Université de Sfax

République Tunisienne
Ministere de I'Enseignement Supérieur, ¢
De la Recherche Scientifique
et de la Technologie E,/;,;SE

Ecole Nationale d’Ingénieurs de
Sfax

MEMOIRE

Présenté a

L’Ecole Nationale d’Ingénieurs de Sfax

en vue de I'obtention du

MASTERE

Dans la discipline informatique
Mastére NTSID

Par

Maissa ELLEUCH SAHNOUN

(Ingénieur en informatique)

DEVELOPPEMENT D’UN MODELE FORMEL POUR DES
RESEAUX MULTI-ETAGES DEDIES AUX SYSTEMES
MULTIPROCESSEURS SUR PUCE

Soutenu le 27 Juin 2008, devant le jury composé de

M. Abdoulaye GAMATIE Président
Adel MAHFOUDHI Membre
M. Mohamed ABID Membre

<

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Remerciements

En premier lieu, je tiens a exprimer mes reconaaisss a Monsieur Mohamed ABID,
professeur a 'ENIS et directeur du laboratoire C&Sbien vouloir m’accepter au sein de son

laboratoire, pour son soutien, son assistanceset®eseils précieux.

Je tiens également a remercier profondément moadesur Monsieur Yassine AYDI,
pour sa grande disponibilité ; le temps qu'il mecordée, sa volonté de m’'aider dans mes
recherches, ses conseils, ses idées, son esplifjueriet ses encouragements pour

I'aboutissement de mon mastére.

Je remercie beaucoup tous les membres du jury id’acoepté d’étre présent lors de ma

soutenance afin de juger mon travail.

J'adresse aussi mes remerciements a tous les mehiodaboratoire CES-Computer and
Embedded Systems, pour leur accueil chaleureux, #mabilité, leur soutien et leur

contribution a ma bonne intégration au sein deuliige,

Un grand merci a Monsieur Julien Schmaltz, postalant a I'université Radboud aux

Pays Bas, pour ses précieuses recommandationstaiétout de ce mastere.

Un grand merci également a tous les membres dstéad’aide ACL2(ACL2 help list)
notamment aux membres du groupe ACL2 a l'univerditéTexas : Matt, Sandip, Peter,
Jared, David et les autres. Leur grande dispaid@pieurs explications et leurs commentaires
constructifs via cette liste m’ont beaucoup aid8 lbe mon apprentissage d’ACL2. Sans leur
assistance, il m’aurait été difficile d’achever reatement les démonstrations de certains de

mes théoremes.

Enfin, je ne manquerai pas de remercier vivemenh mari, ma famille et ma belle

famille, qui m’ont beaucoup encouragée pour allsgy’au bout de cette étude.

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Tables des matieres

INtrOUCTION GENEIAIE.......ceiiiiiieee ettt e e e e e e e e e e e e e e e e e e e aaans 7
Chapitre 1 : Contexte de ItUdEooo v eeeeeeeee e 10
I 101 (o To [T 1 [o SRR 10
2. La vérification des MPSO0Cs : utilité et teChIBEU..........ccevvviiiieeiiiiiieieee e eeeeen 10
2.1. Evolution de la technologie SubMIiCroNIQUE. - ..ccooiiiiiiiii e 10
2.1.1. Les architectures a usage geNEral ... iiivieeeiiiiciieie e eeeee e 12
2.1.2. LeS SYStEmesS €MDArQUES.............cccmmmmm ettt e e e e e e e e e e e e 13
2.2. Complexité conceptuelle deS MPSOCScoeeiii e eee e e e 14
2.3. Les techniques de vérification des CIrCUItSIAUQUEScceeeveeeiiiiiiiiiiiiirinnnee 16
2.3.1. La vérification par SIMUIALIONceeemirriririiiiiieieeeeeeeeeeeeeeeeeeeeeeeeennneeernnnans 16
2.3.2. La vérification fOrmelle...........coo oo 16
2.3.3. La simulation vs la vérification formelle..............ccuvvveiiiie 17
3. Les réseaux sur puce : Un NOUVEAU PAraAdigMBum «vvrerereieeeeeeeaeeisiiiiiiinisnieeneeeeeaeens 18
I 0 I [011 0T ¥ Tod 1] o I OSSO PP PPPPPPPI 18
3.2. Classification dES NOCSccuuetummmmmmeeeeriiiaare e e e e e e e e e eeeeeeeeeeaesennnanneesennn s 18
3.2.2. Classification par tOPOIOGIE..........ccceee e e e e e e e e e e e e 19
3.3. Les travaux de formalisation des réseaux BCE PNOCS)cccuvvvvvrrireirerereeeeenns 20
3.3.1. Le BUS AMBA, ARM ... ittt e e e e e 20
3.3.2. AENEIEAL . —————————— 22
3.3.3. Octagon, ST-MICrO€lECIONICS.uu e e e eee e eraeaa e e 23
3.3.4. L IrESEAU HEIMIES ...ceiiiiiee oo e ettt e e e e e e e e e e e e e e e e e s sttt e e eeaeeaeeeeaeeennns 24
7/ @0 o T 11 153 o o PP PPPUPPPPPPPPP 25
Chapitre 2 : Concepts et outils de la vérificatiorformelle des circuits numériques........ 26
I 111 {0 o L8 [o{ 1 o] o [OOSR PPPPPPPPP 26
2. La vérification formelle des SYStEMES SUM PUCE wu.vvvveririeiiiieeeeeeeeeeeeeeeeseeeeeeeeeeeeens 26
P2 T B = 1101 o PP PUPPPPPPPPPN 26
2.2. DEMaArche globale..........coooiiiiiiiiceeemme ettt a e e e e e e e e 26
2 T O o] = ox 1) P 27
2.4. Les types de formaliSatioN.............cceeeeeeieiiiiiiiiiiiiaa e eeeeee e eeeeaeaenees 28
2.4.1. Formalisation des SPECIfICAtIONSccreeiieiiiiiiieeeeeeeir e e e e e e 28
2.4.2. Formalisation de I'impleémentationccccc..cooooiiiiiiiiiiiiiiiie e 29
2.5. Avantages et inconveénients de la vérificatmmelleccccceeeieiiiiniiinee, 29
3. UN PEU AE OGIGUE ...ttt e e e e e e e e e e e e 30
3.1. La logique propoSItioNNEIIE........ ... e eeee et e e e e e e e e e e e e e e ee e e e e eeeeanaeen 31
3.2. Les logiques temporelles.... ... ccceeeeiii e 32
3.2.1. Les logiques temporelles qualitativeseevviiiiiiiiiieee e, 32
3.2.2. Les logiques temporelles quantitatiVes. ccoo-......coovvveiiiiiiiiiiie e 32
4. Les méthodes de Veérification formelle ... oo 33
4.1. Les méthodes basées sur la vérification deetasd...............cceeeeeiiiiiiiiiiiiiii e 33
O O o 1T o T 33
4.1.2. Quelques vérificateurs de MOdeIeS.cuuueeeiiiiiiiiiiiiieieeeeee e 33
4.1.3. Avantages et inconvénients du model-checking...........ccccevvvvviviiciiiiennenn. 34
4.2. Les méthodes basées sur la démonstratioreédeethescccccvvveevviviiiiiieieennn 35.
O N 1T o T 35
4.2.2. Etude de quelques démonstrateurs de thésreme...........ccccccvvvvviiivieeenneeeenn 35
4.2.3. Avantages et inconvénients du theorem-poavin...............evvieiiiiineieeeeeeeen 37

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

4.3. Le choix de la méthode de vérification formaell............ccccooiiiiiiiiiiiiiiiies e 38
5. L SYSIEME ACL2... .ttt et e e e e e e e e e e e e e e e e e e e rr e e e e e e e e e e e e e e e aaaanna 38
5.1, Présentation Q'ACLZ........uuuiiiiiiiiit ettt e e e e e e e e e s eeeeaaaa s 38
5.2. La démarche dans ACL2........cccuuiiiiieiieiiiiiiieieee ettt ennnnraaa e e e e e e 39
5.3. Quelques principes dans ACL2..........ueuuuueiiiiieie e s 41
5.3.1. Le prinCipe de définitionecceeeeiurriiiiiiiiiiieeee e sciieree e 41
5.3.2. Le prinCipe A’ INAUCLIONuuuuiiiiiieeeiieeeetiiie s s s e e e e e e e e e e e eenneneeneeaennnnes 41
5.3.3. Le principe d’@nCapSUIAtIONueemmmmiiiiiiiiiiiaarae e e e e e e e e eeeeeeeeeaeerenenneeeeennen 41
5.4. Exemples de travaux réaliSES aveC ACL2 ... ceeiiiieeeeee e eee e e e 42
LI 0] g od 11] o] o SO U PP PPPPTUPPRTTR 42
Chapitre 3 : Etude des réseaux multi-étages dédi@six MPSOCS.............cccceevvvvvevvviinnnnnns 43
I [01 (o To [1 T 1 [o ISR 43
2. Architecture des réseaux multi-étages (MINS).........ooovvviiiiiiiiiiiiiii e 43
2.1. Les réseaux statiques Vs les réseaux dyNamUQUE..........ccevvrriereeeeeeeeeesssss s smmmnnes 43
2.2. L'NIStOrQUE dES IMINS ...ueiiiiieii it e e e e e e e e e e e e e e e e e eeeeeeeeeeeenennnnes 45
2.3. Formalisme de description des réseaux M@ges..............ccccccvvvvveeiiieeeninneeeen. 45
2.4. ClassSification dES MINSuuuurtmmmmmeeeeieeeieeeeee e e e e e e e s s ereee e e e e e e e e aaans 46
2.5. Construction d’un réseau MINccooiiiiiiiiiiiiiee e e 48
2.6. Propriétés d’un réSeau MINoommmmeeeemmnniiiiieeeeeeeeereeeeeeernnrnnnn e 48
2.7. LeS rESEAUX DEILA ...ttt e e e e e e e e e e e e e e e e e e e aaeas 48
FZ A T B = 11 011] o PP RTOPPPPPPP 48
2.7.2. Propriétés des réseaux Deltacccceeeeiiiiiiiiiiiiiiiiiieceeee e 49
2.7.3. Panorama des réseaux Delta........ oo 49
2.7.4. Synthese des formalismes de descriptiod#a MINSccoeeecnvvninnnnne. 53
2.7.5. Le routage dans les réseaux Delta . . o ooieeeieieiiiiiiiiiiiiiiiiiiisss s seeeeeeneeen. DD
I T o] [ox (153 o o 1R PP 55
Chapitre 4 : Formalisation générique des réSeaux SUDUCEceeeeeeeeeeeeeereereeeeennennnnns 56
I 101 (o To [1 T 1 o TSSO 56
2. Formalisation générique : GENOC.........ocoemeeeuiiiiii e 56
2.1. Les foNCtIoONS de GENOCcooiiiiii et 56
2.1.1. Les fonctions « Send » €t € RECV . iiiiiiiiiiiiiiiiiiiiiiee e 56
2.1.2. La foNCtioN « ROULING » .ooooiiiiiiiie oottt e e e n e e e e e e e e e e 57
2.1.3. La fonction « SCheduling »oovvieiiiiiiiiiiiiie e 57
2.2. Déroulement de la fonction GENOC ..ottt 58
2.3. Formalisation de GENOC................t s eiireritriieeereeeeeeee e e e e e e e e s s s s sssnnreeeeeeeeeeaens 59
2.3.1. Formalisation desS NOBUSuuit oottt 59
2.3.2. FOrmalisation du FOULAgE............ummmmmmm e eeeeeeeeeeeeeeeiiiii e ena e e e e e e e e 60
2.4. Analyse critique de la fonction GENOCeeeviiiiiiiiiiiieie e 61
3. Formalisation générigue par extension du moG@eloCcoevvvvviiiiviiiicee e 62
3.1. L'aspect generique dans ACL2oo oo ere e 62
3.2. La composante topologie GENEIIQUE.....ccaeeeeeeeeeeeeeeeeeiiiiiiiiiiiirrree e eeeeee s nnnes 63
T I o 1 T o T 63
3.2.2. SPECIICALIONccei it it i i i it ettt e e e e e e e e e e e e e e eseassseneeeeaaeeaeeaens 64
3.2.3. Criteres e COIMECTHIONooi ettt e e e e e e e e e e e e et e e e e e e e e e e e e e 65
3.2.4. Traduction dans 1a 10gique ACL2 ... 66
3.3. La composante routage geNErique EtENAUE e eeeeeeeerreeeeeiiiiiiiiinee e e e eeeeeeens 67
TR Tt I o [T4 o1 PP 67
TR T ST o =T o= 11 o o [67
3.3.3. Crteres de COIMECHIONccoei ettt e e e e e e e e e e e e e e e e e e rnneeeeeaeeasaeeennns 68
7/ @0 o T 11 153 o o PP PPPPUPPPPPPPPR 68

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Chapitre 5 : Vérification formelle des réseaux muliétages de la famille Delta : Etude de

(02 PP 69
R 1 To [T 1o o P 69
2. Formalisation des réseaux Delta MINS dédiésMBSOCS...............ceeevcvninniivnnnnnnnne. 69
2.1. La logique ACL2 : deS PreCISIONScceeeeeiuuniiiieieieeeeeeeeeeeeeeeeeeeee s 69
2.2. La composante topologie d’'un Delta MIN........cccooooiiiiiiiiiiiiii e, 70
2.2.1. Formalisation de 'ensemble de NOBUAS waaeeeeeveevvvviiiiiiiiie e 70
2.2.1.1. Spécification d’UN NOBUM............ o seesesnnnnrirrieieeeeerererrreaeeeeeeeesasseeeees 71
2.2.1.2. Spécification de 'ensemble des NOBUAS m.vvvvvvveiiiiiiieiieieeieieeeeeiiiiieees 72
2.2.1.3. Vérification du thEoréme 4-1coooviiiiiiiiiiiiiiieeeeee e 73
W A W =S oo]] 1[0] 1 75
2.2.2.1. Spécification d’'UNE CONNEXIONceeeeeirrrrrrrieiiiiiirerereeeeaaaeeeessesassnnneeees 75
2.2.2.2. Spécification deS CONNEXIONSccceeeeeiieie e eeee e e 78
2.2.2.3. Vérification des théoremes 4-5 €t 4-6...........uuvveeeeeeiiiiiiiiieeiieeiieiieeeieee 80
2.2.2.4. Vérification du thEOre€me 4-7cccceeeiiie i 82
2.3. La COMPOSANTE TOULAGE. ceeeeeee s e e e e e eeei e e e e e eeetaa e e e e e e enmmmnsn e e e eeeennnnnns 83
2.3.1. Spécification de la fonction de routage...........eevvvvvvvviiiiiiiieeeeeeeeeeeeeeveeeeeeeee, 83
2.3.2. Validation de la fonction de routage « nogtdmin »ccccceeeeeeeriiiinnnnnnn. 86.
2.3.2.1. Vérification de théoremes intermeédiaires...........ccccvvvvvvvvriiiiinneeeeeeeenn 386
2.3.2.2. Vérification du thEOréme 4-8ccooviiiiiiiiiiiiiiiieeeee e 87
2.3.2.3. Vérification du théoreme 4-9cccooeviiiiiiie e 88
2.4. Vérification de la conformité des définitiotmNCretes.uuvvvvveviiiieeeieeeiiiiiiiieeees 90
2.5. Vérification du théoreme de correction glathaimodele.............oeeeeeiiiiiiiinnnnnnd 91
G J @] o o3 1111 T o ISP 92
CONCIUSION B PEISPECHIVEScciiiiieeeeeiitteee e e e e e e ettt s s e e e e e e e e e e e e eeaaeaeaaaeeeeeeenrennnnns 93
=] o] [oTe] =1 o 1[PPI 95
AANINIEXES .ttt ettt et et e e et e e e et taeennt e et e e e et nereaaaaaes 102

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Table des figures

Figure 1. Une architeCture @ buS CENLIAL... e e oo 11
Figure 2. Le processeur the Itanium 2 MonteCitd dOBeccooviiiiiiiiiiiicee e 12

Figure 3. La plateforme Cell ... 13
Figure 4. La plateforme BIMF oo 14
Figure 5. Flot de conception des SYStEMES MONOPUCES.........evvverrrrerrrrrrrrrrrrrrieeieeennreereeeeeeeeeee. 15

Figure 6. QUEIQUES TOPOIOGIES ... e ittt 19
Figure 7. Un microcontréleur typique basé sur AMBAL.........oooo oo e 21

