nonnegative-inte ger i 2 nil))) 
         (nb-z-0 (- d (len l))) 
         (l-0 (list-nb-z-0 nb-z-0))) 
  (append l-0 l))) 
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;;fct de génération d’un noeud 
(defun gen-node (d i ind) 
  (list (list ind) (y-gen-node d i))) 
 
;;prédicat valid-node-dmin 
(defun valid-node-dmin (l) 
   (and (consp l)(consp (cdr l)) (null (cddr l)) (c onsp (car l)) 
        (natp (caar l))(consp (cadr l)) (valid-01 ( cadr l)))) 

Simulation des définitions 5-1. Spécification d’un nœud  dans ACL2 

ACL2 !>(y-gen-node 3 4) >> ‘(1 0 0) 
 
ACL2 !>(gen-node 3 4 3) >> ‘((3) (1 0 0)) 
 
ACL2 !>(valid-node-dmin ‘((3) (1 0 0))) >> T 
 
ACL2 !>(valid-node-dmin ‘((r) (1 0 0))) >> NIL 
 

2.2.1.2.  Spécification de l’ensemble des nœuds 

-  Principe : un réseau du type Delta MIN a la caractéristique d’avoir deux types de nœuds : 

des terminaux et des commutateurs. Pour profiter de la notion d’étages, nous avons opté pour 

une génération des nœuds par étages. Cependant, vu que le nombre de nœuds sur chaque 

étage n’est pas le même, nous ne nous pouvons pas utiliser les mêmes paramètres pour 

générer tous les nœuds. Ainsi, la génération de chaque type de nœuds se fera de façon 

indépendente, ensuite on pourra les fusionner dans une seule liste.  

-  Spécification : on définit la fonction gen-nodes-dmin qui génère tous les noeuds du réseau. 

Elle prend en paramètres d, le nombre total des étages de commutateurs dans le réseau, r, le 

degré des commutateurs, et network, le nom du réseau Delta. A partir de l’argument d, on est 

capable de déduire les informations pertinentes relatives au réseau c'est-à-dire le nombre total 

de nœuds terminaux qu’on a qualifié de N dans le chapitre 3 et le nombre de commutateurs 

par étage (N/r=N/2). La fonction gen-nodes-dmin fait principalement appel à la fonction 

récursive gen-nodes-inv1-call pour la génération des nœuds d’un étage N donné.  

-  Expression dans ACL2 : la définition de toutes ces fonctions dans ACL2 est donnée dans 

les définitions 5-2. La figure 27 donne un aperçu de la façon dont les nœuds sont représentés 

dans un réseau Oméga (8, 2).  

Définitions 5-2. Spécification des nœuds d’un Delta MIN dans ACL2 

;;fct de génération secondaire de tous les nœuds d’un étage 
(defun gen-nodes-inv1-call (d Nb ind) 
   (declare (xargs :guard (and (natp d) (natp Nb)(n atp ind)) 
                   :verify-guards nil)) 
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  (if (zp Nb) nil 
      (cons (gen-node d (1- Nb) ind)  
            (gen-nodes-inv1-call d (1- Nb) ind)))) 
;;fct d’appel 
 (defun gen-nodes-dmin-pms-1 (d r network) 
   (declare (ignore r network)) 
     (let ((S (gen-nodes-dmin-s d)) 
           (Sw (gen-nodes-dmin-sw-1 (1- d) d)) 
           (D (gen-nodes-dmin-d d))) 
     (append S (append Sw D)))) 
 
;;fct de génération de tous les noeuds 
(defun gen-nodes-dmin (pms) 
   (gen-nodes-dmin-pms-1 (car pms)(cadr pms)(caddr pms))) 

Simulation des définitions 5-2. Spécification des nœuds d’un Delta MIN dans ACL2 

ACL2 !>(gen-nodes-inv1-call 2 4 2)  
       (((2)(0 0)) ((2)(0 1)) ((2)(1 0)) ((2)(1 1)) ) 
 
ACL2 !>(gen-nodes-dmin ‘(3 2 omega))  

 (((4)(0 0 0)) ((4)(0 0 1)) ((4)(0 1 0)) ((4)(0 1 1 )) 
  ((4)(1 0 0)) ((4)(1 0 1)) ((4)(1 1 0)) ((4)(1 1 1 )) 
  ((3)(0 0)) ((3)(0 1)) ((3)(1 0)) ((3)(1 1)) 
  ((2)(0 0)) ((2)(0 1)) ((2)(1 0)) ((2)(1 1)) 
  ((1)(0 0)) ((1)(0 1)) ((1)(1 0)) ((1)(1 1)) 
  ((0)(0 0 0)) ((0)(0 0 1)) ((0)(0 1 0)) ((0)(0 1 1 )) 
  ((0)(1 0 0)) ((0)(1 0 1)) ((0)(1 1 0)) ((0)(1 1 1 ))) 

 
 

 

Figure 27. Spécification formelle des noeuds 

2.2.1.3.  Vérification du théorème 4-1  

La génération de tous les nœuds est contrainte par le théorème 5-1 qui n’est qu’une 

instance du théorème générique 4-1. Pour la validité des paramètres de génération de tous les 

nœuds, on pose le prédicat ValidParamsp-dmin. On définit également un autre prédicat appelé 

valid-nodes-dmin pour vérifier la validité de l’ensemble de nœuds. Ce prédicat fait bien sûr 
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appel au prédicat valid-node-dmin (définitions 5-3). Le tableau 10 résume les fonctions 

utilisées dans cette partie.  

Tableau 10. Résumé des fonctions de spécification des noeuds 

Fonction Argument (s) Rôle 
y-gen-node d i génère la coordonnée y en binaire d’un nœud 
gen-node d i ind génère le nœud à la position i de l’étage ind 
valid-node-dmin l teste la validité d’un nœud représenté par une liste l 
ValidParamsp-dmin pms teste la validité des paramètres de génération pms 
gen-nodes-inv1-call d Nb ind génère les  N nœuds de l’étage ind 
gen-nodes-dmin pms génère tous les nœuds du réseau en fonction de pms 
valid-nodes-dmin X teste la validité de tous les nœuds X 

 

Définitions 5-3. Prédicats de validité des paramètres et des nœuds  

;;predicat qui valide tous les noeuds  
(defun valid-nodes-dmin (X) 
  (if (endp X) t 
      (and (valid-node-dmin (car X))  
           (valid-nodes-dmin (cdr X))))) 
 
;;prédicat de validité des paramètres   
(defun ValidParamsp-dmin (pms) 
  (and (consp pms)(consp (cdr pms))(consp (cddr pms )) (null (cdddr pms)) 
       (natp (car pms))(>= (car pms) 1) (natp (cadr  pms)) 
       (< 0 (cadr pms))(dmin-networkp (caddr pms))) ) 
 

Théorème 5-1. Validité de la définition des nœuds d’un Delta MIN 

∀pms,ValidParamsp-dmin (pms) ⇒∀ x∈ gen-nodes-dmin (pms), valid-node-dmin (x)                               
(5-1) 

 
Dans ACL2, ceci donne :           
 

(defthm gen-nodes-dmin-correct 
 (implies (ValideParams-dmin pms) 
          (valid-nodes-dmin (gen-nodes-dmin pms))))  

Preuve : La preuve du théorème 5-1 fait appel à plusieurs lemmes intermédiaires. A vrai dire, 

le fait d’avoir opter pour une représentation binaire de la coordonnée Y du nœud a rendu 

compliquée la procédure de génération des nœuds. Les deux lemmes intermédiaires de base 

qu’on a dû démontrer dans ce contexte, concernent le type de données retourné par la fonction 

explode-nonnegative-integer (théorèmes 5-2). Sans ces deux théorèmes, il aurait été en fait 

impossible de démontrer la validité d’un nœud (prédicat valid-node-dmin) et par la suite la 

validité de l’ensemble des nœuds. Le théorème 5-3 a été aussi indispensable pour la 

démonstration du théorème 5-1. Il exprime la validité d’un nœud via la fonction gen-node.  
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Théorèmes 5-2. Les deux théorèmes concernant explode-nonnegative-integer 

(defthm character-listp-explode-n-generalized 
  (implies (character-listp ans) 
           (character-listp (explode-nonnegative-in teger n 2 ans)))) 
 
 (defthm character-listp-explode-n 
           (character-listp (explode-nonnegative-in teger n 2 nil))) 

Preuve : Le premier théorème figurant dans la liste des théorèmes 5-2 est une généralisation 

du deuxième théorème. Ainsi, une fois ce premier théorème admis dans ACL2, le second sera 

automatiquement démontré par une simple déduction (rewrite rule). 