Figure 8. Synoptique d’AEtNEIEAL..............oummmmeeerereriiiiiii e saeereaeraarannrannnnaannnaas 22
FIgure 9. Le réSeauU OCLAQON...........ciueeeeeeeneeeeeeeaeanieeteeeeaaeeeasssssssseeeeeeeeaessssseeeeeeaeeesaannssnneneeeeens 23
FIQUre 10. Le rESEaU HEIMMES............ee s s eteeeeeeaeeeaaaseaeeteeaaeeeessennneeaeeeesssnsssnseeneeaeeesannnns 25
Figure 11. Etapes de la spécification formelle............cccooooeeiiiiiiii e, 28
Figure 12. Chap@au MEXICAINuuuueiee e e e e e e e e e e e e e e e e e e seeeeea e s a e e e e e 37
Figure 13. DEMArche générale (ACL2)uucueeeeee it e e e et ee e e e eeesre e e e e e e e e e e snneeeeeees 40
Figure 14. Réseau point & POINt.........ccooiiiiiiii e 43
FIgUre 15. RESEAU CIOSSDAI.........coiiiiiiieeiieeeiiiii it e e s e s sar s e e aeeannesnnssnnnsnnnsnnnnnns 44
Figure 16. Architecture de MIN gENETIQUEceeeeeiieiiiiiiiieeee ettt e e e e e e e s emnnne e e e e e e sneeaaeeeeeeas 45
Figure 17. Un Delta MIN de taille 6cccooieeieeeeeee e 46
Figure 18. Classification topologique des MINS.........ccoooiiiiii e, a7

Figure 19. lllustration de 1a Propri€te DEIA cceeee.eeeei i i 49
Figure 20. Un réseau OmMEQa (16,2)iiceeeeeeeeeeeeiiiiieiiieeeeeeeesssssiseeeeeeeaeeeaassseeeeaaeeaessnnnssseeeees 50
Figure 21. Un réseau Butterfly (16, 2)cccoeeeeiiee e 52
Figure 22. Un réseau Baseling (16,2) ..o ieee i ittt 53
Figure 23. Routage dans un Delta MIN (8,2) .. cccca ittt 55
Figure 24. GENOC : UN rESEAU JENEIITUEceeeeeeerniiaeeeeaeeieaeeeaaeaaaaeaae e e e e eeeeeesasssssssas s aa s s e aaeeeas 57
Figure 25. DEroulement de GENOCuuiiiieeieriiiiieeee ettt eeeeeeeeeeaeeeeeeeeeeeeaeeeeeees 59
Figure 26. Un graphe topologique du réseau OCtagOn...........cccuuriiirieeeeeeeiisiirieeeeessseeeneeeeeeens 64

Figure 27. Spécification formelle des NOBUAScoccuuiiiiiiiiiiiei e 73
Figure 28. lllustration des résultats de SIMUIationN.........ccoooeeriiiiiiiii e, 85

Liste des tableaux

Tableau 1. Prévisions de FITRS. ettt e e e e e e e e e e e e e e e ennneneeeees 11
Tableau 2. Les résultats de Simulation A€ (L-L)eee...eveerureriirriiiiiiiiieiiierieneeenennneeeeeesrrerr.. 17
Tableau 3. La preuve mathématique de (1-1)...cccceeeiiiiiiiiiii e, 18
Tableau 4. Fonctions, théoremes et temps de ppawela définition et la validation de I'Octagon. 24
Tableau 5. Syntaxe de la logique propoSitioNNEUE.............uuviiiiieiiiiii e 32
Tableau 6. Récapitulatif de quelques dEMONSIIALEUES.uurruueriiiieee e e e e 36
Tableau 7. Comparaison de quelques tOPOIOGIES. ...ccciovviieeee e 44
Tableau 8. Panorama des réSeauX Delta... oo eoeiiiiiiiiiiiieee e 54
Tableau 9. Formalisme de description des permuigtiQ................ceeeeeeeeee e 54
Tableau 10. Résumé des fonctions de SpécificaBOMAEUUScceviiiiiiiiiiiiiie e ceeeea e 74
Tableau 11. Résumé des fonctions de spécificatiorecconnexioncccccceeeeeeeiiiiiicemneeeeennnn 77
Tableau 12. Résumé des fonctions de spécificaBda tbpPolOgi€uvvvvrveeureiennnens e eeeeeeee 80
Tableau 13. UNe liSte 0& MISSIVESoiiceeeeiiiiiiiiie ettt rnnee e e et e e e e e e e e e e ans 85
Tableau 14. Les résultats de simulation de la IsteniSSIVES..........ccceeeiiiiiiiiiiiiiii e 86

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Introduction générale

1. Contexte de I'étude

Les systémes embarqués envahissent notre quatidieiagit d’'une réalité du monde
moderne. En effet, ces systémes servent des da@n@éwe variés tels que I'automobile, les
télécommunications, les multimédias et évoluens t@s jours comme par magie. Ainsi, on
découvre chaque jour de nouveaux systemes plussigpBs ayant, a la fois, des capacités
plus élevées et des tailles plus réduites. A Iglar cette révolution, plusieurs questions se
posent. Néanmoins, la plus captivante reste laastgv: « @Qel est le mystére qui se cache
derriere tous ces systenes.

La réponse est toute simple. C'est la puce élequwenqui, conduite par I'évolution
phénoménale de la technologie submicronique etmoent de la technologie de fabrication
des circuits intégrés, se voit étre a I'originecdéte révolution. Une puce est capable d'intégrer
plusieurs ressources ayant différentes fonctioes. I€ssources peuvent étre des processeurs,
des composants hétérogénes (des mémoires, dehé@ues, des unités numériques
spécialisés), du logiciel et souvent des circuitstes. Tous ces composants matériels sont
interconnectés a l'aide de mécanismes de commignicétes sophistiqués (Cesd al,
2002). On parle alors des systemes multiprocessaurs puce dénotésVIPSoCs
(MultiProcessor Systems on Chip).

Une autre question s'impose par rapport a cetterdignce croissante et elle est exprimée
explicitement par J.C Laprie (Laprie, 1990) : « {imu have enough confidence in computer
systems that we let them handle our most valuaielgy namely our life and our money? ». En
réalité, la dépendance des humains vis-a-vis daermags techniques n’est pas corrélée a une
vraie conscience des conséquences que peut avaitysfonctionnement aléatoire de ces
systemes ; or la puce contrble non seulement l&ragsdans lequel elle est implantée mais
aussi nos vies.

Ainsi, le niveau de confiance des humains par mp@o ces systemes dépend
essentiellement du degré de vérification auquelétisient soumis. Il faut noter que la
vérification d’'un systeme matériel ou d’'une pucavete comme l'une des taches les plus
fastidieuses lors de sa conception. On montre ntigrada vérification d’un circuit fait appel a
un nombre d’ingénieurs largement supérieur au nerderconcepteurs (au moins deux fois

supérieur) et consomme 60 a 70% du temps de cooéplobl, 2002).

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

De ce fait, les industriels ont de plus en plu®ues a des méthodes de vérification dites
« intelligentes » en opposition avec la méthodditicmnelle par simulation numérique qui a
déja montré ses limites face a des systemes coewléxcet effet, la nouvelle tendance dans
la vérification s’oriente alors vers l'utilisatiates méthodes formelles.

Dans la section suivante, nous présentons lesilootims attendues de notre travail de

mastere.

2.Contributions

Par I'effet de la complexité croissante des sysgemaltiprocesseurs sur puce (MPSoCs)
en général, et 'augmentation du nombre de compessur la puce en particulier, les
architectures de communication sur la puce (onjchig di évoluer. Comme alternative
prometteuse aux bus classiques, les réseaux sergppelés aussi NoCs, ont témoigné d’un
niveau de performance assez éleve.

L’exploration actuelle des NoCs se limite a degaéx de type statiques. Une innovation
dans ce domaine serait I'exploitation des réseamamiques dans des MPSoCs. Comme
'idée est assez récente, il n'existe pas a notrenaissance de travaux qui touchent la
vérification formelle de ce dernier type de résgsau puce).

Une spécification de type informel est souveniéidine de la mise en place des services
dans les réseaux dynamiques. Toutefois, pour utiiude de raisons, I'aspect informel s’est
avére trés insuffisant. Ainsi, afin de rendre lescpssus de configuration et de tests plus
rapides, plus efficaces et plus sécuritaires, Uit fapporter des solutions qui permettront
d’élever le niveau d’abstraction de la représenaties configurations des services du réseau.
Une solution possible consisterait en la vérifmatide certaines propriétés pertinentes au
fonctionnement de ces réseaux aprés construationadlele formel correspondant.

Les différentes étapes de la démarche de I'étutks &nsi que la structure du manuscrit,

seront illustrées dans ce qui suit.

3. Structure du manuscrit et démarche de 'étude

Notre travail de mastere vise développement d’un modele formel pour des réseuuiti-
étages dédiés aux systemes multiprocesseurs ser paoceffet, nous souhaitons a la fois

construire et vérifier formellement un modeéle déanit les communications dans les réseaux

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

dynamiques multi-étages dédiés aux MPSOCs. Nouan@gns notre travail selon les
grandes étapes suivantes :

- Une exploration exhaustive des travaux de vérificatormelle des réseaux sur puce, des
réseaux multi-étages et des outils formels,

- L'identification et la traduction dans la logiquee d’'outil de vérification choisi la
spécification des communications dans les résealltx-étages dédiés aux MPSoCs,

- La validation du modele formel par la vérificatiaune ou de plusieurs propriétés

pertinentes pour le fonctionnement des réseaux-étalges.

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Chapitre 1 : Contexte de I'étude

1. Introduction

Afin de surmonter les problemes de communicationcaatrés dans les systémes
multiprocesseur sur puce (Hb al, 2001), les chercheurs se sont investis dansneegtion
de nouvelles plateformes d’interconnexion fiableérgergie réduite et a rendement éleve,
baptisés réseaux sur puce ou NoCs (Networks on) Chip

Il est évident que lintégration d'un NoC dans uysteme multiprocesseur sur puce
(MPSo0C) ne peut se faire sans sa Vérification.eCeééirniere a pour principal objectif de
montrer la conformité de la conception d’un nivelmnné avec les spécifications du niveau
précédent.

Nous insisterons dans ce chapitre sur I'importadee I'aspect vérification dans la
conception des systemes multiprocesseur sur pu&S@as) en général, et dans celui des
réseaux sur puce en particulier. Nous exposeronsi glusieurs travaux relatifs a la

vérification formelle de réseaux sur puce existants

2.La vérification des MPSoCs : utilité et techniques

Avant d’aborder I'aspect vérification dans les MESpnous présentons ici un apercu de
I'évolution de la technologie correspondante, aigee les deux architectures les plus

répandues et quelques uns des réalisations dalm1Ene.

2.1. Evolution de la technologie submicronique

Les densités d'intégration actuelles permetteras#enbler sur une méme puce un systéme
numérique complet.

D’une part, les systémes sur puce ou SoCs (Systen@hip) deviennent de plus en plus
complexes, I''TRS (Zeet al, 2005) prévoit en 2012 l'intégration de systemlestéoniques
de 4 milliards de transistors pour des fréquenaeshes de 10 GHz, comme lillustre le
tableau 1. L'enjeu de la prochaine décennie darsedteur des semi-conducteurs est alors
d’'intégrer sur une méme puce un systeme multipeaceshétérogéne (Multiprocessors

System-on-Chip).

10

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Tableau 1.Prévisions de I'I'TRS

2001 2006 2012
Technologie (nim) 150 90 50
IComplexité (M transistors) 40 200 4000
Surface de |la puce {cm?) 3,85 52 7.5
Fréguence Local (ghz) 1,25 3,5 10

De facon générale, les interconnexions des comgssan la puce se font par bus central
(figure 1). Cependant, malgré la simplicité de maseceuvre qui caractérise les bus, ils ont
montré tres vite leurs limites. En effet, un busited est une ressource partagée ; son
extensibilité est donc trées mauvaise. De plus,esinbmbre de composants (memoire,
processeur, DSP, IP...) sur le bus augmente, ldebpassante disponible pour chacun décroit.
Dans ce cas, les capacités parasites vont égalememienter et la fréquence d’utilisation du
bus sera limitée. Puis, le bus perd aussi en pedoces s'il a beaucoup de blocs a satisfaire
puisque le temps alloué a chacun diminue alordejtemps d’arbitrage augmente. Enfin, les
interconnexions physiques actuelles a base dednisdss facteurs limitant de performance
des SoCs (longueur des interconnexions, bandergassansommation d’énergie).

L T 1

Figure 1. Une architecture a bus central

D’autre part, les réseaux sur puce ou NoC (NetwarkChip) sont susceptibles de proposer
des solutions efficaces aux problémes d’'intégratmmplexes des systémes sur puce (Beni
al., 2002). Ces architectures d’interconnexions deavitont de méme, faire face a de
nombreuses contraintes : consommation d'énergiefac de silicium, performances,
synchronisation... De plus, le colt et les caratiques de ces réseaux sur puce dépendent

des applications considérées (Ateris, 2005).

11

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Par ailleurs, l'industrie des semi-conducteurs gsi a l'origine de la fabrication des
systemes sur puce, a focalisé ses activités en diewmaines importants : les architectures a
usage général (les processeurs) et les systemesrqeréb. Ces deux types d’architectures

seront détaillés dans les deux sections suivantes.

2.1.1. Les architectures a usage général

Les architectures a usage général sont utiliséesntsllement dans les ordinateurs
personnels ou la haute performance et la fialsibié des criteres considérés comme prioritaires
par rapport aux autres facteurs tels que la consdimmd'énergie et le colt de fabrication.
Ainsi, dans le but d’augmenter la performance detype d'architecture & une fréquence
d’horloge relativement stable, la tendance courastal’implanter sur la méme puce plusieurs
processeurs identiques. Ceci permet slrement diexédes taches en parallele et donc une
augmentation recherchée de la performance. Par pdxeme processeur «the Itanium 2
Montecito dual core » est une illustration du pésgréalisé pour les architectures a usage
général (figure 2). En effet, il a pu intégrer €d0@, 1.7 milliards de transistors pour une
puissance de 100W & une fréquences de 1.6 GHzailleede la puce est 580minpour une
technologie de 90nm (Intel, 2006).

16MB L3

Figure 2.Le processeur the Itanium 2 Montecito dual core

Dans la suite, nous présentons les systemes endsaqqu constituent le deuxieme type

d’architecture exposée.

12

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

2.1.2. Les systemes embarqués

Les systémes embarqués (embedded systems) sosyaiesies a la fois électroniques et
informatiques (numériques) autonomes dans lesdpietatériel et le logiciel sont intimement
liés. Le logiciel est généralement dédié a unetfonnalité bien précise, alors que le matériel
peut comporter plusieurs composants tels que desitsi numériqgues FPGA, ASIC ou des
circuits analogiques, et ceci dans le but d’augereles performances de 'application ou sa
fiabilité. Ces composants matériels sont intercotése par des mécanismes de
communication trés sophistiqués.

La conception des systemes embarqués requiertppmeche a base de plateforme. De plus,
le développement du matériel et du logiciel estdanultanément dans les différents niveaux
d'abstraction. En effet, ce développement doisfate plusieurs contraintes a la fois comme la
consommation d’énergie, la surface, les performsreesynchronisation, le codt et le temps
de fabrication.

Ainsi, la plateforme congue par Sony, Toshiba @l IBest une architecture embarquée de
haute performance (Kahl, 2005). Par exemple, l®s ¢eplaystation3 » et les téléviseurs hautes
définitions utilisent ce systéme renfermant sumi&me puce un processeur et 8 coprocesseurs
graphiques (figure 3). La taille de la puce es?2emnf pour 8 niveaux de métal.

Figure 3. La plateforme Cell

Par ailleurs, 'IMEC a développé un systeme mubti@sseur sur puce baptisée 3MF
(figure 4). Cette plateforme supporte les starslae compression vidéo et audio (MPEG4,
AVC, SVC, 3D-graphics) (IMEC, 2006). La puce remfier plusieurs processeurs ADRES, un
DSP, des mémoires, et un module d'entrée/sortietektonnexion des composants est faite
par un réseau sur puce. La puissance dissipée é0in\W a une tension d’alimentation de
1.0V, pour une technologie de 90nm.

13

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

SDRAM

10+ [EMmF J ‘ GPio I Audio DSP|| | !
L2 | 32D i
SRrRAM | ciustor
Lo T
L ay L BE ot
ADRES | | ADRES | | ADRES e 8108 .. | AppES

3MF platform

Figure 4. La plateforme 3MF

La diversité et le nombre de ressources qui conmpasesystéme multiprocesseur sur puce,
n'ont fait qu’augmenter sa complexité de concepti@atte complexité sera illustrée dans le

paragraphe suivant.

2.2. Complexité conceptuelle des MPSoCs

Vu I'hétérogénéité des composants formant la pilcdevient crucial de maitriser la
conception de tels systémes tout en respectartolgsaintes de mise sur le marché et les
objectifs de qualité. La conception des systemedtipgmucesseurs sur puce doit se faire
conformément a une démarche spécifique illustrée fagure 5. Chacune des étapes du flot
décrit un niveau d'abstraction donné. En réalighstraction est le concept clé de toute la
conception des MPSoCs. A chaque étape, on s’oatupeaspect du systéme a concevoir : on
fait apparaitre les détails liés a cet aspect aetanoufle d’autres inutiles a ce niveau. Ce flot
part alors d’une spécification de niveau systerabsée grace a des langages dits aussi systeme
(VHDL, Verilog, System C) pour obtenir une spédifion fonctionnelle. L’étape suivante est
I'exploration architecturale. Il s’agit ici d’expler I'espace de solutions en terme d’architectures
pour déterminer les parties qui seront implémentéeslogiciel et celles en matériel.
L’architecture retenue devrait étre celle qui r@pmieux aux exigences du systeme. Ensuite,
chacune des parties logicielles et matériellenseadfinées séparément pour arriver enfin a les

intégrer dans un systeme unique.

14

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Conception
de niveau systéme

- (1) Vérification de la spécification
Snérification fonctionnelle

L fonctionnelle

-
- | - — 1\
Exploration
d'architeciure

/_< >\ } (2) Vérification de l'architecturs du
systéme
Spécification Spécification

des parties maténielles / _des parties logicielles
_

-3 - . F---- o
Conception Conception
du matérig| du logiciel

\ (3) Vérification de lmplémeantation
des composants du systime

.m. .m.
T ——— - 5 - - -~
g ':_\ m--

Intégration (4) Vérification de lintégration de
logiciek-matérial composants heterogenes

/,_L\ s (5) Vérification finale du systéme
. 2o : (détecter tous les bogues avant
_‘___”#JF,/ fabrication)

—

Figure 5. Flot de conception des systemes monopuces

Dans son livre< Introduction to Formal Hardware Verification ¢Kropf, 1999), Thomas
Kropf partitionne le processus de conception en traoh clairement la relation qui doit
exister entre les différentes étapes de la cormepttn effet, 'implémentation de la
spécification résultante d’'une certaine étape Jeuéle de spécification pour I'étape suivante.
Ainsi, une implémentation de la spécification desaiu architectural constitue la spécification
du niveau transfert de registres (RTL) suivant.

Lesmultiples contraintes sur les MPSoCs ont d{ remfiola place de la vérification dans
leur flot de conception. D’ailleurs, nous pouvorsnarquer d’aprés la figure 5 que la
vérification accompagne chacune des étapes de poomce En visant une meilleure
crédibilité des systemes sur puce, notamment ceinsant critiques, I'une des méthodes

robustes est la vérification formelle. Cette méthedra illustrée dans la suite.

15

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

2.3. Les techniques de veérification des circuits numéresg

La correction absolue du flot de conception deidaré 5 pour un systeme donné est
garantie si et seulement si la spécification itgtiest valide et le passage d’'un niveau a un
autre est vérifie. Plusieurs techniques de vétiboa existent. Dans ce qui suit, nous
établirons une comparaison entre la technique iglasspar simulation et les nouvelles

techniques a base de formalisme, et ceci aprewteésprésenté.

2.3.1. La vérification par simulation

La simulation soumet le systeme a des vecteureddg, tompare les résultats obtenus aux
résultats attendus et corrige les éventuelles exrdies valeurs de tests sont générées
manuellement ou par un logiciel dédié. Méme si itautation est une technique qui a
'avantage d’étre naturelle et simple, elle préseatdgs performances limitées. En réalité, dés
qu’il s’agit de I'appliquer a un bas niveau d’alastion pour des systemes assez complexes,
les temps de réponse deviennent énormes. En plasnulation ne peut étre que partielle : il
est quasiment impossible de couvrir toutes lesuvalpossibles pour les entrées. Autrement
dit, les tests ne peuvent jamais étre exhaustiscenséquent, la garantie d’un systéme fiable

par simulation est impossible.

2.3.2. La vérification formelle

Si l'intérét porté par les industriels au « formedst assez récent, I'idée en revanche ne
date pas d’aujourd’hui. En 1962, J. McCarthy foramutiéja les principes de la vérification
formelle automatique donnant ainsi naissance amachines raisonnant sur des machines »
(McCa, 1962). D’ailleurs, auparavant, l'utilisatiale telles méthodes se limitait & quelques
domaines et nécessitait un apprentissage effd@éEemment, ce n’est plus le cas. Les
méthodes formelles sont devenues d’usage coursant (996).

Vérifier formellement un circuit consiste en la ypwwve mathématique qu’'un modéle de ce
circuit se comporte conformément aux propriétégées. Une telle vérification est possible a
tous les stades de la conception du futur systermedgux approches principales: la
vérification de modeles (model checking) et la dést@ation de théorémes (theorem
proving).

Il a été démontré que I'utilisation des formalisnmaéne a une réduction des colts de
maintenance. Leurs technigues ont I'avantage dé@pmlicables a tout type de systeme en

assurant un développement fiable et en minimisantidque de pertes économiques et

16

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

humaines. Les méthodes formelles ont en outredaipitité de couvrir implicitement tous les
cas de tests. Nous illustrerons dans la suite corhg®a est possible a travers un exemple

concret.

2.3.3. La simulation vs la vérification formelle

Une différence fondamentale existe entre la sinanatlassique et la vérification formelle.
Nous reprenons ici un exemple tres répandu daritdeature mettant en évidence cette
différence (Gord, 1989). Supposons que I'on soehdé@émontrer que la formule (1-1) est

correcte c'est-a-dire que les deux termes de Itégdbnnent lanémevaleur et ceci pour

toutesles entrées possibles.
(Xx+1f=x+2x+1 (1-1)

Une approche par simulation consisterait a preptirsieurs valeurs de et de tester la

validité de I'égalité pour ce Cette approche est illustrée dans le tableau 2.

Tableau 2 Les résultats de simulation de (1-1)

X | (x+1f | ¥+2x+1
0 1 1

1 4 4

2 9 9

3 16 16

9 100 100
67 4624 4624

La formule (1-1) doit étre démontrée pour tousnesbres sans exception. La simulation
ne produit ici que des résultats pour les nombrgiers, elle ne peut pas couvrir toutes les
valeurs des nombres : il y aura une infinité deectester. La simulation est alors incapable de
valider la formule en question. L’approche formgtjgant a elle, démontre I'égalité sans pour
autant émettre une restriction sur les valeurs ipless de x et ceci en appliquant des
transformations d’ordre mathématique rapporté datrableau 3.

Dans le reste de ce chapitre, nous illustreronsigaus travaux de vérification formelle de

NoCs, et ceci aprés une présentation de quelquesagénérales liées aux réseaux sur puce.

17

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Tableau 3.La preuve mathématique de (1-1)

1. | (x+1f=(x+1) (x + 1) définition de la puissance

2. | x+1)(x+1)=(xx+1)x+ (x+1)1 distribunité

3. | (x+1f=(x+1x+ (x+1)1 substitution de 2 dans 1

4, | x+1D1=(x+1) élément neutre 1 pour x

5. | (x+1)x=xx+ 1x Distributivité

6. | (x+1f=xx+1x+x+1 substitution de 4 et 5 dans 3
7. | Ix=x élément neutre 1 pour x

8. | (x+1f=xx+x+x+1 substitution de 7 dans 6

9. | xx=X¥ définition de la puissance

10. | x+x=2x définition de 2x

11. | (x+1f=x+2x+1 substitution de 9 et 10 dans §

3.Les réseaux sur puce : un nouveau paradigme

3.1. Introduction

La facon avec laquelle sont organisées les inteedons entre les différents unités d’'un
systéme sur puce, définit ce qu’on appelle sa tmpelphysique. Dans le cas des MPSoCs,
les deux topologies physiques dominantes sontus®bles réseaux. Les réseaux sur puce ont
été inventés dans le principal but de remédier maonvénients connus des systémes
d’interconnexion classiques c'est-a-dire les busn® conception assez délicate, les réseaux
sur puce (NoC) sont soumis a plusieurs contraihégserformance comme la latence, le débit
et doivent étre en plus flexibles en offrant unarm qualité de service. Dans la suite, nous

détaillerons une classification des réseaux sue pac topologie.

3.2. Classification des NoCs

3.2.1. Les critéres de classification

Le critere incontournable de classification desaés sur puce (NoCs) est la topologie
(Bjer et al, 2006). Toutefois, en plus d’'une classificatioivant la forme des liens, on peut
aussi ajouter d'autres critéres de classificatidies que le type des nceuds (direct, indirect),
le nature des liens (unidirectionnel, bidirectiojne nombre d’étages (a zéro étage, a un

étage, multi-étages), le type de réseau (statipregmique), la régularité du réseau (régulier,

18

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

irrégulier). Nous présentons ici une simple claszifon des réseaux sur puce par topologie

sans pour autant se soucier des criteres additenne

3.2.2. Classification par topologie
Les topologies dominantes pour implémenter les $\&x@ht les bus et les réseaux.

- La topologie en bus elle est réalisée physiquement grace a un médnique partagé
par plusieurs unitégcf. figure 1) Sur ce médium, les données ne circulent pas ¢t fa
arbitraire mais elles suivent plutét une logiquenbdéterminée, c’est ce qu'on appelle la
topologie logique. Par exemple, dans le cas demau&sd’ordinateurs ayant une topologie
physique en bus, la topologie logique courantel’Egiternet. Bien que d’extensibilité tres
limitée avec un faible degré de parallélisme, bétecture en bus reste fréquemment utilisé vu
sa simplicité de mise en ceuvre et de fonctionnenrdusieurs extensions du bus partagé ont

été implémentées afin d’améliorer ses performa(imes matriciel).

288808 P

(a) Grille 1D (b} Anneau 1D

gt

(¢) Grille 2D (d) Tore 2D (e) Cube 2D

—_— ——"

Figure 6. Quelques topologies

- La topologie en réseaudans sa définition la plus simple, un réseau estnsemble de
nceuds connectés par des liens de communicatiors [@acas des systemes sur puce, un
noeud peut contenir un ou plusieurs composantsgtedsdes processeurs, des mémoires ou
encore des périphériques d’entrée/sortie. Les ipales topologies utilisées pour les réseaux
sur puce sont les grilles et les cubes. Dans uille,des nceuds sont identifiés par des
coordonnées. Deux ncewxigety de la grille sont connectés si et seulement leoosdonnées
respectives sont identiques sauf sur une dimenSioivant cette derniere, les identificateurs
dex ety ne doivent différer que de 1. La figure 6 illustueelques types de grilles telles que la
grille 1D (graphe linéaire) et la grille 2D. Poeslréseaux en cube, ils ont la méme structure

19

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

qu’'un cube ou un nceud est aussi identifié par sesdonnées. La figure 6 présente un
exemple de cube 2D. La topologie tore 2D illusta@gicette méme figure n'est autre qu’une

grille dans laguelle on connecte les nceuds des eldvdmites.

3.3. Les travaux de formalisation des réseaux sur pub®Cs)

Un systeme sur puce typique est composé d'un erdsaiiunités interconnectées par un
systéme de communication. Sachant que chaque agrsditue souvent une sorte de « boite
noire » pre-validée (IP), un aspect essentiebhdalidation du systéme en entier est celui de
la validation des interactions entre ces IPs veygéme de communication (Spir, 2004).

Cette partie s'intéresse aux travaux relatifs avadéidation des réseaux sur puce par
vérification formelle. Pour chacun de ces travaupys commencerons par une présentation
breve du réseau sur puce veérifié, ensuite, noussexpns un exemple de formalisation dont il

a fait objet.
3.3.1. Le bus AMBA, ARM

3.3.1.1. Présentation

La figure 7 montre la facon avec laquelle on pedilisar un bus AMBA AHB/ASB en
conjonction avec un bus APB. Cette conjonctionréatisée grace a un pont (bridge). En
réalité, le systeme AMBA (The Advanced MicrocontolBus Architecture) est défini en
fonction de trois types de bus (ARM, 1999) :

- Advanced High-performance Bus (AHB) c’est un bus utilisé pour établir les
communications entre les modules du systeme deidrég €levée (les processeurs) et les
modules nécessitant une grande bande passant@élasires on-chip et les mémoires off-
chip). Il a 'avantage d’avoir un rendement élefd& plus, il est spécifié de fagcon a bien
s’intégrer dans un flot de conception qui utiligs ltechniques de synthese et de tests
automatiseés.

- Advanced System Bus (ASBjuand les rendements élevés du bus AHB ne st pa
exigés, le bus ASB peut le remplacer. Pour accélése échanges, ASB integre juste le
« pipeline »des opérations.

- Advanced Peripheral Bus (APBg’est un bus périphérique utilisé pour intercecter des

dispositifs a consommation réduite et nécessitaatfaible bande passante.

20

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

BMicroprocessor | | On—chip RAM

: |UART || Timer |
AHB or ASB I APB

D

G

E | [Keypad|| PO |
DMA Bus
Master

Figure 7.Un microcontrdleur typique basé sur AMBA

3.3.1.2. Formalisation

Le systetme AMBA d’ARM a fait I'objet de plusieursavaux de formalisation. Le but
principal de tous ces travaux est de vérifier |idité de certaines propriétés sur le bus.
Roychoudhury et ake sont intéressés en particulier au protocole AMBIB (Royc et al,
2003). Leur travail de vérification a été accongli appliquant la technique de vérification
de modeles via le model-checker SMV (Symbolic Mod#rifier). Les modules qui
composent le systéme ont été alors décrits sonsefde machine a états finis. La deuxieme
phase de la formalisation a concerné la spécifinatianuelle des propriétés a vérifier dans la
logique CTL (Computation Tree Logic) ; une logiqu& est supportée par le vérificateur de
modeles SMV. On a d0 alors définir formellement geopriété de non famine (non
starvation) « peu importe le maitre m souhaitant utiliser les bili sera toujours autorisé a y
accéder » En définitive, au bout de 0.17 secondes, SMV amiomatiquement détecter un
scéenario de famine. Un master, ayant été momemiamésuspendu par un sigrasplit »,ne
sera plus jamais autorisé a accéder au bus. Lagooation de vérification utilisée comportait
2 masters et 1 slave.

La conclusion tirée par Roychoudhietyal.est que le scénario détecté provient de la fagon
dont l'arbitre se rend compte d'un transfert deetypsplit ». Ainsi, on peut dire que le
protocole de communication utilisé par AMBA n'eftra pas des situations de famine
réelles. Cette famine aurait pu étre évité si ltagbutilisé sur le bus sait se rendre compte
d’un transfert de type « split ».

21

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

3.3.2. Athereal

3.3.2.1. Présentation

Le réseau sur puce Athereal a été développé aratalbe de recherches de Philips aux
Pays Bas (Rijp, 2003). Il est basé sur une topelagéguliere (figure 8). Les ressources
(processeur, mémoire, IP,...) sont connectées aleumutpar des interfaces-réseaux. Le
routeur Athereal utilise un routage de source ohétéste (source routing), une commutation
de typeWormholeet une mémorisation de paquets en entrée. Chaguetpast découpé en
« flits » de 32 bits, le premier «flit » renfernfentéte (identification de paquet, taille,
chemin, fenétre d'anticipation, indicateur de fia gaquet). Athereal fournit un transfert
fiable de données via des routeurs opérant en datégories de trafic (établissement de
connexion de bout en bout puis échange de données).interfaces-réseaux assurent
plusieurs fonctions telles que le contrdle de flexpaquetage de données, la connexion avec

les protocoles standard d’interface, ainsi quedbmnancement des transactions.

Figure 8. Synoptique d'Athereal

3.3.2.2. Formalisation

Le but principal du réseau sur puce Athereal aghifioun service « garanti » dans un
micro réseau. Ce type de service se base suriséavedion des ressources pour la durée
entiere de la communication. Une fois la connexétablie, les données peuvent circuler
facilement sur le chemin préétabli. Comme chaquednde réseau possede un nombre fini de
« buffers », des scénarios d’'interblocage peuvlams dacilement avoir lieu. Dans ce cadre,

des travaux visant la vérification formelle de deopriété d’interblocage dans le réseau

22

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

FEthereal, ont été développé. Le travail de (Gatbal, 2005) a utilisé I'outil PVS pour
démontrer que l'interblocage ne peut pas avoir f@ur une version abstraite du NoC
Athereal.

3.3.3. Octagon, ST-Microelectonics

3.3.3.1. Présentation

Le modeéle du réseau direct d’Octagon, proposé painK(Kariet al, 2001), est basé sur
une topologie en anneaux raccordés (figure 9).g@hanneau renferme huit nceuds. Les
fonctionnalités de routage et de commutation sanimplantées avec le processeur. Le
paquet circulant & travers le réseau est de talliable, I'entéte du paquet renferme trois bits
dédiés pour le contrble (bits d’adresses). Ce tésdifise la commutation de paquets et de
circuits. La technique de routage adoptée est g tglistribuée et adaptative. La
communication entre deux nceuds quelconques d'ureaanrexige au plus deux liens
intermédiaires. La bande passante de ce réseauapteindre 40Gbits/s, ce qui permet

d’obtenir des circuits a rendement élevé.

A—
L

o

L
I N

Figure 9. Le réseau Octagon

Arb

ol

Switch non-
bloquant

e
N

3.3.3.2. Formalisation

Le réseau Octagon a été formellement vérifié dansatire d’'un travail de modélisation
générique basé sur la technique de démonstratiothéeemes (Schret al, 2006). Un
modele générique dénoté GeNoC (Generic Network bip)Cdécrit dans une notation
completement formelle les communications sur p@e.modele représente les principaux
composants de toute architecture de communicatiorpsce : la topologie (les noeuds), le
routage et I'ordonnancement. Son critére de coomctst la fiabilité du réseau« Tout

message émis depuis une source du réseau atteuhdssmation sans modification de son

23

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

contenu » Pour montrer I'adéquation du modeéle générique dévecalité, il a fallu le valider
sur des réseaux concrets tels que I'Octagon eeh\2D.