Théorème 5-3. Validité d’un noeud 

(defthm valid-node-dmin-gen-node  
  (implies (and (natp d)(natp i)(natp ind)) 
           (valid-node-dmin (gen-node d i ind))) 
  :hints (("GOAL" :in-theory (disable explode-nonne gative-integer)))) 

Preuve : Dans la preuve du théorème 5-3, la seule astuce consiste en la désactivation 

(disable) de la fonction explode-nonnegative-integer. De cette façon, le démonstrateur ne 

« bouclera » pas. En effet, l’utilisation de la fonction de conversion peut amener à des 

démonstrations un peu étranges. On doit à chaque fois généraliser le troisième argument 

(ans). Autrement, le démonstrateur ne trouvera pas l’argument sur lequel il doit effectuer son 

induction. 

2.2.2. Les connexions  

2.2.2.1.  Spécification d’une connexion  

-  Principe : dans un réseau Delta MIN, on représente une connexion par une liste ayant la 

forme ((X px) (Y py)). x représente l’origine de la connexion, px le port de x inclut dans cette 

connexion, y la deuxième extrémité et py le port de y. Par exemple, la connexion représentée 

par (((3) (0 1)) O0) (((2) (1 0)) I0) dénote que le port « O0 » du commutateur ((3) (0 1)) est 

connecté au port « I0 » du commutateur ((2) (1 0)).  

-  Spécification : on définit la fonction gen-one-cnx qui génère la connexion ayant pour 

origine le port i du nœud ext1. Cette fonction prend en argument le nœud ext1, le port i de 

connexion et la fonction de permutation fp à appliquer (définitions 5-5). Suivant le type de 

nœud (cond équivalente à case), cette fonction fait appel à deux autres fonctions gen-ext2 et 

gen-ext2-p dont les définitions sont aussi données ci-dessous. La première sert pour générer le 

nœud extrémité de la connexion sans le port de connexion et la seconde sert à générer ce port. 
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Ces deux fonctions font appel aux deux fonctions next-y-sw et next-p-sw (définitions 5-4) 

mettant en évidence la façon de « commuter » entre les différentes fonctions de permutation. 

On peut remarquer que l’application des fonctions de permutations n’est pas intégrée dans la 

fonction gen-one-cnx. Il est alors possible d’ajouter autant de permutations qu’on veut ; il 

suffit pour cela d’implémenter le code ACL2 correspondant (exemple des fonctions sigmak-

app-1 et sigmak-app-2 pour la permutation sigmak). Le tableau 11 donne un résumé des 

différentes fonctions utilisées pour la spécification d’une connexion. 

-  Expression dans ACL2 : L’expression dans ACL2 de toutes les fonctions relatives à une 

connexion, est donnée aux définitions 5-4 et 5-5. 

Définitions 5-4. Spécifications des fonctions de connexions 

;;fct applique sigmak-fp retourne la liste  (y-ext2) après permutation 
(defun sigmak-app-1 (y-s i) 
  (let* ((l (Gen-input y-s i)) 
         (l-sig (sigmak-fp l))) 
  (rem-last l-sig))) 
 
;;fct applique sigmak-fp retourne une liste contenant (numport) 
(defun sigmak-app-2 (y-s i) 
  (let* ((l (Gen-input y-s i)) 
         (l-sig (sigmak-fp l))) 
  (last l-sig)))  
 
;;fct génère le prochain noeud suivant la permutation fp à appliquer 
(defun next-y-sw (y-sw i fp) 
   (cond  
    ((equal fp 'sigmak) (sigmak-app-1 y-sw i))  
    ((equal fp 'I) (I-app-1 y-sw i)))) 
 
;;fct génère le prochain port suivant la permutation fp à appliquer 
(defun next-p-sw (y-sw i fp) 
   (cond  
    ((equal fp 'sigmak) (sigmak-app-2 y-sw i))  
    ((equal fp 'I) (I-app-2 y-sw i)))) 
 

Définitions 5-5. Spécification d’une connexion dans la logique ACL2 

;; fct génère une connexion élémentaire d'un noeud donné  
(defun gen-one-cnx (ext1 i fp) 
   (let* ((l-ext2 (gen-ext2 ext1 i fp)) 
          (x-ext2 (car (x-node l-ext2)));;=(caar l- ext2)  
          (p-ext2 (car (gen-ext2-p ext1 i fp)));;nu mport-ext2 sans les () 
          (p-ext1 (car i)));;port ext1=i=0, 1 
 
( cond 
 
   ;;ext2=d-node ==> ajouter port local L 
  ((equal x-ext2 0)  
   (list (gen-ext1-cnx ext1 'O p-ext1) (gen-ext2-cn x l-ext2 'L 'nil)))  
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  ;;ext1=s-node ==> ajouter port local L 
  ((equal i nil)  
   (list (gen-ext1-cnx ext1 'L 'nil) (gen-ext2-cnx l-ext2 'I p-ext2))) 
 
  ;;ext1=switch et ext2=switch ==> ajouter les port s du switch I et O 
  (t  
  (list (gen-ext1-cnx ext1 'O p-ext1) (gen-ext2-cnx  l-ext2 'I p-ext2)))))) 
 
;;fct gen-ext2 génère le noeud ext2 extrémité de la connexion 
(defun gen-ext2 (ext1 i fp) 
  (let* ((y-ext1 (y-node ext1))          
         (y-ext2 (next-y-sw y-ext1 i fp))  
         (p-ext2 (next-p-sw y-ext1 i fp)) ;;  génère le port ext2 
         (ext2-2 (append y-ext2 p-ext2 )) 
         (x-ext2 (- (car (x-node ext1)) 1))) 
   (list (list x-ext2) (if (equal x-ext2 0) 
                            ext2-2 
                            y-ext2)))) 
 
;;fct gen-ext2-p génère le port de cnx sous forme '(0), '(1) 
(defun gen-ext2-p (ext1 i fp) 
   (let* ((y-ext1 (y-node ext1)))  
     (next-p-sw y-ext1 i fp))) 

 

Simulation des définitions 5-4 et 5-5. Spécification d’une connexion 

 
ACL2 !>(sigmak-app-1 ‘(0 1) ‘(1)) >> ‘(1 1) 
 
ACL2 !>(sigmak-app-2 ‘(0 1) ‘(1)) >> ‘(0) 
 
ACL2 !>(next-y-sw ‘(0 1) ‘(1) ‘sigmak) >> ‘(1 1) 
 
ACL2 !>( next-p-sw ‘(0 1) ‘(1) ‘sigmak) >> ‘(0) 
 
ACL2 !>(gen-ext2 ‘((2) (0 1)) ‘(1) ‘sigmak) >> ‘(1 1) 
 
ACL2 !>(gen-ext2-p ‘((2) (0 1)) ‘(1) ‘sigmak) >> ‘( 0) 
 
ACL2 !>(gen-one-cnx ‘((2) (0 1)) ‘(1) ‘sigmak) 
     >> ’((((2) (0 1)) O1) (((1) (1 1)) I0)) 
 

Tableau 11. Résumé des fonctions de spécification d’une connexion 

Fonction Argument (s) Rôle 
sigmak-app-1 y-s i applique la perm. sigmak-fp et retourne la coordonnée y  
sigmak-app-2 y-s i applique la perm. sigmak-fp et retourne le prochain port 
next-y-sw y-sw i fp génère la coordonnée y suivant la perm. fp à appliquer 
next-p-sw y-sw i fp génère le prochain port suivant la perm. fp à appliquer 
gen-ext2 ext1 i fp génère la coordonnée y après application de la perm. fp 
gen-ext2-p ext1 i fp génère le prochain port après application de la perm. fp 
gen-one-cnx ext1 i fp génère toute la connexion résultante de l’app. de fp au port i de ext1 
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2.2.2.2.  Spécification des connexions 

-  Principe : pour valider les connexions en suivant l’approche de la topologie générique 

présentée au chapitre 4, il faut commencer par identifier la liste des fonctions de connexions à 

appliquer sur un graphe directe de la topologie. Dans le cas des MINs Delta, en orientant le 

graphe de la topologie de gauche à droite, cette liste sera toujours constituée de trois fonctions 

à appliquer respectivement au premier étage de connexions (C(d+1)), aux étages du milieu (Ci 

avec (0 < i < d+1)) et au dernier étage C0. Nous effectuerons alors une génération par « étage 

de connexions ». 

-  Spécification : la fonction principale de génération de toutes les connexions d’un MIN 

Delta est gen-top-dmin. C’est une fonction qui fait appel à trois autres fonctions qu’on 

désigne par gen-top-dmin-src_sw, gen-top-dmin-sw_sw et gen-top-dmin-sw_dest. Le rôle de 

chacune de ces fonctions est de générer les connexions d’un type d’étage donné (sous-

topologie). Ainsi, gen-top-dmin-src_sw permet la génération du premier étage de connexions 

entre les nœuds sources et le premier étage de switches. Ensuite, la fonction gen-top-dmin-

sw_sw produit les étages de connexions du « milieu » du réseau c'est-à-dire entre étages de 

switches. Finalement, la fonction gen-top-dmin-sw_dest permet la génération du dernier étage 

de connexions. Chacune de ces fonctions prendra en paramètres l’ensemble des nœuds de 

l’étage origine des connexions, la permutation fp à appliquer et un dernier argument dénoté 

pms relatif aux caractéristiques du réseau.  

La fonction gen-top-dmin prend en entrée un seul paramètre dénoté pms-t. Ce dernier est 

en effet produit par la fonction params-top-t à partir des paramètres pms de génération des 

noeuds. C’est notamment à partir du second paramètre de pms, c’est à dire le nom du réseau 

network qu’on pourra sélectionner les permutations adéquates au réseau en question. Enfin, 

on pose le prédicat valid-top-dmin qui reconnaît la validité d’une topologie. Ce prédicat est 

une fonction récursive définie en fonction du prédicat validp-cnx qui admet une connexion 

valide. Ce dernier prédicat vérifie que la connexion produite possède exactement la 

représentation souhaitée. Le tableau 12 donne un résumé des fonctions utilisées dans la 

spécification de la topologie. 

-  Expression dans ACL2 : l’illustration de toutes les fonctions spécifiées précédemment 

dans ACL2 est donnée aux définitions 5-6 et 5-7. Les trois premières fonctions des définitions 

5-6 ; à savoir gen-top-dmin-src_sw, gen-top-dmin-sw_sw et gen-top-dmin-sw_dest, sont des 



Développement d’un modèle formel des MINs dédiés aux MPSOCs                               Maïssa Elleuch 

 80 

fonctions récursives définies en fonction  de la fonction de génération d’une connexion 

élémentaire gen-one-cnx. 

Définitions 5-6. Spécifications de la topologie d’un Delta MIN 

;;fct de génération du premier étage de connexions (sources-switches) 
(defun gen-top-dmin-src_sw (S pms-s fp-s) 
 (if (endp S) nil 
     (cons (gen-one-cnx (car S) pms-s fp-s)  
           (gen-top-dmin-src_sw (cdr S) pms-s fp-s) ))) 
 
 
;;fct de génération des connexions des étages du milieu (switches-switches) 
(defun gen-top-dmin-sw_sw (Sw pms-sw fp-sw) 
 (if (endp Sw) nil 
     (append (gen-cnx-node (car Sw) pms-sw fp-sw)  
             (gen-top-dmin-sw_sw (cdr Sw) pms-sw fp -sw)))) 
 
 
;;fct de génération des connexions du dernier étage de connexions (switches-destinations) 
(defun gen-top-dmin-sw_dest (D pms-d fp-d)  
 (if (endp D)   nil 
     (append (gen-cnx-node (car D) pms-d fp-d)  
             (gen-top-dmin-sw_dest (cdr D) pms-d fp -d)))) 
 
 
;;fct gen-top-dmin pour la génération de toute la topologie par étages 
(defun gen-top-dmin (pms-t) 
 (let* ((x1 (car pms-t))(x2 (cadr pms-t))(x3 (caddr  pms-t)) 
        (S (car x1))(pms-s (cadr x1))(fp-s (caddr x 1)) 
        (Sw (car x2))(pms-sw (cadr x2))(fp-sw (cadd r x2)) 
        (D (car x3))(pms-d (cadr x3))(fp-d (caddr x 3)) 
 
         ;;(S pms-s fps) 
        (top-S (gen-top-dmin-src_sw S pms-s fp-s))    
    
  ;; (Sw pms-sw fpsw)   
        (top-Sw (gen-top-dmin-sw_sw Sw pms-sw fp-sw ))  
 
  ;;(D pms-d fpd) 
        (top-D (gen-top-dmin-sw_dest D pms-d fp-d)) ) 
 
   (append top-S (append top-Sw top-D)))) 
 

Définitions 5-7. Prédicats de validité d’une connexion et d’une topologie 

;;fct qui reconnaît une connexion valide 
(defun validp-cnx (c) 
  (and (consp c) (consp (car c)) (consp (cadr c))  
       (consp (cdr c))(null (cddr c)))) 
 
;;fct valid-top-dmin 
(defun valid-top-dmin (top) 
   (if (endp top)  
        t 
       (and (validp-cnx (car top))  
            (valid-top-dmin (cdr top))))) 
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Simulation des définitions 5-6 et 5-7. Spécification des connexions 

ACL2 !> (gen-top-dmin (params-top-t '(3 2 omega)))) 

 
 (((((4) (0 0 0)) L) (((3) (0 0)) I0)) 
  ((((4) (0 0 1)) L) (((3) (0 1)) I0)) 
  ((((4) (0 1 0)) L) (((3) (1 0)) I0)) 
  ((((4) (0 1 1)) L) (((3) (1 1)) I0)) 
  ((((4) (1 0 0)) L) (((3) (0 0)) I1)) 
  ((((4) (1 0 1)) L) (((3) (0 1)) I1)) 
  ((((4) (1 1 0)) L) (((3) (1 0)) I1)) 
  ((((4) (1 1 1)) L) (((3) (1 1)) I1)) 
  ((((3) (0 0)) O0) (((2) (0 0)) I0)) 
  ((((3) (0 0)) O1) (((2) (0 1)) I0)) 
  ((((3) (0 1)) O0) (((2) (1 0)) I0)) 
  ((((3) (0 1)) O1) (((2) (1 1)) I0)) 
  ((((3) (1 0)) O0) (((2) (0 0)) I1)) 
  ((((3) (1 0)) O1) (((2) (0 1)) I1)) 
  ((((3) (1 1)) O0) (((2) (1 0)) I1)) 
  ((((3) (1 1)) O1) (((2) (1 1)) I1)) 
  ((((2) (0 0)) O0) (((1) (0 0)) I0)) 
  ((((2) (0 0)) O1) (((1) (0 1)) I0)) 
  ((((2) (0 1)) O0) (((1) (1 0)) I0)) 
  ((((2) (0 1)) O1) (((1) (1 1)) I0)) 
  ((((2) (1 0)) O0) (((1) (0 0)) I1)) 
  ((((2) (1 0)) O1) (((1) (0 1)) I1)) 
  ((((2) (1 1)) O0) (((1) (1 0)) I1)) 
  ((((2) (1 1)) O1) (((1) (1 1)) I1)) 
  ((((1) (0 0)) O0) (((0) (0 0 0)) L)) 
  ((((1) (0 0)) O1) (((0) (0 0 1)) L)) 
  ((((1) (0 1)) O0) (((0) (0 1 0)) L)) 
  ((((1) (0 1)) O1) (((0) (0 1 1)) L)) 
  ((((1) (1 0)) O0) (((0) (1 0 0)) L)) 
  ((((1) (1 0)) O1) (((0) (1 0 1)) L)) 
  ((((1) (1 1)) O0) (((0) (1 1 0)) L)) 
  ((((1) (1 1)) O1) (((0) (1 1 1)) L))) 
 
ACL2 !> (valid-top-dmin (gen-top-dmin (params-top-t  '(3 2 omega))))) >> T 
 

Tableau 12. Résumé des fonctions de spécification de la topologie 

Fonction Argument (s) Rôle 
gen-top-dmin-s_sw S pms-s fp-s génère le premier étage de connexion (Cd+1) 
gen-top-dmin-sw_sw Sw pms-sw fp-sw génère les étages de connexion du milieu  

(Ci, 0 < i < d+1) 
gen-top-dmin-sw_dest D pms-d fp-d génère le dernier étage de connexion (C0) 
gen-top-dmin  pms-t génère toute la topologie 
validp-cnx C teste la validité d’une connexion c 
valid-top-dmin  top teste la validité de toute la topologie top 
params-top-t pms permet de construire la liste  des pms-t à partir de pms 

2.2.2.3. Vérification des théorèmes 4-5 et 4-6 

Le théorème 5-4 est une instance valide du  théorème 4-5. A travers ce théorème, nous 

démontrons que peu importe la fonction la permutation appliquée pour avoir une connexion, 
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l’extrémité de cette connexion sera dans l’ensemble des nœuds du réseau. La prise en compte 

de toutes les fonctions de permutations est possible via le prédicat Validfp-dmin (définition 5-

8). Ce premier théorème servira comme lemme intermédiaire pour pouvoir démontrer le 

théorème 5-5 suivant. Ce dernier établit le fait que les extrémités de toutes les connexions 

forment un sous-ensemble de l’ensemble des nœuds. Le théorème 5-5 n’est qu’une instance 

du théorème 4-6.  