Le tableau 4 montre le nombre de fonctions et #@es et le temps de preuve pour la
deéfinition et la validation de I'Octagon dans lagiue du démonstrateur ACL2. La
modélisation des nceuds et de I'algorithme de reutagécessité 21 fonctions. La preuve de
conformité avec GeNoC a nécessité quant a elled@emes.

Tableau 4.Fonctions, théoremes et temps de preuve pour iaitiéf et la validation de

I'Octagon

Nbre de | Nbre de | Temps de preuve Taille

fonctions | théorémes (en secondes)
OctagonNodeSet b 4 <] 70 lignes
Lemmes sur mod 0 10 < 3 150 lignes
Routage 4 2 ~ 120 140 lignes
(def. et terminaison)
Strategie 11 10 ~ 300 400 lignes
Validation de poe 4 29 ~ 300 415 lignes
Conformité avec GeNoC' 2 13 < 10 210 lignes
Total 21 64 < 740 1325 lignes

3.3.4. Le réseau Hermes

3.3.4.1. Présentation

L’architecture du réseau Hermes adopte la topolagiegrille 2D. Chaque ressource
(processeur, IP) est connectée a un routeur (fig0yeCe dernier est composé de cing ports
(est, ouest, nord, sud et local). Le port localreké a la ressource alors que les autres ports
sont reliés aux routeurs voisins. Chaque port piessae file d’attente en entrée pour stocker
provisoirement les données. La technique de contiontatilisée est de typ@/ormholeafin
de diminuer la latence et I'utilisation de mémoitampons. Les paquets circulant dans le
réseau contiennent des données, un en-téte qermemni’adresse destination et un compteur
indiquant le nombre de mots dans le paquet. L'admement des paquets dans le réseau se
fait suivant une stratégie de routage arithmétigasee sur I'adresse du routeur exprimé en
XY, ou X représente sa position horizontale et Y pasition verticale. Les avantages
primordiaux de cette plate-forme sont sa perforrmamotamment en terme de latence et
deébit, ainsi que sa flexibilité¢ du fait que lese§il d’attente et la taille des paquets sont

paramétrables.

24

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Heu

0 1 2
o | 00 mg—" 10l mz—P20

c T c T c
h 4 \ 4
1|01 [11 g—> 21
0

i T Til
C C C
v v

2 2-‘.——. 124——.22
wh
C C C

Figure 10.Le réseau Hermes

3.3.4.2. Formalisation

Le réseau Hermes a été validé avec approximativelmenéme approche que I'Octagon.
En effet, par I'application du modeéle générigue GENetenducf. la section 3.3.3.2.on a
pu démontrer que le réseau Hermes est fiable @aal, 2006). Cette validation a nécessité
I'extension du modele GeNoC afin de décrire degetspplus concrets des communications

sur puce. Ainsi, il a fallu par exemple redéfirartains types de données relatifs a GeNoC.

4.Conclusion

Tout au long de ce premier chapitre, nous avonstésur I'utilité de la vérification
formelle en montrant les limites de la simulatidessique a travers un exemple concret. Nous
avons aussi passé en revue plusieurs travaux deation formelle de réseaux sur puce
(NoCs). En définitive, ces travaux serviront & guwichos choix dans la conception et
'implémentation de notre modele formel des réseauxti-étages dédiés aux systemes

multiprocesseur sur puce (MPSoCs).

25

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Chapitre 2 : Concepts et outils de la vérificatiorformelle des circuits
numériques

1. Introduction

Certes, le célébre «bug » du Pentuim Il survenul@¥ au niveau de son unité de
division de virgule flottante, a fait perdre a In&r5 millions de Dollars (Mark, 1994).
Cependant, c’'est en grande partie « grace » ancietent que le monde de I'ingénierie des
systémes a vécu un bouleversement de ses techmiquasification. Si I'erreur du Pentuim
I na causé que des pertes économiques, dautmegleints aussi célebres comme :
I'explosion de la fusée ARIANES en juin 1996 (Arid996), le « bug » de la machine de
radiothérapie THERAC-25 causant entre 1985 et 1883écés de 6 patients (Lee¢ al,
1993), le crash répété d’avions tels que Airbust sies incidents catastrophiques dont les
conséquences sont plutdt humaines. Devant I'irsarfie des méthodes traditionnelles de
vérification et la complexité croissante des systemumeriques développés, la solution était
alors d'utiliser une vérification a caractére fotfntemme alternative complémentaire a la
vérification classique par simulation.

Nous présentons dans ce chapitre les conceptswigifi@ation formelle : ses fondements
et quelques uns de ses outils, en détaillant dameiere section I'outil formel choisi pour
notre travail. Dans notre cas d’étude, nous notg&saasons a I'application des techniques de

vérification formelle a des systemes multiprocesssur puce (MPSoCs).

2. La vérification formelle des systemes sur puce

2.1 Définition

La vérification formelle d’'un systéme ou d’un ciitcoonsiste en la preuve mathématique
gu’il se comporte conformément a un ensemble deibe$ormulés (Kropf, 1999).
2.2.Démarche globale

Indépendamment de la méthode de vérification,deait formalisation se fait en général
en deux grandes phases. La premiere consiste #iespéao modele formel du systeme a

partir d'un ensemble de besoins. La deuxieme pbagaréoccupe de vérifier les propriétés

26

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

modélisées. Ces propriétés modélisant par exemabsence d'un type d’erreur, sont

concrétisées par des formules logiques et doivemtriraer une compréhension de la

correction de ce systeme. Pour réussir cette dermpbase, il faut essayer de préciser au
maximum les notations informelles et d’identifies lhypothéses implicites. Cette phase inclut
aussi l'exploration des documents de spécificati@xpérimentation du systeme réel si

possible et enfin, les discussions avec les coaneptu systeme.

Les équipes de conception et de vérification foleneht des approches trés différentes
pour aborder le systéme. Par conséquent, un ingéde vérification formelle doit étre
prudent lors de son contact avec des conceptéues dioit pas étre tres influencé par « ce que
disent les concepteurs ». En fait, la tAche de epian n’'a pas vraiment de critéere de
correction. Le plus important pour les concepteassle fait que «le systeme tourne » en
ayant le moins de «bugs» ou d’erreurs dans sqgulémentation. Les ingénieurs de
vérification formelle, quant a eux, doivent rasstanke plus d’'informations afin de pouvoir

déceler des propriétés subtiles du systéme.

2.3.0bjectifs

La vérification formelle a pour principal but de nieer qu’un systeme ou plutét un modele
du systeme est correct. Un systeme correct signifiesystem exempt d’erreurs, appelées
aussi « bugs ». Pour des systémes critiques teldeguvoitures, les appareils médicaux, les
banques ou les avions, une propriété telle que delll’'absence de bugs est indispensable et
sa non-satisfiabilité peut étre fatale. Plusieype$ d’erreurs peuvent exister. On peut vouloir
prouver gu’un systéme ne se « plante » jamaiseant qu’il n’est jamais induit en un type
donné d’erreur (blocage, famine...). La vérificatimnmelle n’est donc réellement utile que
pour vérifier la non-existence d’erreurs dites itiques » ou encore I'existence inévitable de
situations souhaitables ou vitales. Par exemplgeriit tres intéressant de détecter de facon
formelle qu’'un systéme risque d’étre bloqué alarse gonformément a ses spécifications, ce
méme systeme ne doit jamais étre induit dans uleesiauation.

Des normes telles que la norme ISO/CEI 9126 (ISQ)é&é spécialement développées
dans le but de décrire les exigences qualité dysteme telles que sa capacité fonctionnelle,
sa fiabilité et sa facilité d'utilisation. D’ailles, depuis 1995, 'usage des méthodes formelles
est devenu une exigence imposée par les ITSEC rfiation Technology Security
Evaluation Criteria) et ceci a partir d'un certaimeau de sécurité.

27

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

2.4.Les types de formalisation

Il existe deux grands types de formalisation (Krof®99): la formalisation des

spécifications et la formalisation de I'implémerudat

2.4.1.Formalisation des spécifications

La spécification formelle d’'un systéme est une dp8on concise et abstraite de son
comportement et de ses propriétés. Elle doit d&dans une notation mathématique « ce que
le systeme est suppose faire » et non pas « comensysteme doit étre implémenté ». Donc,
la spécification formelle d’'un systéme se doit Béassez générale en éliminant tous les
détails relatifs a 'implémentation et qui sonttiles a ce stade.

La figure 11 illustre les deux grandes phases d®rimalisation des spécifications : la
génération et la validation. La génération se &ipartir des descriptions informelles du
systeme. Ces derniéres sont constituées souvetexte et de diagrammes. Il est assez
courant d’avoir des descriptions informelles gunbéent étre assez précise alors qu’une fois
considérées le point de départ de la formalisagsengévoilent plutét vagues, incomplétes et
mal organisés. La deuxieme phase présentée a fastmren la preuve de correction ou la
validation de la spécification générée. Pour yvarrideux alternatives sont possibles :
procéder par simulation du modele fonctionnel amitsbu vérifier formellement certaines

propriétés par rapport a la fiabilité ou la coreise du systéeme.

Génération

: Specification
Sformelle

Validation

Description
informelle du
systéme

Figure 11. Etapes de la spécification formelle

La formalisation des spécifications est une étage importante dans la conception d’'un
circuit. En effet, elle est le point de départ deté la conception et permet d’avoir une vue
assez abstraite et précise du systeme. Il estquai sa démarche semble étre simple.

Cependant, compte tenu de la qualité que peut desirspécifications informelles, le

28

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

processus de génération des descriptions formedeent tres difficile. En plus, I'étape de

validation est en réalité une étape délicate : el'part la capture de propriétés utiles au
systeme n’est pas immédiate, et d’autre part, @strpas toujours sir que la spécification
formelle décrit la totalité du comportement attenduqu’elle s’appuie sur des descriptions

informelles.

2.4.2.Formalisation de I'implémentation

La formalisation de l'implémentation d’'un systemensiste en la construction d’'un
modele formel de l'implémentation du systeme aipad son programme source codé en
VHDL ou Verilog. Elle se fait en deux étapes : tagquction de sa spécification formelle et la
preuve de sa correction.

Dans ce contexte, deux aspects sont trés importéatsiveau d’abstraction et la solidité
(soundnegsdu modele développé. Le niveau d’abstractionieyie niveau de détails dans
lequel on décrit le modele formel de I'implémerdati Le programme en code source
contenant tout ce qui concerne le systeme danmeggires détails, il faut alors savoir ne
modéliser que les parties dont on a vraiment beskim réalité, se lancer dans une
formalisation compléte de l'implémentation peutdencomplexe le modéle et par la suite
fastidieux le processus de vérification. Toutefdisfaut aussi savoir ne pas négliger des
détails de taille dont I'absence peut entraineildaent une modélisation erronée. Par
exemple, en modélisant un circuit au niveau dedepologiques (gate level), il serait
completement absurde de ne pas prendre en corigdéeadélai des portes. Enfin, il s’agit
ici de trouver un compromis entre ce qu'on souhadtdfier et le niveau de détail établi dans
le modele.

La vérification du modele formel de I'implémentaticommence par établir le lien entre
'implémentation et la spécification donnant airai nature du théoreme de correction a
établir. 1l s’agit d'un théoreme d’équivalence»>)] si I'implémentation et la spécification
décrivent exactement le méme comportement. C’esthnaareme d’implication-{) si la
spécification est partielle c’est a dire ne dégui¢é quelques propriéteés.

2.5.Avantages et inconvénients de la vérification foriee

Quand les aspects de la conception a veérifier sobtiles ou compliqués, seule la
vérification formelle est capable de donner un®nge compléte (Kawdt al, 2000). Grace a

ses notations mathématiques, ce type de vérifitaiopeut étre que concis et 'ambiguité n'a

29

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

hY

pas de place. Son principal atout est celui de g@uke concepteur a poser « la bonne
question » a un stade plus au moins avancé de Haeption du systeme verifié. Par

conséquent, la vérification formelle assure un es@imés rigoureux du systéme permettant
ainsi une livraison plus rapide et moins coltedsa!(1990). Enfin, les systemes soumis a
des tests formels ne peuvent avoir qu'un degréiatglifé plus grand que ceux testés par
simple simulation (Kropf, 1997).

Malgré les multiples avantages que peut avoir l#igation formelle du matériel, il faut
aussi étre conscient de ses limitations (Kropf,9)9&n réalité, il est impossible de garantir
par vérification formelle qu’un systéme est cormdans I'absolu c'est-a-dire « le zéro erreur ».
En outre, le processus de vérification peut étduilnen erreur a cause de spécifications
formelles ou informelles incompléetes voire erronéms encore par inconsistance dans le
modele d'implémentation. De plus, la portée dedafication formelle est toujours limitée a
la conception : elle ne permet de détecter qudaetes de conception (design faults) mais
jamais des fautes reliées a la fabrication du ptaaua son utilisation.

Une autre limitation de la vérification formelle nziste en [limpossibilité de
I'accomplissement de cette tache a l'intégralité&sgstéme. Quand on vise a appliquer ce type
de vérification a un systéme cela ne veut pasgliten cherche a démontrer formellement la
correction du systeme en entier. Souvent, la watifon formelle ne se fait que pour certains
composants. Il s’agit 1a de vérifier une propriéién modele de ce composant. La propriété a
vérifier ici est souvent critique. Malheureusememiéme les composants veérifies
formellement peuvent étre facilement induit en @rr@ar exemple, il suffit que le composant
vérifié recoive en entrée des données invalidepremenance d'un autre composant non

veérifié.

3. Un peu de logique

Les outils de vérification formelle sont toujoursnéiés sur l'utilisation de logiques. I
existe plusieurs logiques différentes. Parmi ellas,trouve la logique classique dont la
logique propositionnelle est une composante. Noasgmtons dans la suite quelques notions
sur la logique propositionnelle qui est souveriidae des démonstrateurs de théoremes. Par la
suite, nous aborderons brievement les logiques deslips qui constituent quant a elles la

base des vérificateurs de modéles.

30

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

3.1.La logique propositionnelle

La logique propositionnelle est I'une des logiques plus simples. Elle permet de
représenter de facon abrégée et non ambigué dedalités » qui sont souvent des
affrmations. La logique propositionnelle offre ausdes opérateurs de coordination
permettant de réaliser différents arrangements glusnoins complexes entre les variables
(tableau 5).

- Un petit exemple :une affirmation du type « Je suis étudiant » eptésentée par une
variablep dont la valeur ne peut prendre que les deux valewnai ou faux. Elle ne prendra la
valeur « vrai » que si je suis effectivement étntden ce moment. Dans le cas contraire, elle
prendra la valeur « faux ».

- Axiome : les axiomes constituent la base de la logique @itiponelle. Un axiome est une
expression qu’on assume étre un théoreme sansaptamt donner sa démonstration. Une
liste exhaustive d’axiomes est disponible dansd$at al, 1994).

- Théoréme : un théoreme est soit un axiome, soit la conclugsiame réegle dont les
prémisses sont des théoremes, soit une expressiinod démontre qu’elle est égale a un
axiome ou a un théoreme précédemment démontré h(2€€0). La démonstration d’un
théoreme est possible par un processus de dénvati@appliquant des regles appelées regles
d’inférence a certains axiomes. Puisque les axiame$a propriété d’étre vrai et on sait déja
que les regles d’inférence préservent cette prigpradors un théoreme est toujours évalué a
vrai. Il s’agit la d’une propriété fondamentale ptes théoremes (Kawt al, 2000).

- La syntaxe de la logique propositionnelle la logique propositionnelle posséde une
syntaxe bien déterminée. En utilisant cette syntdeast possible de traduire les phrases ou
les descriptions informelles telles que « Je stusliant et je travaille » en des axiomes du
type« p [7q » en représentant le fait que « je suis étudiararigvariablep et le fait que « je
travaille » pamg. La connexion entre les deux variabpest g est possible grace au connecteur
« [7» qui dénote« et ». La liste de tous les autres connecteurs utilisées da logique
propositionnelle est présentée dans le tableaaldedu 5

- Avantage et limite : il est clair que la logique propositionnelle pernaet traduire des
phrases informelles en fournissant un bon degrBstfaction. Cependant, c’est une logique
qui reste trés peu expressive puisqu’elle ne pepastd’exprimer des notions telles que le

temps.

31

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Tableau 5 Syntaxe de la logique propositionnelle

Opérateurs de | Equivalent en | Utilisation Nom de
coordination frangais I'opérateur
- Non —p Négation
Et pANg Conjonction
W On pVag Disjonction
= Implique p=q Implication
= Conséquence p =g Conséquence
= Inéquivalent pEG [néquivalence
= Exquivalent pP=gq Equivalence
Egal pP=gq Egalité

3.2.Les logiques temporelles
Il existe deux grandes catégories de logiques teslips : qualitatives et quantitatives.

3.2.1.Les logiques temporelles qualitatives

Les logiques temporelles qualitatives ont été ahiites par (Man, 1982) afin d’exprimer
des propriétés dynamiques des programmes seéqugeptigtoncurrents, telles quetoute
exécution d’'un programme commencant a un étatainitoit atteindre un état terminal ».
L'inconvénient principal de ce type de logique és=ir expressivité limitée de l'aspect
temporel. En réalité, elle exprime l'aspect «tempde facon trés abstraite : il n’est pas
possible par exemple de modéliser a quel instapr@duit un état ou un évenement, ni sa
durée, ni la durée qui le sépare d’'un autre éventeme

Il existe dans la littérature plusieurs logiquesperelles qualitatives. Parmi elles, on peut
citer CTL (Computational Tree Logic) (Clat al, 1986), FIL (Future Interval Logic) (Kut,
1994).

3.2.2.Les logiques temporelles quantitatives

La seconde classe de logique est constituée depisgtemporelles quantitatives (a temps
discret ou a temps continu). C’est une classe grdagles propriétés de la classe précédente
en permettant en plus d’exprimer le temps de fapgiicite. Ainsi, le temps est simulé par le
nombre entier de fois ou un état apparait danss@aeence (temps discret) ou par une
variable quelconque réelle (temps continu). MTL yK&990) et CTL*[DC] (Pandya, 2001)
sont des exemples de logiques temporelles quavesat

32

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

4. Les méthodes de vérification formelle

Il existe plusieurs catégories de méthodes permtettaffectuer la vérification formelle.
Dans ce qui suit, nous allons nous intéresser & quix 2 technigues de base : la vérification
de modeles et la démonstration de théorémes. Ntalsrans ainsi les principes, les
avantages, les inconvénients et quelques uns dis @latifs a chacune de ces techniques.
Les autres techniques existantes sont en genétgpednybrides combinant la vérification de

modeles ou la démonstration de théoremes avemldation numérique.

4.1.Les méthodes basées sur la vérification de modeles

4.1.1.Principe

La vérification de modéles (model checking) modetidune part le systeme a vérifier par
un automate a états finis (AFS), et d’autre pagrtgpriété a vérifier par une formule logique.
La vérification se base ensuite sur I'exploratian lebspace d’états de I'automate afin de
vérifier s'il satisfait ou non la propriété modéles

En pratique, la technique de vérification de moslédst réalisable de deux fagons:
I'équivalence de modéles et la veérification temperele modeles. La premiere technique
appelée aussi « equivalence checking » consistérifiev si deux descriptions matérielles
possedent des spécifications fonctionnelles éqemtes. Par opposition, la vérification
temporelle de modeles «temporel model checkingrifie si une contrainte temporelle,

exprimée dans une logique temporelle donnée, gigectée par une description matérielle.

4.1.2.Quelques vérificateurs de modeles

La diversité des algorithmes d’exploration de l&sp d'états du systéme a vérifier, a
donné naissance a une multitude de vérificateurnaldeles ou « model checkers ». Suivant
le type de la logique utilisée, on peut classemeedel-checkers en deux grandes catégories :
les model-checkers qualitatifs et les model-chexkeantitatifs. Nous présentons brievement
ici un exemple de vérificateur de chaque classes maus ne donnerons pas plus de détails
dans la mesure ou nous ne nous intéresserons yascaniques basées sur la vérification de
modeles dans la suite.

- Les model-checkers qualitatifs :un model-checker qualitatif se base sur I'utilisatdes
logiques temporelles qualitatives lors de la desiom du comportement du systeme et des

propriétés a vérifier. Un exemple de vérificateer dodeles qualitatif est SMV (Symbolic

33

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Model Verifier). Développé par K. L. McMillan a lhversité Carnegie-Mellon (McMill,
1992), SMV est basé sur les automates non tempotiggermet d’exprimer les propriétés a
vérifier telles que « ordre d’événement » et «intache » dans la logique CTL. A la fin de
la vérification, SMV indique en sortie si la prag@ considérée est satisfaite par le systeme
modélisé. En cas d’échec, il fournit un contre eplemBien qu’il est de type qualitatif et ne
donne pas une notion explicite du temps, SMV essicléré comme étant le langage complet

pour la description matérielle.

- Les model-checkers quantitatifs :pour vérifier une propriété de vivacité bornée yoet

« Toute requéte finira par étre satisfaite en au male 5 mn. pour un systeme, on a besoin
de model-checkers quantitatifs. Un vérificateur rdedeles quantitatif est basé sur une
logique temporelle quantitative. Il modélise le teyse par des automates temporisés ou
hybrides rajoutant des structures permettant deilealle temps.

Parmi les model-checkers quantitatifs, on peut €@&VALID qui permet la vérification des
formules exprimées en CTL [DC] (Pandya, 2001), URRAUPPAAL) qui est un ensemble
d’outils pour la vérification automatique des piépgs de slreté et de vivacité bornée, des

systemes temps réel.

4.1.3.Avantages et inconvénients du model-checking

Grace a la méthode basée sur la vérification deéefesd il est possible de couvrir
entierement I'espace d’états du systeme. Cetteecture compléte de I'espace d’états n’était
pas possible par simulation classique. Ainsi, cettdnique s’avére beaucoup plus efficace
que la simulation classique. De plus, la vérifimatide modéles a l'avantage d'étre
automatique et rapide. Une fois, le model-checketancé sur la vérification de la propriété
modélisée, il n’est plus possible de I'arréter juagce que soit il donne un contre exemple
montrant la non-satisfiabilité de la propriétét spi'il admet que la propriété est vérifiée.

Toutefois, la technique de vérification de modelgsésente aussi beaucoup
d’'inconvénients. En réalité, la vérification de mbbs n’est autre qu’une simulation
exhaustive de I'espace d’états du systeme a l@di@gorithmes astucieux. Donc, une fois que
cet espace d’états devient tres grand, les algoeshd’ exploration montrent leurs limites
entrainant ainsi une limitation majeure pour ceetge technique. Ce genre de probléeme est
plus connu sous le nom du probleme d’explosionatkétDes solutions potentielles a ce
probleme consistent en I'utilisation des diagrammiegiécision binaire (BDD) (Bry, 1986),

34

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

ou encore en la réduction modele a vérifier derag le restreindre aux parties concernées

par la propriété a vérifier (Bet al, 1998).

4.2.Les méthodes basées sur la démonstration de théesem

4.2.1.Principe

Les méthodes basées sur la démonstration de thésr@nt pour but de démontrer qu’un
énoncé est la conséquence logique d’'un ensemhieriés (les axiomes et les hypothéses).
Tous les énoncés doivent étre formulées dans ¢aignlogique du démonstrateur. Le moteur
de preuve tente ensuite de démontrer la conje@upartir des axiomes, des regles, des
définitions dérivées a partir des lemmes intermgeBaet des hypothéses. Le processus de
démonstration est basé sur l'utilisation de techesqgtelles que de la déduction logique, la

réécriture et encore la récurrence...

4.2.2.Etude de quelques démonstrateurs de théoremes

Deux cent dix-neuf outils différents de démonstratde théorémes sont énumérés par
Freek Wiedijk (Freek) dans une liste intituléeoverview of systems implementing
mathematics in the computer #armi ces outils, quatre-vingt ont été vérifieangl la
recherche de (Bol, 2001). Nous nous sommes prilecigant inspiré de cette recherche pour
présenter quelques outils de démonstration de éh@s. Un récapitulatif de ces
démonstrateurs est illustré au tableau 6.

- Isabelle : c’est un démontreur de théoreme générique popudéveloppé a l'université de
Cambridge et au TU Munich (Isabel). Les logiguedstaxtes comme Isabelle/HOL
fournissent un environnement de démonstrateur deréime prét a étre utilisé pour des
applications de taille. Isabelle peut égalemenviseomme chassis pour un prototypage
rapide de systemes deéductifs. Il est présenté awec grande bibliotheque comprenant
Isabelle/HOL (logique classique d'ordre supérielsdpelle/HOLFS (Logique de Scott pour
des fonctions calculatoire avec HOL), Isabelle/F@igique du premier ordre classique et

intuitive), et Isabelle/ZF (ensemble de théorieZdemelo-Fraenkel au dessus de FOL).

- PVS :T'outil PVS (PVS) est un prouveur pouvant étreisélpour réaliser de la vérification
du matériel (Owreet al, 1994). Il a montré son efficacité lors de sompliaption a des
systemes industriels assez complexes tels querifécaton d’'un processeur destiné a étre

embarqué dans des avions (Miléral, 1995) et I'analyse d’'un switch ATM (Rajan, 1997).

35

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

- ACL2: ACL2 (A Computational Logic for Applicative CommddSP) est a la fois un
langage de programmation, un langage de spécditdasé sur GCL (GNU Common Lisp)
et une logiqgue mathématique formelle permettantiéanonstration de théoremes semi-
automatique (ACL2). Le systéme ACL2 est considémmoe I'un des démonstrateurs les
plus fiables. En 2005, on lui a décerné « 'ACM t8@ire Award » (ACM, 2006) le nommant
comme le plus efficace des démonstrateurs pouréidication des systémes logiciels et
mateériels critiques (« for pioneering and enginmegea most effective theorem prover (...) as a
formal methods tool for verifying safety-criticaduldware and software »). L'outil ACL2 sera

abordé avec plus de détails dans la section 4 dbaystre.

- ZIEVES : créé par ORA Canada lors d’'un projet débuté en 19@6es), Z-eves est un
logiciel gratuit basé sur un systéeme automatiquepieive appelé NEVER. Il réunit la
puissance du démonstrateur Eves (ORA, 1999) avéanigage de spécification Z (Spiv,
1992). D’'un apprentissage relativement facile, sea I'avantage de tourner sur les deux
plateformes Unix et Windows. En plus, ses preuves $a théorie des ensembles présentent

un bon degré d’automatisme.

- Coqg: Cog est un démonstrateur de théoremes (Coq). thgteminsi d’énoncer des

spécifications de programmes sous forme de thémremsthématiques et de développer
interactivement les preuves formelles de ces tmé@séou spécifications au moyen de
« tactiques ». Coq integre en plus un langage agrammation fonctionnelle. Il permet aussi
la communication avec des logiciels externes teks lgs systemes de calcul formel ou les

prouveurs automatiques.

Tableau 6.Récapitulatif de quelques démonstrateurs

_) Langage de)
Outil | Type de logique Plate forme Site web
base
) . http://pvs.csl.sri.com/
PVS classique Unix -
) http://www.cl.cam.ac.uk/Research/HVG/Isabel
classique et)) Standard
Isabelle| Linux, Solaris le/
intuitionniste ML
Unix,
_ Common | http://www.cs.utexas.edu/users/moore/acl2/acl
ACL2 - Windows,)
) Lisp 2-doc.html
Macintosh

36

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

))) Common http://www.ora.on.ca/z-eves/welcome.htm
Z-eves classique Unix, Windows)
Lisp
))) Objective o
Coq constructive Unix, Windows CAML http://pauillac.inria.fr/coqg/

4.2.3.Avantages et inconvénients du theorem-proving

Capable de démontrer des propriétés algorithmigoasplexes, la technique de
vérification par démonstration de théoremes a prason efficacité dans le domaine de la
vérification des composants matériels. Elle s’apmi a tous les niveaux d’abstraction et elle
est particulierement efficace a un haut niveau stfalstion pour des systemes tres
complexes (la taille des données n’a plus d'impudd et ceci indépendamment du type du
systéme ou du circuit considéré (séquentiel ou caatdire).

Cependant, le principal inconvénient des démoreitratde théorémes est leur faible degré
d’automatisme. En réalité, l'utilisateur doit nésaisement assister I'outil de preuves lors des
démonstrations non triviales, et les démonstratioefiétant souvent des propriétés
complexes, risquent d’étre lentes et difficiles. @mque dans ce contexte le probléme du
« chapeau mexicain » repris a la figure 12. Pouveara démontrer le théoreme final, cela
nécessite souvent une énorme quantité de lemmesnidiaires qui sont en général non
réutilisables. De ce fait, pour une grande majodiégé démonstrateurs, l'interactivité entre
I'utilisateur et I'outil peut nécessiter un tempapprentissage assez long.

De plus, la majorité des démonstrateurs soufframt grobleme d’incomplétude. Ainsi, si
une preuve de la formule proposée existe alorerlaule est un théoreme. Dans le cas ou la
preuve échoue, le démonstrateur est incapable addedéue la formule non démontrée n’est
pas un théoréme. Néanmoins, l'idéal serait d’ades démonstrateurs complets ou on peut
affirmer qu’une formule a démontrer est un théor&meetournant la preuve correspondante

ou décider de la non-existence de la preuve.

Théoréme final
Lemmes spécifiques

Base de lemmes
réutilisables

37

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Figure 12 Chapeau mexicain

4.3.Le choix de la méthode de vérification formelle

Le choix de la méthode de vérification formelletdas faire principalement en fonction de
la nature du probleme de vérification. Dans (Krd®97), T. Kropf donne tout un diagramme
de décision permettant de sélectionner I'appro@hedification la plus appropriée suivant le
type de circuit en question. Un chapitre est caspour chacune des techniques identifiées.

De facon similaire, le choix de [loutil (model-ctkec ou theorem-prover) est
principalement guidé par le type de systemes cuipporte (temps réel ou non pour les
model-checkers) et par le type de propriétés queé mpedéliser I'outil. En réalité, il n’est pas
toujours possible de tout représenter dans un rratabalker et les propriétés a vérifier varient
entre l'atteignabilité, la sOreté, le non-bFlocagfela vivacité. La méme limitation peut
survenir aussi pour les démonstrateurs. Le fait sdogique se limite a une logique de
premier ordre peut amener a convertir tout ce qgiti&re exprimer dans une logique d’ordre
supérieur a une logique de premier ordre. Dans$eoti cette conversion induit a une perte
dans les concepts qu’'on souhaite formuler alagstilobligatoire de choisir un autre outil plus
expressif tel que HOL (HOL) ou PVS (PVS). Les aetede performance tels que le temps
consomme ou le blocage lors de la vérification vpatiaussi étre des criteres déterministes.

Dans notre cas d’étude, le but étant le développemiein modele formel des réseaux
multi-étages dédiés aux MPSoCs, nous avons aldas ppur une méthode basée sur la
démonstration de théorémes. En effet, nous soutsaitaduire dans une notation formelle les
spécifications informelles de ce type de réseaux ém tenant compte des contraintes des
systémes sur puce. Autrement dit, il s'agit de faliser des spécifications afin de vérifier
ensuite une ou quelques propriétés sur le modéle la section 2.4.1.) D’autres
considérations ont di aussi guider ce choix. Eésnt illustrées dans le chapitre 4. Dans ce

qui suit, nous détaillons I'outil choisi pour notravail de formalisation.

5. Le systéme ACL2

Dans cette partie, nous exposons l'outil de dématish de théoremes ACL2 que nous

avons choisi dans le cadre de notre travalil.

38

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

5.1.Présentation d’ACL2

ACL2 ou « A Computational Logic for Applicative Conon LISP » est la réunion d’'un
langage de programmation fonctionnelle, une logionahématique et un démonstrateur de
théoremes au sein d’'un méme outil. La logique AQ@Igst autre qu’un sous ensemble du
langage de programmation Common LISP, alors quiteonstrateur de théorémes est une
version industrielle puissante du démonstrateurthd®remes de Boyer et Moore Ngthm
(Kauf et al, 1996). ACL2 a été déeveloppé dans le principaldrurépondre aux difficultés
trouvées par les utilisateurs de Ngthm en appliea dernier a des projets formels de
grande échelle. Comme son prédécesseur, ACL2 aust congcu a Austin au Texas. Sa
premiére version a vu le jour en 1989 et elle aé&déisée par R. Boyer et J. Moore. En 1995,
Moore et Kaufmann ont pu donner naissance a laipremersion publique d’ACL2.

Le démonstrateur d’ACL2 est un programme qui preme:ntrée un théoreme potentiel et
essaie de trouver la preuve mathématique corresptgadUne preuve est définie comme une
structure finie montrant la dérivation du théorémgartir des axiomes. ACL2 ne crée pas une
preuve réellement formelle. Il vérifie plutbét que preuve en sortie peut en principe étre
transformée en une preuve formelle. Lors de laywele démonstrateur se réfere au monde
logique qui est constitué essentiellement d’axigmds définitions et de théoremes
préalablement démontrés.

Selon (Kaufet al, 2000), les théoremes a démontrer par ACL2 doieédtrd a la fois
intéressants et difficiles a prouver. Autrements getits théoremes de valeur et non trivial
traitant des parties de systémes trés compliqués.

L’'une des difficultés majeures que rencontre liséiteur ACL2, notamment le novice, est
de procurer de l'aide a un démonstrateur ayantuEhars d’une preuve. Les développeurs
d’ACL2 sont conscients de cette difficulté. Poulacéls ont essayé de traiter cet aspect en
fournissant toute une méthodologie pour abordefladen efficace les démonstrations (Kauf
et al.g 2000).

5.2.La démarche dans ACL2

Afin d’accomplir la vérification formelle d’'un sy&sine dans ACL2, l'utilisateur doit suivre
la démarche illustrée par la figure 13. Il doit ralcommencer par spécifier le modele
fonctionnel du systéeme qui est représenté par destibns définies dans le langage de
programmation fonctionnelle d’ACL2 (sous ensemble thngage Common Lisp).