Définition 5-8. Définition du prédicat Validfp-dmin 

(defun Validfp-dmin (fp) 
  (or (equal fp 'sigmak)(equal fp 'I)(equal fp ‘tet ak)) 
 

Théorème 5-4. Validité d’une extrémité de connexion 

(defthm ext2-gen-one-cnx-in-nodes 
  (let* ((nodes (gen-nodes-dmin pms)) 
         (c (gen-one-cnx x i fp)) 
         (ext2 (y-node c)))  
  (implies (and (ValidParamspD pms) (Validfp-dmin f p) 
                (member-equal x nodes)(valid-node-d min ext2))  
           (member-equal ext2 nodes))) 
:hints (("GOAL" :in-theory (disable gen-nodes-inv1) ))) 
 

Preuve : La preuve de ce théorème est directe mais assez longue car le démonstrateur doit 

faire appel à toutes les définitions des fonctions secondaires, ce qui fait un nombre de cas 

extrêmement grand.  

Théorème 5-5. Validité des fonctions de connexion 

(defthm gen-top-dmin-generates-nodes-in-nodeset 
   (let* ((pms-t (params-top-t pms))            
          (nodes (gen-nodes-dmin pms)) 
          (top-dmin (gen-top-dmin pms-t)) 
          (ext2s (ext2s-top top-dmin))) 
   (implies (ValidParamspD pms) 
            (subsetp-equal ext2s nodes))) 
:hints (("GOAL" :induct  (ext2s-top top-dmin)))) 
 

Preuve : Le théorème 5-5 a pu être démontré grâce à trois principaux lemmes intermédiaires. 

Chacun de ces lemmes est utilisé pour démontrer que les extrémités d’une sous-topologie 

forment un ensemble inclut dans l’ensemble de nœuds (nodes). Par exemple, le théorème 5-6 

est établi dans le but de vérifier que toutes les extrémités de la sous-topologie générée par la 

fonction gen-top-dmin-src_sw, sont effectivement dans l’ensemble des nœuds du réseau. Il en 

est de même pour les deux autres fonctions gen-top-dmin-sw_sw et gen-top-dmin-sw_dest, des 

théorèmes similaires ont dû être démontrés.  
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Théorème 5-6. Validité des extrémités générées par la fonction gen-top-dmin-src_sw   

(defthm gen-top-dmin-src_sw-generates-nodes-in-node set 
    (let* ((pms-t (params-top-t pms))  
           (x1 (car pms-t)) 
           (S (car x1)) 
           (pms-s (cadr x1)) 
           (fp-s (caddr x1)) 
           (nodes (gen-nodes-dmin pms)) 
           (top-dmin-s_sw (gen-top-dmin-src_sw S pm s-s fp-s)) 
           (ext2s (ext2s-top top-dmin-s_sw))) 
   (implies (and (ValidParamspD pms)(valid-params-t  pms-t)  
                 (valid-ext2s-dmin ext2s))  
   (subsetp-equal ext2s nodes))) 
:hints (("GOAL" :induct (ext2s-top top-dmin-s)))) 
 

Preuve : Le théorème 5-6 n’est automatiquement admis dans ACL2 que si on lui fournit le 

conseil (hint) d’effectuer une induction sur la structure de la fonction ext2s-top qui est une 

fonction définie récursivement. 

2.2.2.4.  Vérification du théorème 4-7 

La concrétisation du théorème 4-7, qui concerne la validité de la représentation de toute la 

topologie générée, est illustrée à travers le théorème 5-7.  

Théorème 5-7. Validité de la topologie d’un Delta MIN 

;;thm de validité de toute la topologie 
(defthm valid-gen-top-dmin  
   (let* ((pms-t (params-top-t pms)) 
          (top (gen-top-dmin pms-t))) 

(implies (and (ValidParamspD pms)(valid-params-t pm s-t)) 
              (valid-top-dmin top))) 

 :hints (("GOAL" :in-theory (disable Validfp-dmin G EN-NODES-DMIN-S-pms     
                          gen-nodes-dmin-sw-1-pms G EN-NODES-DMIN-d-pms )))) 
 

Preuve : L’admission du théorème 5-7 dans ACL2 n’est pas directe. En effet, de façon 

similaire à la stratégie utilisée dans la démonstration du théorème 5-5, il a fallu aussi 

raisonner par étages. Ainsi, on a décomposé la contrainte à démontrer sur toute la topologie 

en trois contraintes élémentaires à vérifier sur chacune des sous-topologies générées 

respectivement par les fonctions gen-nodes-dmin-s, gen-nodes-dmin-sw et gen-nodes-dmin-

d. L’un de ces lemmes intermédiaires est illustré à travers le théorème 5-8. 

Théorème 5-8. Validité du premier étage de connexion d’un Delta MIN 

;;thm de validté du premier étage de connexion 
(defthm valid-gen-top-dmin-src_sw  
  (let* ((S (gen-nodes-dmin-s-pms  pms)) 
         (top-s_sw (gen-top-dmin-src_sw S pms-s fp) )) 
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  (implies (and (valid-pms-SubS pms)(valid-S S) 
                (valid-SubS pms-s)(Validfp-dmin fp) ) 
           (valid-top-dmin top-s_sw))) 
  :hints (("GOAL" :induct (gen-top-dmin-src_sw S pm s-s fp)))) 
 

Preuve : En conseillant le prouveur d’ACL2 d’essayer de démontrer le théorème en 

procédant par induction sur la structure de la fonction gen-top-dmin-src_sw, la preuve du 

théorème 5-8 est alors automatique.   

2.3. La composante routage 

2.3.1. Spécification de la fonction de routage  

Dans ce qui suit, nous spécifions l’algorithme de routage utilisé dans les réseaux 

d’interconnexions multi-étages, ainsi que sa traduction dans la logique ACL2 (Elle et al.a, 

2008). Enfin, nous développons quelques théorèmes dans le but de vérifier la conformité des 

fonctions définies. 

-  Principe : l’algorithme de routage des Delta MINs, dénoté « self routing », ne dépend que 

de l’adresse destination. Cette dernière est  appelée aussi séquence de contrôle (control 

sequence). Puisque les Delta MINs qu’on modélise utilisent des crossbars 2x2, l’algorithme 

de calcul d’une route a le principe suivant : si le ième bit courant de la séquence de contrôle est 

à 1 alors le message sera commuté à travers le port haut du commutateur, sinon par le port 

bas.  

Dans ce contexte, on doit aussi définir une fonction qui calcule toutes les routes valables 

des missives ou messages d’un ensemble donné M. Cette nouvelle fonction fera appel à la 

fonction de routage élémentaire définie précédemment. 

-  Spécification : On désigne par routing-dmin, la fonction principale de routage. Cette  

dernière est une instance de la fonction « Ext-Routing » décrite au niveau générique 

(définition 4-4). Elle prend en arguments l’ensemble M des messages à router et la topologie 

Top du réseau en question (définition 5-10). Cette fonction doit nécessairement faire appel 

aux accesseurs IdM, OrgM, DestM et FrmM pour accéder aux différents éléments d’un message 

et mettre ainsi le message résultat (appelé voyage dans la notation GeNoC) dans le format 

souhaité (id frm routes). La même fonction routing-dmin doit en plus faire appel à une 

fonction récursive appelée compute-routes-dmin pour calculer une route élémentaire entre 

l’origine et la destination du message à router.  
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En réalité, la fonction compute-routes-dmin n’est autre qu’une instance de la fonction 

générique ρ-ext. Ainsi, pour chaque missive ou message m de l’ensemble M, cette fonction 

teste le ième bit courant de la séquence de contrôle et appelle la fonction secondaire désignée 

par rech-top pour chercher la connexion correspondante au port i dans la topologie. Sachant 

que chacun des ports au niveau d’un nœud possède une connexion unique avec l’un des 

nœuds de l’étage suivant, la valeur retournée par la fonction rech_top est alors unique.  

-  Traduction dans ACL2 : le pseudo code, ainsi que le code ACL2 relatif au mécanisme de 

routage élémentaire sont illustrés dans la définition 5-9. La fonction rech_top utilisée au 

niveau du pseudo code de la fonction compute-routes-dmin, est substituée par deux fonctions 

ACL2 : switch et assoc-equal. La première sert à commuter le message au niveau d’un 

switch en fonction du bit courant lu (bit_rtg), alors que la seconde permet de retourner la 

connexion correspondante à partir de la topologie. 

Définition 5-9. Spécification de la fonction de calcul d’une route élémentaire dans ACL2 

-  Pseudo code de la fonction de calcul d’une route : 

compute-routes-dmin (from dest top) 
   if (from = dest)   /* destination reached */  

       then take the local port of the destination 
       else  

           if (dest [i] = 0) /* ith bit equals 0 */     

               then take the upper output of the switch at Si 
               from = rech_top (from top 0) 
               compute-routes-dmin (from dest top) 

           else /* ith bit equals 1 */ 

               take the lower output of the switch at Si 
              from = rech_top (from top 1) 
              compute-routes-dmin (from dest top) 
 

-  Traduction dans la logique  ACL2 : 

(defun compute-routes-dmin (from to top) 
 (if (endp to) 
      nil  
 (let* ((bit_rtg (car to)) 
        (from-a (switch from bit_rtg)) 
        (cnx (assoc-equal from-a top))         
        (next-node (cadr cnx))) 
   (cons cnx (compute-routes-dmin next-node (cdr to ) top))))) 
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Définition 5-10. Spécification de la fonction de routage 

(defun routing-dmin (Missives topology) 
  (if (endp Missives) 
       nil 
  (let* ((miss (car Missives)) 
         (from (OrgM miss)) 
         (to (DestM miss)) 
         (id (IdM miss)) 
         (frm (FrmM miss)) 
         (cdrto (cadr to))) 
  (cons (list id frm  
             (compute-routes-dmin from (append '(s)  cdrto) topology)) 
             (routing-dmin (cdr Missives) topology) )))) 

Simulation de la définition 5-10. Spécification de la fonction de routage 

Nous simulons l’exécution de la fonction de routage donnée à la définition 5-10 pour la 

liste de missives du tableau 13 et ceci dans un réseau Oméga de taille 8 utilisant des crossbars 

2x2. La figure 28 présente les chemins empruntés par les deux missives sur le schéma de 

l’Oméga (8, 2). Les résultats de cette simulation sont illustrés au tableau 14. 

Tableau 13. Une liste de missives 

id origine contenu destination 
1 ((4) (001)) frm1 ((0) (100)) 
2 ((4) (110)) frm2 ((0) (111)) 

 
 
 
 

 

 

Figure 28. Illustration des résultats de simulation 
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Tableau 14. Les résultats de simulation de la liste de missives 

             id 
étage 

1 2 

C3 ((((4) (001)) L) (((3) (01)) I0)) ((((4) (110)) O) (((3) (10)) I1)) 
C2 ((((3) (01)) O1) (((2) (11)) I0)) ((((3) (10)) O1) (((2) (01)) I1)) 
C1 ((((2) (11)) O0) (((1) (10)) I1)) ((((2) (01)) O1) (((1) (11)) I0)) 
C0 ((((1) (10)) O0) (((0) (100)) I)) ((((1) (11)) O0) (((0) (111)) L)) 

 

2.3.2. Validation de la fonction de routage « routing-dmin » 

Nous détaillons dans cette dernière partie, les principaux théorèmes validés dans le 

contexte de la fonction de routage routing-dmin  définie précédemment. 

2.3.2.1. Vérification de théorèmes intermédiaires 

Avant de vérifier les deux principales contraintes de la fonction de routage, il existe deux 

autres théorèmes à démontrer (théorèmes 5-9 et 5-10). Ces derniers assurent que pour un 

ensemble donné de missives valides (reconnu par le prédicat Missivep), tous les nœuds 

origines et destinations de ces missives sont inclus (subsetp) dans l’ensemble des nœuds du 

réseau (NodeSet). L’accès à ces deux ensembles se fait via les deux fonctions M-orgs et M-

Dests.  

Théorème 5-9. L’ensemble origine des missives est inclus dans NodeSet 

(defthm M-orgs-subsetp-Nodeset 
    (let ((NodeSet (gen-nodes-dmin pms)) 
          (pms-t (params-top-t pms)) 
          (top (gen-top-dmin pms-t))) 
      (implies (and (ValidParamspD pms) (Missivesp M top)  
                    (valid-params-t pms-t)) 
               (subsetp (M-orgs M) NodeSet))) 
:hints (("GOAL" :in-theory (disable EXPLODE-NONNEGA TIVE-INTEGER MOD FLOOR 
DIGIT-TO-CHAR DEFAULT-<-2 Y-GEN-NODE GEN-NODE)))) 
 
 

Théorème 5-10. L’ensemble destination des missives est inclus dans NodeSet 

(defthm M-dests-subsetp-Nodeset 
    (let (NodeSet (gen-nodes-dmin pms)) 
          (pms-t (params-top-t pms)) 
          (top (gen-top-dmin pms-t))) 
      (implies (and (ValidParamspD pms) (Missivesp M top)  
                    (valid-params-t pms-t)) 
               (subsetp (M-dests M) NodeSet))) 
:hints (("GOAL" :in-theory (disable EXPLODE-NONNEGA TIVE-INTEGER MOD FLOOR 
DIGIT-TO-CHAR DEFAULT-<-2 Y-GEN-NODE GEN-NODE)))) 
 

Preuves : Les preuves des deux théorèmes sont automatiques et rapides. ACL2 exécute les 

deux démonstrations par une simple induction sur la structure des fonctions accesseurs M-
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Orgs et M-Dests. Finalement, ces deux théorèmes seront utiles dans les futures 

démonstrations. 

2.3.2.2. Vérification du théorème 4-8  

Le théorème 5-11 suivant est une instance valide du théorème générique 4-8. Ce dernier 

doit assurer la validité des routes produites par la fonction compute-rtes-dmin. Pour cela, on 

doit vérifier le prédicat Ext-ValidRoutep défini déjà de façon statique. On rappelle que ce 

prédicat exige que la longueur d’une route calculée soit supérieure ou égale à 1 et que le 

premier élément de la première connexion de cette route soit égale à l’origine du message à 

router. 

Théorème 5-11. Validité des routes produites par la fonction compute-rtes-dmin 

∀ M, Mlstp (M,Top) ⇒ ∀ m ∈  M, ∀ r ∈  compute-routes-dmin (OrgM (m),DestM (m),Top),  

                                      Ext-ValidRoutep (r,m,Top)  

Dans ACL2, ceci donne : 
 
(defthm rte-ext-validroutep 
   (let ((rt (compute-routes-dmin-call from to top) )) 
           (implies (and (valid-node-dmin from) (va lid-node-dmin to)  
                         (not (endp (ASSOC-EQUAL (C ONS FROM '(L)) TOP))) 
                         (valid-top-dmin top)(alist p top)(not (endp rt))) 
          (ext-validroutep rt))) 
:hints (("GOAL" :in-theory (disable compute-routes- dmin MOD FLOOR DIGIT-TO-
CHAR DEFAULT-<-2 Y-GEN-NODE GEN-NODE EXPLODE-NONNEGATIVE-INTEGER)))) 
 

Preuve : La preuve de ce théorème n’est pas directe. Comme le prédicat Ext-ValidRoutep 

n’est autre que la conjonction (et) de deux autres prédicats (len et first), on doit procéder par 

décomposition du but final en deux lemmes intermédiaires (théorèmes 5-13 et 5-14). Chacun 

de ces deux lemmes sera relatif à chacun de ces prédicats. Un autre théorème est aussi utile 

(théorème 5-12) pour achever cette preuve. Enfin, on doit  effectuer la désactivation (disable) 

de quelques définitions pour que le démonstrateur ne les prenne pas en considération.  