39

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

L'utilisateur a alors la possibilité de simulerredel fonctionnel ainsi construit a travers un
environnement d’exécution (execution environmerbans une deuxieme phase, la
vérification requiert de traduire les théoremegoised definitions conjectures) concernant le
modele dans la logique du démonstrateur. Enfiatilisateur peut proceder a la preuve de ces
théoremes par le biais du démonstrateur fournieofttm prover). Au cours des
démonstrations, ACL2 fait appel a des regles (Judesckées préalablement dans sa base de
données (database). En plus, il doit étre guidé ymer stratégie spécifique inspirée par
I'utilisateur. Une fois démontré, un théoreme pdite converti sous le contrble de
I'utilisateur en une regle (rule generator) quinaattre a jour le monde logique. Si la preuve
échoue, l'utilisateur doit avoir recours a dewedatives : reformuler le théoreme ou donner
des guides additionnelles (proposed advices) auodsimateur et ceci en examinant les
tentatives de preuves ayant échoué. Les guidetadutlles sont des conseils formulés sous

la forme de lemmes intermédiaires.

database
proposed definitions
U conjectures and
ser advice
= rules
proofsT
execution ~«—| theorem rule — rules
environment [] prover generator
—
definitions,
forms and theorems
values ana,
advice

Figure 13.Démarche générale (ACL2)

- Les mécanismes de preuve ACL2 utilise des techniques variées pour démontes

théorémes de premier ordre. Parmi ces techniquesoave la réécriture, la simplification
par la substitution répétée de « equals for egyales procédures de décision, l'induction
mathématique et d’autres techniques de preuvesined@s pour des fonctions définies

récursivement et pour des objets construits denfagguctive.

40

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

- Les propriétés du démonstrateur :comme la majorité des démonstrateurs de théorémes,
ACL2 est interactif : il doit étre guidé par I'uiateur. Ce dernier est le seul responsable de la
stratégie utilisée dans une preuve. L’aspectactanté dans ACL2 impose que l'utilisateur
soit capable de comprendre I'intégralité des tardgatde preuves pour pouvoir fournir I'aide
nécessaire au démonstrateur. ACL2 est aussi autpraatine fois il est lancé sur une preuve
alors il n'est pas possible de l'interrompre. Cajaati, des preuves directes sans interactivité
avec l'utilisateur ne sont valables que pour desitbmes simples. Pour des problemes
compliqués, les preuves directes sont impossiBledait, le démonstrateur de théoremes se

trouve limité par des considérations pratiquegsedjue le temps de calcul.

5.3.Quelques principes dans ACL2

5.3.1 Le principe de définition

Le langage de programmation fonctionnelle d’ACL2 cantient pas les structures de
contrle itératives telles que for, foreach, whild.a programmation des fonctions se base
alors sur les définitions récursives pour remédieze manque. Dans ACL2, une fonction
récursive ne peut étre admise que si pour chacsiageels récursifs qu’elle contient, on peut
trouver un argument ou une combinaison d’argumeoi® la mesure décroit selon une
relation bien fondée.

Un exemple de relation bien fondée est « < » sulomaine des entiers naturels. ACL2
utilise EO-ORD pour admettre une fonction récurgiyant des arguments de type entier. De
plus, ACL2 utilise une mesure appelée ACL2-COUNTpordonner les termes de méme
type entre eux. ACL2-COUNT peut étre une mesuseagvidente comme dans le cas des
entiers, ACL2-COUNT est la valeur d'un entier, cand le cas des listes, la mesure vaut la
longueur d’'une liste. Cependant, dans le cas ogelsure n’est pas immédiate, il faut fournir

de l'aide a ACL2 en lui indiquant la mesure qulidutiliser.

5.3.2.Le principe d’induction

Le principe d’'induction généralisant le principe eurrence, se base sur la notion de
relation bien fondée. Ainsi, la propriéea démontrer est vérifiée pour le cas de base de
sachant qua est la variable d’induction. Ensuite, on suppaseRjest vrai pour un élémemt

dont la mesure est inférieure a cellexdd on essaie de montrer gaest vrai pou.

5.3.3.Le principe d’encapsulation

41

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Le principe d’encapsulation est un principe avashags ACL2. Il permet d’'introduire des
fonctions ne possédant pas de définitions expdici@e sont des fonctions définies par un
ensemble de contraintes qui sont exprimées pathéesemes. Il est obligatoire de fournir a
la commande « encapsulate » des fonctions localgselées aussi fonctions témoins, qui
vérifient les contraintes. Les fonctions témoinasarvent la cohérence de la logique lors de

I'introduction de symboles de fonctions encapsulées

5.4.Exemples de travaux réalisés avec ACL2

ACL2 a prouveé réellement son efficacité quand été déployé pour produire des preuves
pour des composants de systemes trés compliqeé&guiel:
- le circuit arithmétiqgue élémentaire de calcul thot du processeur AMD Athlon :
vérification que la description RTL de ce circ@specte le standard IEEE correspondant
(Russ, 1998). Le méme travail a été effectué sprdeesseur AMD K5 (Mooret al, 1998),
- le DSP de Motorola : vérification qu’'un modéle noiarchitectural de ce DSP implémente
un microcode donné et que le microcode spécifiquié a partir de la ROM implémente
certains algorithmes des DSP (Beial, 1999),
- le compilateur javac de Sun: vérification que |V bytecode » produit par ce
compilateur pour de simples classes, implémentlegionnalités désirées (Moore, 2003),
- le démonstrateur Ivy du National Argonne Labs ;ifigation de la propriété de
« soundness » d’'un programme Lisp qui vérifie lesupes produites par ce démonstrateur
(Kauf et al, 2000)

6. Conclusion

Les industriels des systemes sur puce sont desplpfus conscients du danger et du risque
qu’il peut y avoir en négligeant I'étape de veation lors de la conception de leurs produits.
L’intégration des meéthodes formelles dans leur eyde développement se fait donc
progressivement. Les techniques hybrides combinamutdel-checking et simulation
numérique et la technique de vérification de maiske trouvent largement utilisée par ces
industriels. Actuellement, on cite méme des praddé vérification formelle produit par des
entreprises géantes de la microélectronique telde@z, Synopsis, IBM et Intel. En
revanche, vu les difficultés d’apprentissage quesgmte la technique de démonstration de

théorémes, il est moins fréquent d’entendre pdtledustriels utilisant cette derniere.

42

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Dans le cadre de notre travail, nous avons chasitrdvailler avec la technique de
démonstration de théorémes et ceci afin de vériiamellement les réseaux multi-étages
dédiés aux MPSoCs. Dans le chapitre suivant, noésepterons une étude détaillée des

réseaux multi-étages (MINs).

Chapitre 3 : Etude des réseaux multi-étages dédiésix MPSoCs

1.Introduction

Les réseaux multi-étages dénotés MINs pour Mugiesstaterconnection Networks, ont été
frequemment utilisés au sein des systemes mulggemtrs classiques, ainsi que dans les
commutateurs du réseau ATM.

Dans ce chapitre, nous présenterons les réseautx-étages : leur architecture, leurs
propriétés et leur technique de routage. Nous sl@mparticulier insister sur une sous-classe
tres intéressante de ces réseaux formeés par l#iddba@lta. Nous dresserons notamment un

résume des différentes permutations possiblesldarielta MINSs.

2. Architecture des réseaux multi-étages (MINS)

2.1. Les réseaux statiques vs les réseaux dynamiques

Les réseaux statiques sur puce possedent des fix@ss entre les processeurs et un
algorithme de routage prédéterminé. Le réseau pgoint de la figure 14 est un exemple de
réseau statique. Ce type de réseaux est appropug des applications structurées dans
lesquelles les patrons de communication sont pbdegs Dans tous les autres cas, le fait
d’avoir un réseau fixe peut étre désavantageux.eRample, pour des applications non
structurées demandant de la flexibilité (e.g. @ntes temporelles variables sur différents
processus), il serait plus intéressant d’avoir éseau adaptable aux besoins dynamiques en
communications. Pour ce faire, les noeuds de cadeutoivent plus étre reliés de facon

permanente.

43

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Figure 14.Réseau point a point

Dans un réseau dynamique, il y a plutbt un «comteut global » (réseau de
commutation formé de plusieurs commutateurs) liemdifférents processeurs, ce qui permet
de configurer de facon dynamique les liens diremitre les processeurs c'est-a-dire la
topologie du réseau. Aprés que les commutateurésau de commutation soient activés, un
ou plusieurs liens directs existent entre les neel@ctivation des commutateurs correspond
donc, a la fois, a la formation d’un réseau adags communication désirée et au routage du
ou des messages.

Les réseaux dynamiques peuvent étre a un étagelosiaurs. On appelle les réseaux a un
étage réseaux « Crossbar » (figure 15). Le résdanossbar » est caractérisé par une bonne
performance. Toutefois, son nombre de liens essialevé que celui d’'un réseau point a
point. C'est un nombre qui devient excessif pous déseaux de grande taille. Pour les
réseaux a plusieurs étages ou multi-étages dénatss MINs (Multi-stage Interconnection
Networks), on compte plusieurs colonnes de comrautatqui sont reliés entre eux et avec
les noeuds de calcul. Les MINs se situe entre femexité minimale des réseaux en bus et la
connexité maximale des réseaux de commutation ciedkei. Ces réseaux seront abordés avec

plus de détails dans le reste de ce chapitre.

switches

processeurs /

]
Tt —l]
—]

L

mémoires

Figure 15.Réseau crossbar

44

Développement d’'un modéle formel des MINs dédiésMBSOCs

Maissa Hleu

Tableau 7.Comparaison de quelques topologies

Propriété Bus Crossbar| Multi-étages
Vitesse basse elevee elevee
Codt bas élevé moyen
Fiabilité basse élevee élevée
Configurabilité élevée basse moyenne
Complexité basse élevée moyenne

Le tableau 7 compare trois topologies parmi les gapulaires au moyen de quelques
propriétés intéressantes. On remarque que surrdés ditées, les réseaux multi-étages
présentent les critéres les plus intéressants vitlesse et une fiabilité élevées avec un codt

moyen. Dans ce qui suit, nous allons nous intéreksprés a ce type de réseaux.

2.2. L’historique des MINs

Les réseaux multi-étages sont utilisés depuis eangs dans les systemes multiprocesseurs
pour connecter des processeurs aux modules mém@es et al, 1983) (Pfiset al,
1985). lIs sont par exemple fréquemment utilisésdEs machines paralléles tels IBMSP
(Stunet al, 1995) et CRAY Y-MP (Cheat al, 1986).

Les MINs de type banyan ont en plus servi poulis&ales interconnexions a l'intérieur
des commutateurs ATM (Zegu, 1993) (Gitcal, 1991). lIs étaient par exemple proposés
pour le réseau Broadband ISDN (B-ISDN). Dans ughitacture multi-étages, le switch n’est
plus formé d’'un seul étage mais de plusieurs. laggipts en provenance du réseau passent a
travers les différents étages composés de commugafswitches) élémentaires. De cette

maniére, le switch peut profiter d’un certain degeéparallélisme.

2.3. Formalisme de description des réseaux multi-étages

Un réseau multi-étagdéxM est un réseau d’interconnexion dynamique rel\aantrées a
M sorties et construit par des commutateurs detil h Ces commutateurs sont ordonnés
en étage$Stg;, Stqq-1),...,St@) interconnectés par des étages de connex@nSq.1y...,G,Co).
Ces derniers sont réalisés grace a des permutafibres permutation est en général une

permutation sur les bits formant I'adresse d’'un dceu

45

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

N nodes N nodes
e Cau Cuz c, c,
— e~ R — — 1 —
—e —— IOx2 -T— - Ox2 —1—2 o— —s o DxD —t—e i

|

—t SE

— HEE— — — HE I -
Stg., Stg, Stg,, Stg, Stg,

Figure 16. Architecture de MIN générique

La majorité de MINs utilisés sont de taileet de degré. On dit que ce sont des MINs
(N,r) ou N et M sont égaux et les commutateurs sont de degtéa figure 16 illustre
I'architecture d’'un MIN génériqu&xN utilisant des crossbars de degré 2x2. Toutefbis, |
reste toujours possible de travailler avec des M8\ queN et M sont différents. Ainsi, 9\
strictement supérieur M, des commutateuisxb aveca supérieur & (a > b) seront utilisés.
Ces commutateurs sont appelés des commutateusndentration (concentration switches).
Dans le cas ou on M est strictement inférieur &, on utilisera des commutateurs awec
inférieur ab (a < b). De tels commutateurs sont appelés des commusatieudistribution
(distribution switches). Le Delta MIN de la figut& est un MIN de taill®& égal a 6 utilisant
des commutateu@x3sur son premier étage.

0 0 1
1 1 1
2 2 2
3 3 3
4 4 4 |
5 5 5 & 3

Figure 17.Un Delta MIN de taille 6

46

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

2.4. Classification des MINs

Il existe divers critéres de classification deseaésx multi-étages (Szyet al, 1994). En
effet, on peut distinguer plusieurs classes de MilNgant les types de commutateurs utilisés
et / ou les types de permutation. Avant de présdmtelassification choisie pour les MINs, il
est important de commencer par explorer quelquigsititns. Un réseau multi-étages est dit :
- banyan :s'il offre un chemin unique entre n'importe quedatrée et n'importe quelle
sortie. Il est appelé aussi « unipath network ».

- uniforme :si tous les commutateurs d’'un méme étage sont&toentegre r.

- carré ou « square »si les étage¢Stg;, Stqg-1),...,St@) sont constitués de commutateurs
du méme degré On 'appelle aussi MIN de degré

- rectangulaire :c’est un MIN ayant le méme nombre d’entrées esaléies c'est-a-dirdl
est égale M.

- bloguant: s’'il n'est pas toujours possible d’établir une wexion entre un couple
d’entrée-sortie méme lorsque la sortie en questiest pas en cours d’utilisation.

- non bloquant :Si de toute entrée inactive il existe toujourscliemin vers toute sortie
inactive. On peut donc effectuer n'importe quele¥nutation en cours d'exécution. Un

exemple populaire de réseau sans blocage eselauée Clos.

MINs

Non-Banyan BaWyaﬂ

Non-Uniform Uni]fom Non-nLform Onif

Hon-Square) | | on:Suare) | |
Nor-Square 3quare | Non-Squaze Suare

Non-Delta Delta

>
—s
=

Non-Delta Delta Non-Delta Delta

Figure 18.Classification topologique des MINs

a7

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

La figure 18 représente une classification topaogides MINs. En réalité, un MIN peut
posséder ou non la propriété banyan. Dans un MIiyda non uniforme (Banyan Non-
Uniform), il existe au moins un étage renfermarg a@mmutateurs de degré différent. Donc,
il est clair que ce type de MIN est non carré (NEzuare). Les MINs banyan peuvent avoir
ou non la propriété Delta. C’est une propriétédagdrit une sous-classe importante de réseaux
banyans appelé les réseaux Delta.

Les MINs qui présentent de multiples chemins etdtge paire de source-destination
forment la classe des MINs non banyan. lls ontdidgage d’étre tolérants aux fautes mais ils

sont généralement plus colteux et plus complexatider que les MINs banyan.

2.5. Construction d’'un réseau MIN

Une permutation est une application (mapping) bijed\:N ou chacun desl éléments
d’entrée (source) est reli€¢ a un et un seul Ne®léments de sortie (destination) et
réciproquement. En assignant & chaque élémentréént de sortie une étiquette ou adresse
entre 0 et N-1, la permutation peut étre définie e modification de I'adresse de chaque
élément d’entrée pour produire I'adresse de I'élénde sortie correspondant. En général, on
utilise une adresse binaire et la permutation spoBad a une opération sur les bits formant
I'adresse. Dans un réseau MIN, les liens a chatpgeéet a la sortie sont agencés en fonction
d’'une permutation parmi plusieurs types standares différents types de permutations

utilisés dans les MINs seront détaillés plutarctawrs de ce chapitre.

2.6. Propriétés d’'un réseau MIN

Le réseau d’interconnexion multi étages possedprigwiétés d’étre :
—Dynamique et réarrangeabldl permet plus d’'un chemin pour établir uned@ entre une
entrée libre et une sortie libre.
—Tolérant aux panneson peut établir tous les chemins méme avecldeage d’'un
commutateur au niveau de chaque sous-réseau cpmgtitue.

—Efficace et plus pratique et moins colt@axir augmenter le nombre de processeurs.

2.7. Les réseaux Delta

48

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

2.7.1. Définition

Les réseaux Delta proposés par Patel (Patel, X#8it construits a I'aide de crossbhaxs.
La propriété Delta est définie comme suit : on giésiparO; (i= 0,1,... ,b-2 'output d’'index
i d’un crossbar dans un MIN, si un input d’'un cr@sstie I'étagg est connecté a I'outp@;
d’un crossbar de I'étagel, alors tous les autres inputs de ce crossbar aioétee connectés
a I'étage précédent en des outputs de crosshans laya@éme indicé De fagcon générale, on
peut dire qu'un réseau Banyan est un réseau Datiasses étages ont la propriété Delta.

La figure 19 illustre la propriété Delta sur unertpm d’'un réseau MIN. On note que
I'input OO0 du crossbar 3 est connecté a un output d’'indide I'étagg-1. La propriété Delta
exige que tous les inputs du crossbar 3 soientamés a I'étaggl en des outputs ayant le
méme index0. Ce qui est le cas puisque l'inpytdu crossbar 3 est connecté a un output

d’'index 0 de I'étagg-1.

ip ag o 1l og
Crossbar 1] Crossbar 3
f i\ u Q]
ip ag ip op
Crossbar 2) Crossbar 4
i 01 _ iy o
Stage j-1 Stage j

Figure 19.lllustration de lapropriétéDelta

2.7.2. Propriétés des réseaux Delta

Les réseaux multi étages de type Delta ont degigtép tres intéressantes :
- une connexité moyenne&n nombre de commutateurs de I'ordreNdegN qui reste plus
faible queN? pour les réseaux matriciels,
—un acces total les types de permutations utilisées pour cairsties étages de connexion,
doivent garantir l'acces total au réseau. Ainsir pme configuration correcte des
commutateurs a chaque étag@nporte quelle entrée doit étre capable d’attemad’importe
guelle sortie
—un routage simple un routage distribué qui se fait en fonction’ddresse de destination et

ceci indépendamment de la source,

49

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

—une équivalence topologiquél a été prouvé dans (Arga, 1983), (Wuakt 1980) et (Coll,
2002) que tous les MINs Delta sont équivalents dintpde vue topologique. Il suffit de
réordonner les positions des commutateurs sansreotep connexions pour passer d’un

réseau a un autre.

2.7.3. Panorama des réseaux Delta

Plusieurs types de réseaux Delta sont définis ewtif;n des types de permutations
utilisées. Il existe plusieurs formes (types) deestix Delta, dépendamment de leurs
connexions. Dans ce qui suit, nous détailleronDielsa MINs les plus utilisés ainsi que les
réseaux inverses correspondants (reverse). Poeniold’'un réseau inverse, il suffit de
regarder le schéma du réseau original de gaucheit& @u juste inverser la numérotation
adoptée.

Les réseaux présentés sont de talllet constitués dd étages de commutateurs de deyré
chacun. Nous adopterons la numeérotation utilisées tafigure 16.

- Le réseau Omégasa connexiolty utilise la permutation identité qui ne produit aucune

permutation, alors que toutes les autres connexiblsent la permutation « perfect shuffle »

o . Cette derniere consiste en diécalage cyclique de tous les bits de I'index d’pasition
vers la gauchgformule 3-1). Ainsi, le réseau Oméga est décrith@matiquement par la
formule (3-2). La figure 20 illustre un Oméga (26,2

k
o (X1 Xn2...X%0) = Xn2 ... X X0 X1 (3-1)

Définition 1. Modéle de connexion du réseau Oméga

Pour 1<i<d, Gzak
Pouri=0, =A (3-2)

50

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

\

ﬂ"f\/— --
:-thzi.il’ O-I o" [
iy

Figure 20.Un réseau Oméga (16,2)

- Le réseau Flip il est considéré comme I'image miroir du réseau Qende réseau Flip

utilise la permutation inverse du « perfect-steuffl Dans ce case décalage cyclique est
-1
effectué versla droite et appelés © (formule 3-3). Le modéle de connexion du réseap Fli

est décrit par la formule (3-4).

-1
o5 (X1 Xnz2...XX0) = X0 X1 Xn2...% X0 (3-3)

Définition 2. Modele de connexion du réseau Flip

Pour 0<i<d-1, G=¢"
Pour i=d, G=1
(3-4)

- Le réseau Butterfly c’est un réseau qui utilise la permutation identigd premier étage
et en sortie et la permutation « butterfly » daosstles autres étages. La permutation
« butterfly » estun échange entre 1€"° bit et le bit 0 Elle est par la formule (3-5). Un
exemple de réseau Butterfly est illustré par largg21. De facon générale, le réseau Butterfly

est défini par les permutations présentées daéfilaition 3.

k
B (Xn1 Xn-2ee X1 Xi Xic1 oo XIX0) = Xn-1 Xn2evw Xie1 X0 X1 .o X1 Xi. (3-5)

51

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Définition 3. Modéle de connexion du réseau Butterfly

Pouri:d,Q=ak

Pour (ki<d-1), G= R"
Pour i=0, G, R
(3-6)
- Le réseauReverse Butterfly le réseau Reverse Butterfly qui n’est autre qumalge
miroir du Butterfy,est décrit par la définition 4.
Définition 4. Modéle de connexi;)n du réseau reverse Butterfly
Pour i=d, Cy=Ro"

Pour (]5 i< n-l), G= B(d-i) “
-1

A

L Pouri=0, @=o"

3-7)

Figure 21.Un réseau Butterfly (16, 2)

- Le réseau Baselineil est définie a l'aide de la permutatidn. Elle consiste erun
décalage cycligue d’'une position vers la droites der1l) bits les moins significatifde

52

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

I'index (formule 3-8). La figure 22 illustre un exple de Baseline (8,2). Ainsi, le réseau
Baseline est défini par les permutations suivadésts formule (3-9).

k
Oi (X1 Xn2eoo Xe1 Xi Xi1 oo X1X0) = Xnd Xn2... %41 X0 Xi X1 oo X1 (3-8)

Définition 5. Modéle de connexion du réseau Baseline

g
Pouri=d, g=1

{ Pour (1<i<d-1),G= 5ik

Pouri=0,G=1

\
(3-9)

- Le réseau Reverse Baselindl:est I'image miroir du Baseline. Il utilise aborla
k Kokt
permutation inverse d& appelé®; . 4 estun décalage cycligue d'une position vers la

gauche, des (i+1) bits les moins significatifs dedex (formule 3-10). La formule (3-11)

décrit le mode de connexion du Reverse Baseline.
-1
k
O (X1 Xn2.o X1 X X1 oo XaX0) = Xnd Xn2.on o1 X1 ... X1 X0 X (3-10)

Définition 6. Modéle de connexion du réseau reverse Baseline

(Pouri=d, G=1
1
{ Pour (G_: i < d-l), G= 5(d_i)k

Pouri=0, G=1
- (3-11)

53

Développement d’'un modéle formel des MINs dédiésMBSOCs

Maissa Hleu

1k

I
A

I
Y =

. -
-

AR

A3
L NE NSS!
I

Figure 22.Un réseau Baseline (16,2)

2.7.4. Synthese des formalismes de description des Dékiz M

Le tableau 8 résume les différents types de résBelta, alors que le tableau 9 représente

les définitions formelles des permutations qui adilisées pour construire ces réseaux. Il est
kK kK !
a noter que les permutatioys , dp etdy représentent la fonction identité

Tableau 8.Panorama des réseaux Delta

permutationy ¢ Cq Gi1..d-1] Co
réseau Delta
Oméga o o |
. -1 -1
Flip | oK o
Butterfly o 3 X I
Kk -1
Reverse Butterfly I Ry o

54

Développement d'un modele formel des MINs dédiésMBSOCs Maissa Heu
. K
Baseline I di I
_ 1
Reverse Baseline I St I
(d-i)
Tableau 9.Formalisme de description des permutations
Fct Définition formelle Explication
décalage cyclique de tous les
o K o k(Xt Xn2--- X X0) = Xn2 -..% X0 Xo-1 bits de I'index d’une position
vers la gauche
décalage cyclique de tous Ips
_l _1 . A y .
o K (X1 Xz X0) = Xo X1 Xz e Yo X4 bits de I'index d’une positiof
vers la droite
‘ . échange entre I€"° bit et le
B B (Xoae %e1 X X1 ooe X1X0) = Xnteww Xen Xo Xig - XX bit 0
décalage cyclique d'ungp
K position vers la droite, dgs
i k . . .

' O (Xngeoe Xl X X1 ooe XaX0) = Xz -en Xag Xo X Xig -oe Xg (i+1) bits les moing
significatifs de I'index
décalage cyclique d'unp

oL 1 position vers la gauche, dgs

. k . . .
Ji O (Xngeww Xier Xi Xicg vee X1Xg) = Xt oee Xie1 Xi1 --- X1 Xo X | (1+1) bits les moing
significatifs de I'index

2.7.5. Le routage dans les réseaux Delta

Les réseaux Delta sont caractérisés par un modeudigge qui est trés simple. L'adresse

destination présentée dans la base r ou r estgle di1 réseau, va servir comme étant une

séquence de contrdle pour router le message ardrdee differents commutateurs. Le

message a livrer va étre alors commuté a l'outfintide i du commutateur courant, si le

digit correspondant de la séquence de controlégedtal.

55

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Pour aller de gauche a droite, la séquence dedterdst considérée dans le méme sens,
c'est-a-dire de gauche a droite. Par contre, pilemrde droite a gauche, il faudra considérer
I'adresse destinatiok bits par k bitsdans le sens contraire. D’ailleurs, pour que Bathme
de self-routing marche dans un réseau de typeetge\Delta MIN », il faudrait considérer
I'adresse destination de droite a gauche.

On associe donc aux réseaux MINs de type Delteolarigté d’auto routage (self-routing)
dans le sens que le canal de sortie choisi a chemuenutateur ne dépend pas de la source
mais seulement de la destination. La figure 23titkile routage d’'un message de I'entrée
d’adresse 001 vers la sortie d’adresse 110 etdees un Delta MIN (8,2).

000 | 000

/_I 2x2 ‘_H ool - = oot

Ty / I RHR?‘M/ M\Hx/i Y
010\\/ ~ ’—\\ Vil . A M
LS _I 0 _\._\}/ p= L om
1{’0/(‘-.\ s s / \\._ % "-._ e o
101~ ; " — N T,

— ~— TN S i S

Figure 23 Routage dans un Delta MIN (8,2)

3.Conclusion

Dans ce chapitre, nous avons passeé en revue fégediles notions relatives aux réseaux
multi-étages (MINs). Nous avons insisté en parngwsur les réseaux de la famille Delta. Vu
les propriétés intéressantes que possede cettemeniasse de réseaux, notre travail de
formalisation se focalisera sur cette famille deesix.

Chapitre 4 : Formalisation générique des réseaux sgpuce

1.Introduction

56

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Dans le premier chapitre de ce manuscrit, nous sawvendié différents travaux de
formalisation relatifs aux réseaux sur puce. Nousna alors constaté que ces travaux
pourraient étre classé en deux catégories : speeifet générique. La premiére catégorie est
taillée pour le systeme a vérifier, elle ne perpat donc la réutilisation du modeéle formel
construit (Athereal, AMBA).Par opposition a cette premiere catégorie, la rebroest
caractérisée par une approche commune valable tpaarles réseaux sur pu(@ctagon,
Hermes) C’est une approche illustrée a travers le modgaérigue GeNoC (Generic
Networks on Chip).

Nous présenterons dans ce chapitre la conceptitaxdension du modéle GeNoC dans le
cadre de la formalisation des réseaux multi-étdge#s aux MPSoCs. Une étude détaillée de

GeNoC sera aussi exposee.

2.Formalisation générique : GeNoC

GeNoC représente un modéle formel générique dédries communications dans les
réseaux sur puce (Schm, 2006). Les architecturesmenunication ont plusieurs concepts en
commun tels que les interfaces, la topologie, latage et I'ordonnancement. GeNoC
modélise dans un style fonctionnel ces notions elesie faisant aucune hypothese sur la
topologie, le type de routage ou de I'ordonnancém®an critere de correction dst non

modification d’un message transmis depuis une suecs une destination

2.1. Les fonctions de GeNoC

En réalité, GeNoC est un modele défini en fonctdenquatre fonctions clés (figure 24).
Ces derniéres n'ont pas une définition explicitésnadles sont plutdt exprimées en fonction
de contraintes a satisfaire.

2.1.1. Les fonctions « Send » et « Recv »

Avant I'envoi d’'un message sur le réseau, la coustezface du noeud source applique la
fonction « Send »pour encapsuler ce message dans une trame (oa)frBaur récupérer le
message au hiveau du nceud distant, la couche aickedffectue I'opération inverse en
appliguant la fonctiorc Recv » Le codage et le décodage des trames se fait keloodéle

OSI (Open System Interconnectiol)a contrainte principalea satisfaire par ces deux

57

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

fonctions est la suivante : le récepteur doit éapable d’extraire I'information codée c’est a

dire (Recvo Send)kest égale au message initiale.

2.1.2. La fonction « Routing »

C’est la fonction responsable du routage des traegr chacune de ces trames, elle va
calculer la liste des routes autorisées. Ce caeubase sur le principe des déplacements
unitaires.La contrainte principalede la fonction« Routing »est que toute route entre un
couple source-destination débute réellement a laceoet emprunte uniguement les noeuds

existants du réseau pour aboutir a la destination.

2.1.3. La fonction « Scheduling »

La fonction« Scheduling snodélise I'ordonnancement des trames. En ayantisteede
trames a ordonnancer, elle extrait la sous-listealaes pouvant voyager simultanément sur
le réseaulLa définition de cette fonction exigassurerl’exclusion mutuelle entre les trames

ordonnancéesScheduleflet celles retardéeBélayed.

Scheduling
Node A Interface Node B Interface
Node A recv. i recu | NodeB
© Messageg--- oo oo Frames Frames [------------- Messages .
Application send send Application
Node A Node B
‘ Routing ‘

Figure 24.GeNoC : un réseau générique

2.2. Déroulement de la fonction GeNoC

58

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

La figure 25 illustre la logique du déroulement ldefonction GeNoC, ainsi que les
différents objets manipulés. Cette figure est comtégmcomme suit :

- Un message a envoyemgg est une opération de communication modéliséeupar
transactiont. Cette transaction doit avoir une forme partedi: « id s msg d »ou id
représente l'identificateur dedu messages, le nceud sourcd, le noeud destination et enfin
msg le message a envoyer. L'identificatedr doit étre unique. La liste de toutes les
transactions de toutes les applications activemdofensembleT. La validité deT est

reconnue par un prédicat dendig,,

- La fonction« ComputeMissives applique la fonctior Send »de l'interface pour former
la trame a partir du messagesg La trame construite est mise dans une missivagyant la
méme forme que la transaction initidlela seule différence est que le messags((est
remplacé par la tramérifn) correspondante. L’ensemble de toutes les mis$ivest reconnu

par le prédicaMsy,

- L'application de la fonctiorc Routing »donne pour chaque missine un voyagev. Un
voyagev est un triplet constitué de l'identificateud) et de la tramefim) de la missive
initiale et de la liste des routes possibles danséseauRoute¥. L'ensemble de tous les

voyages formé/,

- L’ordonnancement de I'ensemblédépend de la fonctiorn Scheduling »Cette derniére
diviseV en deux sous-ensembles : une liste de voyagdediusfr Schedulellet une liste de
voyages a retardeDglayed. Les voyages retardés seront reconvertis en vesgjpar la
fonction « ToMissives »et repassés a la fonction de routage. Un nomereetatives est
associé a chaque nceud pour qu'il puisse renvogemsssages retardés. Une fois ce nombre
expire c'est-a-dire atteint 0, ces messages rataet®nt considérés comme avortés et feront

partie de I'ensemble résultat Les voyages valides sont reconnus par le prédigat

- La fonction« ComputeResultsfait appel a la fonctior Recv »au niveau dé'interface
du nceud récepteur. Ainsi, elle forme les messagmsdtats a partir des trames de I'ensemble
« Scheduled.»Un message résultat nat&oit étre égale a la transaction initiale moins le

noeud source. La validité de 'ensemble résttast reconnue par le prédicidy.

59

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

T:1i=(id A msg B)

Compute Missives

M:m=(id A frm B)

Routing
ToMissives V:v =(id frm Routes)
] Scheduling
false — Fon
SumOfAttemps(att) = 0 }-—fo ayed Scheduled
true C'ompute Results
ToMissives

A:abt =(id A frm B) R :rst = (id B msg)

Figure 25.Déroulement de GeNoC

2.3. Formalisation de GeNoC

La formalisation concerne les nceuds, les interfdeesoutage et enfin 'ordonnancement
des communications d’'un réseau sur puce générizames la suite, nous nous limiterons a la

présentation des deux composantes qui intéresegettravail : les nceuds et le routage.

2.3.1. Formalisation des nceuds

Le domaine de définition de tous les nceud<GestNodeSet_es éléments de ce domaine
sont reconnus par le prédicdalidNodep NodeSeest un sous-ensemble @enNodeSetiil
forme les nceuds d'un réseau particulier. La fonctlmdeSetGerprend en argument un
parameétrggmsvalide c'est-a-dire reconnu par le prédi¢atidParamspet génére un nceud de
NodeSetLa définition de I'ensembldlodeSedoit veérifier le théoreme 4-1. Cette obligation
exprime le fait que pour tout parameépens valide, tout élément produit par la fonction
NodeSetGemloit étre un élément du domaine GenNodeSet | @alire vérifie le prédicat
ValidNodep.