Théorème 5-12. Type de valeur retourné par compute-rtes-dmin 

(defthm true-listp-compute-routes-dmin 
(let* ((pms-t (params-top-t pms)) 
       (top (gen-top-dmin pms-t)) 
       (rt (compute-routes-dmin from to top))) 
 (implies (and (valid-node-dmin from) 
               (valid-node-dmin to) 
               (ValidParamspD pms) (valid-params-t pms-t)) 
          (true-listp rt))) 
:hints (("GOAL" :in-theory (disable compute-routes- dmin)))) 
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Preuve : Il s’agit d’une preuve triviale mais nécessaire dans ACL2. En réalité, le 

démonstrateur n’a même pas besoin de connaître les hypothèses fournies, il lui suffit de faire 

appel à la règle de réécriture relative au type de valeur stocké correspondant à la fonction 

compute-routes-dmin ( :type-prescription-rule). D’ailleurs, on désactive même la fonction 

compute-routes-dmin afin de guider au maximum la démonstration. 

Théorème 5-13. Longueur d’une route produite par la fonction compute-rtes-dmin 

(defthm len-routing-dmin->=-1  
   (let ((rt (compute-routes-dmin from to top))) 
      (implies (and (valid-node-dmin from) (valid-n ode-dmin to)  
                    (not (endp (ASSOC-EQUAL (CONS F ROM '(L)) TOP))) 
                    (valid-top-dmin top)(alistp top )(not (endp rt))) 
               (>= (len rt) 1))) 
:hints (("GOAL" :in-theory (disable MOD FLOOR DIGIT -TO-CHAR DEFAULT-<-2 Y-
GEN-NODE GEN-NODE compute-routes-dmin EXPLODE-NONNE GATIVE-INTEGER))))  
 

Preuve : La seule condition (not (endp rt)) permet au démonstrateur de procéder par 

déduction. En effet, il existe une règle stockée dans a base de données qui associe à chaque 

liste non nil, une longueur supérieure ou égale à 1. 

Théorème 5-14. Le premier élément d’une route produite par la fonction compute-rtes-dmin 

(defthm first-routing-dmin 
  (let ((rt (compute-routes-dmin from to top))) 
    (implies (and (valid-node-dmin from) (valid-nod e-dmin to)  
                  (not (endp (ASSOC-EQUAL (CONS FRO M '(L)) TOP))) 
                  (valid-top-dmin top)(alistp top)( not (endp rt))) 
             (equal (caaar rt) from))) 
:hints (("GOAL" :in-theory (disable compute-routes- dmin MOD FLOOR DIGIT-TO-
CHAR DEFAULT-<-2 Y-GEN-NODE GEN-NODE EXPLODE-NONNEGATIVE-INTEGER)))) 
 

Preuve : Le prouveur d’ACL2 opère automatiquement par induction sur la structure de la 

fonction compute-routes-dmin pour compléter la preuve de ce théorème. Dans ce cas, il n’est 

pas nécessaire de fournir à ACL2 un hint (conseil) lui montrant le schéma d’induction à 

utiliser ( :induct). Comme il existe plusieurs manières pour effectuer une démonstration 

donnée, il faudra encore avoir recours au mécanisme de désactivation. Autrement, les 

démonstrations risquent d’être inutilement allongées. D’autres lemmes plus élémentaires, non 

cités ici, ont dû aussi être fourni.  

2.3.2.3. Vérification du théorème 4-9 

Le théorème 4-9, concrétisé à travers le théorème 5-15, doit vérifier la validité des voyages 

produits par la fonction routing-dmin. Cette validité est reconnue par le prédicat récursif 

Validfields-TrLst. Ce prédicat assure que chacun des voyages calculés par la fonction routing-
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dmin possède le format souhaité (prédicat validfield-travelp), que son identificateur est un 

naturel (natp (IdV tr)), que le contenu de son message est correctement représenté (FrmV tr) 

et enfin que l’ensemble des routes calculées forment une liste (true-listp (RoutesV tr)).  

Définition 5-11. Définition du prédicat Validfields-TrLst 

(defun Validfields-TrLst (TrLst) 
  (if (endp TrLst) 
      t 
    (let ((tr (car TrLst))) 
      (and (validfield-travelp tr) 
           (natp (IdV tr))                     ;; i d is a natural 
           (FrmV tr)                           ;; f rm /= nil 
           (true-listp (RoutesV tr))            
           (Validfields-TrLst (cdr TrLst)))))) 
 

Théorème 5-15. Validité des voyages produits par la fonction  routing-dmin 

∀ M, Mlstp (M,Top)  ⇒ Vlstp (routing-dmin (M,Top))    

Ce qui donne en ACL2 :                                           

(defthm Valid-voyg-routing-dmin 
    (let* ((pms-t (params-top-t pms)) 
           (NodeSet (gen-nodes-dmin pms)) 
           (top (gen-top-dmin pms-t)) 
           (voyg (routing-dmin M top))) 
     (implies (and  (ValidParamspD pms)(valid-param s-t pms-t) 
                    (Missivesp M NodeSet)) 
              (Validfields-TrLst  voyg)))) 
:hints (("GOAL" :in-theory (disable MOD FLOOR DEFAU LT-<-2 Y-GEN-NODE GEN-
NODE gen-nodes-dmin compute-routes-dmin EXPLODE-NON NEGATIVE-INTEGER)))) 
 

Preuve : En procédant par décomposition du but final en sous-buts élémentaires, deux 

théorèmes sont nécessaires pour parvenir à accomplir la démonstration. Ce sont les théorèmes 

5-16 et 5-17. 

Théorème 5-16. Type de valeur retourné par routing-dmin 

(defthm True-listp-routing-dmin 
    (let* ((pms-t (params-top-t pms)) 
           (NodeSet (gen-nodes-dmin pms)) 
           (top (gen-top-dmin pms-t)) 
           (voyg (routing-dmin M top))) 
     (implies (and  (ValidParamspD pms)(valid-param s-t pms-t) 
                    (Missivesp M NodeSet)) 
              (true-listp voyg)))) 
:hints (("GOAL" :in-theory (disable MOD FLOOR DIGIT -TO-CHAR DEFAULT-<-2 Y-
GEN-NODE GEN-NODE gen-nodes-dmin compute-routes-dmi n EXPLODE-NONNEGATIVE-
INTEGER)))) 
 

Preuve : La preuve de ce théorème est directe. Le démonstrateur fait juste appel à la règle qui 

donne le type de la valeur retournée par la fonction routing-dmin  ( :type-prescription-rule). 
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Cette règle a dû être stockée dans la base de données depuis l’admission de la fonction 

routing-dmin. 

Théorème 5-17. Validité du format d’un voyage donné 

(defthm valid-field-travelp-rt 
    (let* ((pms-t (params-top-t pms)) 
           (NodeSet (gen-nodes-dmin pms)) 
           (top (gen-top-dmin pms-t)) 
           (rt (compute-routes-dmin from to top))) 
     (implies (and  (ValidParamspD pms)(valid-param s-t pms-t) 
                    (Missivesp M NodeSet)) 
              (validfield-travelp tr)))) 
:hints (("GOAL" :in-theory (disable MOD FLOOR DIGIT -TO-CHAR DEFAULT-<-2 Y-
GEN-NODE GEN-NODE gen-nodes-dmin compute-routes-dmi n EXPLODE-NONNEGATIVE-
INTEGER)))) 
 

Preuve : La preuve de ce théorème est assez longue. Elle doit faire appel à toutes les 

définitions des fonctions élémentaires définies pour vérifier que la route produite par la 

fonction compute-routes-dmin est au format du prédicat validfield-travelp. 

2.4. Vérification de la conformité des définitions concrètes 

Après avoir démontré séparément les contraintes obligatoires sur la topologie et le routage 

dans un réseau Delta MIN quelconque, il faut maintenant vérifier la conformité des 

définitions du niveau concret avec les définitions du niveau générique. Cela revient à 

démontrer que toutes les définitions du niveau concret (au niveau du fichier top-dmin.lisp et 

rt-dmin.lisp) sont des instances valides des fonctions génériques (au niveau du fichier gen-

top.lisp et gen-rt.lisp). Cette contrainte est illustrée à travers le théorème 5-18 suivant. 

Théorème 5-18. Conformité avec les définitions génériques 

(defthm check-DMIN-TOP t   
   
   :rule-classes nil 
   :otf-flg t 
   :hints (("GOAL" 
   :use  
 
((:functional-instance nodeset-generates-valid-node s 
(ValidParamsp ValidParamspD) 
(NodeSetp valid-nodes-dmin) 
(NodesetGenerator gen-nodes-dmin) 
(gen-top gen-top-dmin) 
(params-top params-top-t) 
(ValidParamsp-top valid-params-t) 
(valid-top valid-top-dmin) 
(valid-ext2s valid-ext2s-dmin) 
(routing-dmin ext-routing)) 
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:in-theory (disable  subsets-are-valid nodeset-gene rates-valid-nodes gen-
top-generates-valid-top-1 gen-top-generates-nodes-i n-nodeset ext-routing)) 
 
("Subgoal 4" :in-theory (disable gen-top-generates- nodes-in-nodeset  GEN-
NODES-DMIN-S-pms gen-nodes-dmin-sw-1-pms GEN-NODES- DMIN-d-pms  ALL-Y-
EQLABLE-1 valid-nodes-dmin  GEN-NODES-INV1-CALL gen -top-dmin gen-nodes-dmin  
NOT PARAMS-TOP-S PARAMS-TOP-SW  PARAMS-TOP-T)) 
;;:induct (ext2s-top top-dmin)  
 
("Subgoal 3" :in-theory (disable gen-top-generates- valid-top-1 Validfp-dmin 
GEN-NODES-DMIN-S-pms gen-nodes-dmin-sw-1-pms GEN-NO DES-DMIN-d-pms NETWORK-
PERM Validfp-dmin gen-nodes-dmin NOT PARAMS-TOP-S P ARAMS-TOP-SW  PARAMS-
TOP-T VALIDPARAMSPD VALID-PARAMS-T valid-S valid-Su bS valid-D valid-SubD 
valid-Sw valid-SubSw GEN-TOP-DMIN)) 
 
("Subgoal 1" :in-theory (disable nodeset-generates- valid-nodes rev GEN-
NODES-INV1-CALL GEN-NODES-DMIN-SW-1 GEN-NODES-DMIN EXPLODE-NONNEGATIVE-
INTEGER valid-nodes-dmin)))) 
 

Preuve : La preuve de conformité entre les niveaux générique et concret dans ACL2 est 

automatique. En effet, après avoir démontré les contraintes sur la topologie de façon 

indépendante (théorèmes 5-1, 5-5 et 5-7) et sur le routage (théorèmes 5-11 et 5-15), le 

prouveur va utiliser les règles de réécriture correspondantes pour générer automatiquement la 

démonstration du « check ». La seule astuce dans ce cas consiste en la désactivation de 

quelques définitions au niveau de chaque sous-but (Subgoal) pour que ACL2 ne refasse pas 

certaines démonstrations déjà produites auparavant. 

2.5. Vérification du théorème de correction global du modèle  

Après avoir démontré la conformité des deux composantes topologie et routage de notre 

modèle formel des réseaux multi-étages de la famille Delta dédiés aux MPSoCs, nous 

pouvons maintenant déduire que le théorème global de correction, assurant la fiabilité des 

messages transmis à travers le réseau, est correcte (théorème 5-19).  

En réalité, l’approche générique n’exige pas de redémontrer son théorème global de 

correction. Ceci peut être vérifié depuis les réseaux qui ont été déjà validés à travers cette 

approche (Octagon, algorithmes de routage adaptatifs). De plus, même en étendant le modèle 

(cas de Hermes), il n’a pas été nécessaire de redémontrer ce théorème.  

Les différents théorèmes précédemment développés ont servi pour valider le théorème 

final 5-19. Dans la présentation de ces théorèmes, nous avons essayé de fournir les principaux 

lemmes intermédiaires servant à aboutir à la démonstration du but final. Outre l’apprentissage 

d’ACL2, la principale difficulté rencontrée concerne le développement des tactiques pour 

parfaire les différentes démonstrations. Ces lemmes n’étaient pas toujours réutilisables dans le 



Développement d’un modèle formel des MINs dédiés aux MPSOCs                               Maïssa Elleuch 

 93 

cadre d’autres démonstrations. Dans certains cas, il fallait même désactiver quelques uns pour 

guider au plus le démonstrateur. Cette difficulté met en évidence le problème du chapeau 

mexicain évoqué au chapitre 2 (figure 12). 

Théorème 5-19. Fiabilité des réseaux Delta MINs dédiés aux MPSoCs 

∀ rst ∈ R,∃! t ∈ T,             IdR(rst) = IdT(t)  

                                      ∧  MsgR(rst) = MsgT(t) 

                                      ∧   DestR(rst) = DestR(t) 

 

Preuve : La preuve de ce théorème dans ACL2 n’est pas nécessaire. Par l’approche du 

modèle générique étendu, on peut déduire la correction de ce théorème. 

3. Conclusion 

Nous avons détaillé dans ce chapitre notre spécification fonctionnelle dans une notation 

formelle des réseaux Delta MINs dédiés aux MPSoCs. Nous avons utilisé  le démonstrateur 

de théorèmes ACL2 pour vérifier les différentes contraintes sur le modèle défini. Le 

développement du modèle formel dans ACL2 s’est fait sur une machine Pentuim 4 à 2,4 GHz 

fonctionnant sous Linux avec une mémoire à 256 MB. Le temps de vérification des théorèmes 

n’est pas assez grand vu le mécanisme d’activation et de désactivation des règles auquel on a 

eu recours.  
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Conclusion et perspectives 

1. Conclusion 

Le propos de ce sujet de mastère a été le développement d’un modèle formel pour des 

réseaux multi-étages dédiés aux systèmes multiprocesseurs sur puce (MPSoCs). Notre travail 

décrit en effet une méthodologie pour l’intégration des méthodes formelles dans la 

vérification des architectures de communication sur puce. 

Plusieurs étapes ont été essentielles pour le développement du modèle formel. Pour mettre 

le problème dans son cadre, il a été nécessaire d’étudier le domaine des systèmes sur puce 

(SoCs), des formalismes et des réseaux multi-étages (MINs) de la famille Delta. Au cours de 

cette phase, plusieurs travaux antérieurs ont dû être discuté.  

Dans le cadre de la vérification formelle des spécifications, l’un de ces travaux nous a 

particulièrement intéressées. En effet, cette étude a été basée sur une formalisation 

complètement générique des communications sur puce. Elle est concrétisée à travers un 

modèle appelé GeNoC (Generic Networks on chip). Ce dernier s’est avéré très efficace lors de 

la vérification de certains réseaux sur puce (NoCs) tels que l’Octagon. C’est un modèle qui a 

aussi témoigné d’une grande flexibilité pour valider les communications sur puce dans le 

réseau Hermes. La correction globale du modèle générique est illustrée à travers un théorème 

de fiabilité qui assure que « tout message émis dans le réseau atteint sa destination sans 

modification de son contenu. ». L’approche GeNoC garantit de la sorte la correction de ce 

théorème pour n’importe quel réseau sur puce, instance de GeNoC et vérifiant ses contraintes 

génériques. 

Nous avons alors voulu appliquer la même approche pour valider les réseaux multi-étages 

dédiés aux MPSoCs. Toutefois, nous nous sommes rapidement confrontées à une grande 

contrainte : le modèle générique ne tient pas compte concrètement de l’aspect topologie et 

plus précisément des connexions entre les noeuds. Par ailleurs, il considère implicitement 

l’existence des liens entre les nœuds d’une route calculée ; or une telle connaissance serait 

primordiale pour la validation des MINs. Pour résoudre ce problème, nous avons eu l’idée de 

concevoir et implémenter une composante topologie générique, ainsi que la composante 

routage résultante du même niveau. Pour développer cette extension, il a fallu identifier les 

propriétés pertinentes et communes à toutes les topologies et les traduire sous forme de 

théorèmes dans la logique ACL2. Durant cette phase, nous avons essayé de tirer profit des 
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bases de la théorie des graphes pour construire formellement les connexions de toute la 

topologie d’un réseau sur puce. Les deux composantes ainsi développées ont pu finalement 

être intégré au sein du modèle GeNoC décrivant alors un modèle plus réaliste des 

communications dans les réseaux sur puce. 

Dans une seconde phase, nous avons formalisé en suivant l’approche GeNoC étendue et 

dans la logique du démonstrateur de théorèmes ACL2, les communications dans les réseaux 

multi-étages de la famille Delta. Nous nous sommes notamment focalisées sur les deux 

composantes topologie et routage. Durant chacune des étapes précédentes, il nous a fallu en 

plus prendre en considération les contraintes des systèmes multiprocesseurs sur puce pour 

lesquels est destiné le modèle formel. Les réseaux multi-étages ainsi spécifiés et vérifiés 

formellement forment une instance valide du modèle GeNoC étendu. 

2. Perspectives 

Nous estimons qu’il est possible d’appliquer l’extension du modèle générique pour donner 

une spécification formelle de toute architecture de communication sur puce. En effet, pour 

valider des réseaux ayant une topologie en grille 2D incomplète ou des réseaux indirectes, il 

faudra adopter le modèle générique étendu et non plus le modèle GeNoC initial. 

Il est vrai que dans le cadre de ce travail de mastère, l’objectif initial était de valider 

formellement l’ensemble des communications dans les réseaux multi-étages englobant le 

routage et l’ordonnancement. Cependant, l’intérêt que nous avons dû porter au modèle 

GeNoC nous a obligé de prévoir l’extension du niveau générique de façon que la composante 

ordonnancement n’ait pas pu finalement être validée. Nous estimons qu’il suffirait de choisir 

l’un des algorithmes d’ordonnancement déjà vérifié pour l’intégrer comme une composante 

pré-validée dans l’ensemble du modèle final. Une méthode similaire a été utilisée pour valider 

les algorithmes de routage adaptatifs dans des réseaux ayant une topologie en grille 2D. 

Une autre perspective possible comme extension à ce mastère consiste en la formalisation 

de l’implémentation des réseaux MINs dédiés aux MPSoCs. Ceci revient à descendre dans le 

niveau d’abstraction pour s’occuper des détails de niveau implémentation de ces réseaux 

(signaux, files d’attente…). Le modèle développé dans le cadre de ce mastère servira alors 

comme un modèle de niveau spécification pour le futur prototype. 
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Annexes 

L’annexe suivante comporte les éléments essentiels de la syntaxe de l’outil de 

démonstration de théorèmes ACL2 (ACL2). 

1. La syntaxe ACL2 

La syntaxe d’ACL2 est constituée des éléments suivants : 

-  Variables : X, x , alist , temp2 , prev-temp   

-  Constantes :  

o Nombres : 23, -7 , 22/7 , #c(3 5)   

o Caractères : #\A , #\a , #\,  , #\Newline , #\Space   

o Chaînes de caractères : "Test" , "He said \"Hi!\" as we passed."   

o Symboles : t , nil , 'ABC , 'abc , 'true-list , :key , math::abs , |John|  

o Paires (Conses) : '(1 2 3) , '((A . 1) (B . 2)) , '((1 . 2) . (3 . 4))   

-  Fonctions or les appels de macros : ( fn arg1 arg2 ... argn )  

2. Les Commandes utiles d’ACL2  

• Sélection d’un package : (in-package "pkg" )   

• Création d’un package : (defpkg "pkg" '(imported symbols) )   

• Modes : 

(program)/:program Prototypage des définitions et tests 

(logic) /  :logic   Définition de fonctions, preuve de terminaison et autres 
propriétés  

(redef)  / :redef   Permet les redéfinitions des fonctions  
 

• Constantes : (defconst * var * term )   

• Définitions : 

(defun fn (var1 ... varn)  

       (declare (xargs :measure term1    ; declarations are optional 

                       :guard   term2  

                       :hints   hints  

                       ...others )) 

       body ) 
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• Vérification de guardes : :set-guard-checking t/nil   

• Compilation :  :comp t   

• Fonctions : une liste complète des fonctions Common Lisp supportée par ACL2 est 

donnée ci-dessous.  

 

-  Procédures de contrôle  

(if x y z )   si x est non-nil alors y sinon z  

(equal x y )   prédicat d’égalité 

(cond (x1 y1)  
      (x2 y2) 
      ... 
      (t z) ) 

(if x1 y1  
    (if x2 y2 
        ... 
           z )) 

(case key 
      (c1 y1) 
      (c2 y2) 
      ... 
      (t z) ) 

(cond 
  ((equal key  'c1 ) y1 ) 
  ((equal key  'c2 ) y2 ) 
  ... 
  (t z )) 

(let ((var1 val1) ...) body )   lier les variables locales en parallèle  

(let* ((var1 val1) ...) body )   lier les variables locales de façon séquentielle  

(mv-let (var1 ...) vector 
body )   

lier les variables à un vecteur à plusieurs valeurs 

(mv val1  ... )   

 
retourne un vecteur à plusieurs valeurs 

-  Booléen  

(and p q ... )   opérateur logique de conjonction  

(or p q ... )   opérateur logique de disjonction 

(implies p q)  implication logique 

(not p)  négation logique 

(iff p q)  équivalence logique 
 
-  Arithmetique 

 

(acl2-numberp x)  reconnaît n’importe quelle type de nombres ACL2  

(integerp x)  reconnaît les entiers 

(rationalp x)  reconnaît les rationnels 

(complex-rationalp x)  reconnaît les nombres complexes 

(equal x 0), (zerop x), (zip 
x), (zp x)  

reconnaît « x = 0 » 

(< x y)  relation strictement inférieure 

(<= x y)  relation inférieure ou égale 

(>= x y)  relation supérieure ou égale 

(+ x y ...)  opérateur d’addition  

(* x y ...)  opérateur de multiplication  

(- x y)  opérateur de soustraction 
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(- x)  opérateur de négation  

(/ x y)  division rationnelle  

(1- x)  décrémente de 1  

(1+ x)  incrémente de 1  

(numerator r)  numérateur d’un nombre rationnel 

(denominator r)  dénominateur d’un nombre rationnel 
 
-  Caractères 

 

(characterp x)  reconnaît les objets caractères 

(char-code char)  convertit le code caractère au code entier 

(code-char n)  

 
convertit le code entier au code caractère 

-  Chaînes de caractères  

(stringp x)  reconnaît les chaînes de caractères 

(char str n)  cherche le nième caractère de la chaîne str 

(coerce str 'LIST)  convertit la chaîne de caractère en une liste 

(coerce charlist 'STRING)  convertit une liste en une chaîne de caractère 

(length str)  

 
longueur d’une chaîne de caractères ou d’une liste 

-  Les paires « cons » et les listes  

(consp x)  reconnaît les paires ordonnées 

(cons x y)  construit les paires ordonnées 

(car pair)  le premier composant d’une paire ordonnée 

(cdr pair)  le deuxième composant d’une paire ordonnée 

(endp x)  reconnaît les non-paires 

(atom x)  reconnaît les non-paires 

(list x0 x1 ... xk)  construit une liste d’éléments donnés  

(list* x0 x1 ... xk cdrk)  
construit une liste d’éléments avec cdrk comme 
dernier élement 

(caar pair)  le car du car  

(cadr pair)  le car du cdr  

(cdar pair)  le cdr du car  

(cddr pair)  le cdr du cdr  

...  ...  

(cddddr pair)  le cdr du cdr du cdr du cdr  

(append x y ...)  concatène les listes linéaires  

(assoc-equal x alist)  
retourne l’élément associé à x dans une liste 
d’association  

(nth n lst)  retourne le nième élément d’une liste 

(length list)  longueur d’une liste (ou d’une chaîne)  

(true-listp x)  reconnaît les listes linéaires 
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Résumé : Ce travail est inclus dans le cadre de l’application des méthodes formelles dans la 
vérification des circuits numériques. Il consiste en la conception et le développement d’un 
modèle formel pour des réseaux multi-étages dédiés aux systèmes multiprocesseurs sur puce. 
Ce modèle est spécifié et vérifié dans la logique du démonstrateur de théorèmes ACL2. Il est 
basé sur l’extension d’un modèle générique dénoté GeNoC (Generic Networks on Chip) 
décrivant les communications sur puce. 

Abstract: This work is to be seen as within the general context of formal hardware 
verification. It consists on the design and the development of a formal model for multistage 
interconnection networks dedicated to multiprocessor systems-on-chip. This model is 
specified and verified in the ACL2 theorem proving environment. It is based on the extension 
of a generic model called GeNoC (Generic Networks on Chip) describing on-chip 
communications. 
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