Théoréme 4-1.Définition de NodeSet

[7pms, ValidParamsp(pmsp//x//NodeSetGen(pms), ValidNodep(x)
(4-1)

60

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

2.3.2. Formalisation du routage

Le routage désigne le mécanisme avec lequel leségsgnsont acheminées depuis un nceud
source jusqu’a la destinatiddeux types d’algorithmes de routage : détermirost@daptatif.
Le routage déterministe fournit un unique noeud titlRsIt la prochaine étape dans la route
de s versd. Par opposition au routage déterministe, le rautdpptatif donne au niveau de
chaque nceud intermédiaire une liste de prochainsisce

Que le routage soit déterministe ou adaptatifpgligue généralement une fonctiprui
effectue le calcul des routes possibles entre undnseurce et un noeud destination. Pour
chaque missiven de la listeM, la fonction« Routing »(définition 4-1) applique la fonction
pour calculer la liste des routes réalisables. teliene alors la liste des voyag¥s Dans la
définition 4-1, on utilise les symbolddy, Frmy, Orgy et Desty qui sont des fonctions
GeNoC permettant I'acceés respectif aux élémentsmed’missive : I'identificateur(id), le
contenu du messagim), I'origine (Org) et la destinationd{est).
Définition 4-1. Définition de « Routing »
Routing (M, NodeSet) #7/ (List (Idw(m),Frmu(m),o(Orgm (M), Dest (m)))

MM
(4-2)

La correction de la fonctiorm Routing »est exprimée par quatre obligations de preuve.
Nous nous limitons ici aux trois obligations quiusantéressent dans le cadre de ce travail :
- Le prédicatvalidRoutepreconnait une route valide (définition 4-2). Upater est valide
que si elle débute au noeud source, se termine ad destination, tous les nceuds de la route
sont inclus dan®odeSetet que la route comprend au moins deux nceudsligation de
preuve de la validité des routes produites past donnée par le théoréme 4-2. Elle exprime
le fait que pour chaque missive m appartenant@nsembléM valide, toute route produite
par la fonctionp doit étre valide (vérifie/alidRoutep. La longueur de la route serait égale
exactement a deux si les deux nceuds la sourcedestaation du message sont directement

reliés dans le réseau.
Définition 4-2. Définition du prédicat « Ext-ValidRoutep »
ValidRoutep (r, m, NodeSet) /Z| r[0] = Orgm (M)

r[l-1] = Desty (m)
r /7 NodeSet/7/ (len(r)> 2)

(4-3)

61

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Théoréme 4-2Validité des routes produites par la fonctign

[IM, Mstp (M,NodeSet)

=0m/[M, Or [7 p(Orgu (m), Desy (m)), ValidRoutep (r, m,NodeSet)
(4-4)

- Il faut montrer aussi que la liste des voyages gg&na@ partir d'une liste de missives
valides, est valide (reconnu pPég,). D’ou I'obligation de preuve de la formule (4-5),

Théoréme 4-3Validité des voyages produits par la fonction g »

M, Mstp (M,NodeSet)= Vistp (Routing (M, NodeSet))
(4-5)

- La troisieme contrainte concerne la correspondante une missive et un voyage calculé
par la fonction« Routing » Ainsi, a chaque voyage calculé par la fonctionraigtage lui

correspond une unique missive (théoréme 4-4),

Théoréme 4-4 Correspondance entre missives et voyages

M, Mstp (M,NodeSet)

= [Jv [JRouting (M, NodeSet}/m /7 M, ldy(v)= ldu(m), Frm,(v)= Frmy(m)
(4-6)

2.4. Analyse critique de la fonction GeNoC

En plus des messages a router, la fonctoRouting » de GeNoCne prend en
considération que l'ensemble de nceytodeSet) et ceci en faisant abstraction des
connexions qui peuvent étre entre les différentsdsodu réseau. Une telle définition suppose
en fait I'existence implicite des connexions ertteeix nceuds successifs d’'une route calculée.
Ainsi, si l'algorithme de routage du réseau a veéripermet d’aller d’un nceud vers un
nceudB, il existe alors une connexion implicite dansdadiogie qui permet de joindi® a
partir deA.

Le modele GeNoC s’est montré tres efficace lortadealidation formelle de réseaux sur
puce tels que I'Octogon et I'Hermes. En réalités édgorithmes de routage de ces NoCs
donne explicitement le prochain nceud d’'une routautdfois, I'algorithme de routage dans
les réseaux multi-étages de type Delta est difféfen donnant seulement le port a travers

lequel le message doit étre commuté, le « selfimgut ne donne aucune indication sur la

62

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

position du prochain commutateur. Pour connaittée geosition, il faudra faire intervenir
concretement la connexion qui relie ce commutaddigtage suivant (Ellet al, 2008).

En conséquence, et compte tenu de I'importanc&adpedct topologie dans les Delta MINs
(soulignée dans le chapitre précédent), nous ramasyque I'application du modele actuel de
GeNoC pour valider ce type de réseau est impossible&audra prendre en compte la
composante topologie de facon plus explicite epaf#i intervenir en plus des nceuds, les

connexions.

3.Formalisation générique par extension du modele GedC

Comme il a été mentionné plus haut, appliquer taiga actuelle du modele GeNoC pour
valider de facon formelle les réseaux sur puceypde Delta MINs est impossible sans tenir
compte réellement de I'aspect topologique des tésddidée est alors d’étendre le modele
générique GeNoC en lui ajoutant une composantddgieoet en développant la composante
routage étendu résultante de cette extension. Cdfemsmble de nceuds a été déja pris en
considération dans le modele GeNoC, nous nous ifecahs sur la généralisation des
connexions. Par ailleurs, nous gardons la mémeioot&eNoC concernant la formalisation

de I'ensemble de nceubldeSetexposée dans la section 2.3.1 de ce chapitre.

3.1. L'aspect générique dans ACL2

La traduction des définitions génériques dans AGs2 possible grace au principe
d’encapsulation (Kaukt al, 2001). Ce principe introduit sous certaines @ntes, des
symboles de fonctions n’ayant pas une définitiorplieke. Les contraintes sont des
théoremes. Dans I'exemple ci-dessous, lorsquerletifin f encapsulée est admise, la théorie
d’ACL2 est étendue par I'événement suivaria fonction f est contrainte par I'axiong».
Ainsi, la fonctionf ne possede pas une définition explicite mais dnoseelle possede la
propriété ¢ a satisfaire. Par conséquence, une foncgjagst une instance de la fonction
encapsuléé, si et seulemeng satisfait les mémes contraintes duAutrement dit, tous les

théoremes exprimés au niveau générique palgaivent étre prouves pogr

(encapsulate (((f x1...xn) =>*))
(local (defun f (x1 ...xn) B)
(defthm thm-1)

63

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

3.2. La composante topologie générique

En prenant en considération les aspects commun®utest les architectures de
communication des réseaux sur puce, nous détaiitoria formalisation d’'une composante

générique décrivant leurs topologies (HEteal.a 2008).

3.2.1. Principe

La disposition des éléments (nceuds et liens) déaseau sur puce, en particulier les
interconnexions physiques (réelles) et logiquestugiles) entre les noeuds, définit sa
topologie. L'étude de la topologie physique du aésest souvent assimilée a I'étude d’un
graphe(G) dont les sommets sont les nceuds du réseau ettesamt les liens entre les paires
de sommets. Ainsi, un graphe est d’habitude définfacon statique par une collection de
sommetgV) et une collection d’arétg&) (Gro et al, 2005). Notre approche est différente.
Elle est plutdt basée sur l'identification des fomes d’interconnexions qui doivent étre
appliguées pour relier un nceud a un autre dansapihg direct de la topologie.

En réalité, un graphe de type direct est caraétyar des arcs qui sont orientés d'un
sommet vers l'autre. Un sommetdu graphe peut étre connecté a un ou plusieurssaut
sommets. Pour générer un lien a partir du somxnedbn doit appliquer une fonction
mathématique dénotdp. Cette derniére exprime la relation entre le somoet I'un de ses
arcs sortants. Tous les arcs sortants dent alors le résultat de I'application d’unediste
fonctions désignée pdiipx. Nous supposons que, pour chaque sommet du grapbdelle
liste de fonctions mathématiques existe.

La figure 26 illustre un graphe simple de la togiod’'un Octagon a huit nceuds ou
chaque nceud est représenté par un nombre natwde@dt = (0,1,2,..,7)). On pose N le
nombre total de nceuds dans ce réseau, soit ial 8rientant le graphe dans le sens indiqué
sur la figure, on peut identifier pour chaque naotesl trois fonctions de connexions a
considérer. Ainsi, pour le nceud « 1 », on devrdigugr une fonction incrémentale « +1 »
(connexion (1,2)), une fonction de décrémentatieh x (connexion (1,0)) et une fonction du
type « + N/2 = + 4 » (connexion (1,5)).

Pour générer toutes les connexions d’'un graphe éoihrexiste deux alternatives. La
premiere consiste en une procédure d'itérationnmaud dans laquelle on identifiera pour
chaque nceud la liste de fonctions de connexiondajtilui étre appliquée. L'inconvénient de
cette alternative est le fait de devoir éliminer é®nnexions redondantes apres avoir procéder

par nceud ; ce qui peut étre un peu lourd dansdeotale réseau comporte beaucoup de

64

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

nceuds. Une deuxieme alternative consisterait aifeenous les nceuds auxquels on doit
appliquer la méme fonction de connexidps Cet ensemble formera un sous-ensemble de
'ensemble initial de nceuds. Les connexions obtemper application de la fonctiofp
formeront quant a eux une sorte de sous-topolagia tbpologie finale.

Dans le cadre de notre spécification génériquais navons opté pour la deuxiéme
alternative. Une fagon de spécifier les connexidasréseau de la figure 26 selon cette
derniere alternative, aboutit a I'identification tteis sous-ensembles de noeuds appelé ici X,
Y et Z. X est I'ensemble formé par les nceuds (08145,6) pour lesquels il faut appliquer la
fonction de connexion incrémentale « +1 ». Le sdcemsemble Y est constitué des noeuds
(0,1,2,3). Pour obtenir les connexions partantcdesous-ensemble, il faut appliquer la
fonction de connexion «+ N/2 = + 4 ». Le troisieem@semble Z contient le singleton 7 a

partir du quel on décrit la derniére connexion (p& une fonction du type « -(N-1) = -7 ».

/
X=(0,1,2,3,456):fp=«+1»

< Y =(0,1,2,3) fp= «+NR2»=« +4»
Z=(7) fp=« -(N-1)»=«7»
~

Figure 26.Un graphe topologique du réseau Octagon

3.2.2. Spécification

On définit la fonction noté&en-Cnxqui génére tous les arcs sortants d'un somreet
partir de la liste de fonctions de connexions @pomdante notépx. Gen-Cnxitere sur la
liste Ifpx pour appliquer chacune de ses fonctions et obtensi toutes les connexions du
nceudx. Le prédicatvalidlfp reconnait la validité d’une listipx.

On désigne aussi paeg-topla fonction qui sert pour générer tous les areng) d'un
réseau. Elle prend en entrée un seul paramétre qp@mmepms-top Ce dernier est une liste
constituée de couples ayant la for(e fp) ou fp est la fonction de connexion qui doit étre
appliguée a tous les nceuds contenus ®arsa fonctiongen-topfait appel a une fonction

génératrice des différentes sous-topologies désigadgen-top-1(définition 4-3).

65

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Définition 4-3. Définition de la fonction gen-top-1

gen-top (pms-top) =/7 (List (gen-top-1 (X, fp)))
[XNodeSet
fd/Listip
(4-7)

3.2.3. Criteres de correction

La principale contrainte a vérifier sur le graphaneé topologie quelconque est qu’un
sommetv produit par une fonction de connexion donrfpe fait réellement partie de
I'ensemble des noeudblodeSet)Le théoreme 4-5 exprime la correction de n'impajelle
liste de fonctions de connexions. Cette dernieestrvalable que si, pour toute connexoox
produite a partir d'un nceud de NodeSetet de sa liste de connexioifpx, la seconde
extrémité decnx appartient aNodeSetL'acces a la deuxieme extrémité d’'une connexiox

est possible via la foncticext2
Théoreme 4-5Validité des fonctions de connexions

[7x [7NodeSet//Ifpx, Validlfp (Ifpx)= [7cnx [7 Gen-Cnx (X, Ifpx), ext2 (cnx)NodeSet
(4-8)

La contrainte 4-6 servira comme un lemme intermégi&n effet, pour ne pas avoir a
vérifier pour chaque noeud du réseau, on préfetétplarifier le théoréme 4-6. Ce dernier est
défini pour 'ensemble des nceuds formant les extésnies connexions de la topologie. Le
prédicatValidParams-topsert pour vérifier la validité des paramétres éeédgation de la
topologie. La fonctiorext2s-topdonne acces aux nceuds extrémités des connexions.

Théoréme 4-6Validité des extrémités genérées par les fonctilnsonnexion
[7pms,/7pms-top, (ValidParamsp pms)(ValidParamsp-top pms-top)

= (ext2s-top (gen-top pms-top)y (NodesetGenerator pms)
(4-9)

La validité de toute la topologie du point de vaprésentation, est définie par le théoréme
4-7. Ainsi, pour tout parametpems-top(reconnu par le prédicatalidParams-top, toute
connexion produite par la fonctioremrtop doit étre correcte, c’est-a-dire reconnue par le
prédicatValidCnxp ValidTopest le prédicat associé a la validité de toutegalogie.

66

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Théoréme 4-7Validité de la topologie
[7x [7NodeSef,/pms-top, (ValidParamsp-top pms-top)

= [Jcnx//gen-top (pms-top), ValidCnxp (cnx)
(4-10)

3.2.4. Traduction dans la logiqgue ACL2

Dans cette partie, nous retragons I'expressiorodg fes théoremes décrivant la correction
de la topologie générique. Des précisions sur iidasge ACL2 sont disponibles en annexe de
ce manuscrit. La fonctioparams-t servira pour extraire les paramétres topologiertrmhes
parameétres des nceuds.

Expression du théoréme 4-5Validité des fonctions de connexion (en locale)

(local(defthm ext2-Ifpx-in-nodeset
(let* ((nodeset (NodeSetGenerator pms))
(cnx (Gen-Cnx x Ifpx))
(ext2 (ext2 cnx)))
(implies (and (ValidParamsp pms)(member-equal x nodes)
(ValidIfp Ifpx))
(member-equal ext2 nodeset)))))

Expression du théoréme 4-6Validité des noeuds extrémités des connexions

(defthm gen-top-generates-nodes-in-nodeset
(let* ((nodeset (NodesetGenerator pms))
(pms-top (params-top pms))

(top (gen-top pms-top))
(ext2s (ext2s-top top)))
(implies (and (ValidParamsp pms) (ValidParamsp-t op pms-top)
(valid-ext2s ext2s))
(subsetp-equal ext2s nodeset))))

Expression du théoréme 4-7Validité de la topologie

(defthm gen-top-generates-valid-top-1
(let* ((pms-t (params-t pms)))
(implies (ValidParamsp-top pms)
(valid-top (gen-top pms-t)))))

Preuves :Dans ACL2, les preuves de trois théorémes précedanit assez instantanees.
ACL2 ne pourra admettre le fichier générique quersiui fournit en locale des définitions
qui vérifient ces théoremes. Il suffit donc de ddéeer les plus simples définitions possibles
des fonctions locales. ACL2 s’assure ainsi qu’ilsex au moins une instance de chaque
fonction générique vérifiant les contraintes qucaldent des théoremes ou des contraintes

imposées sur ces fonctions.

67

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

3.3. La composante routage générique étendue

La fonction de routage défini dans GeNoC considareseule information des nceuds
(NodeSet)pour effectuer le routage. Ainsi, pour chaque iwssn de I'ensembleM, la
fonction « Routing »calcule toutes les routes possibles entre I'ogigla la missive@rgy) et

sa destinatioiDesty).

3.3.1. Principe

La conception de la nouvelle composante topologiendveau générique entraine
nécessairement des modifications dans la fonctidtouting » Nous avons alors redéfini
cette fonction de fagon a ce qu’elle prenne en dertqute la topologi€Top) composée des
nceuds et des connexions. En particulier, nous salledéfinir la fonctiono qui calcule les
routes entre toute paire source-destination duatégénérique. La nouvelle route calcutée

n'est plus composée de nceuds mais de connexicanfantervenir des paires de nceuds.

3.3.2. Spécification

Nous avons redéfini le prédicAtalidRoutepde facon a y inclure explicitement la
composante connexion (définition 4-4). On note ajparrfi] le i*™élément d’une route et
parl la longueur de. Le nouveau prédicdixt-ValidRoutepexige que la longueuten) del
soit supérieur ou égale a 1, que le premier élénfeimst) de la premiére connexion
composant (r[0]) soit égale a I'origine de la missive et que la eguhe soit composée que
de connexions faisant partie de la topoldgig¢ /7 Top) La fonction étendue de routage est
désignée paExt-Routing(définition 4-5). Elle tient compte de la nouveltaction de calcul

des routeg-ext(Elle et al.g 2008).
Définition 4-4. Définition du prédicat « Ext-ValidRoutep »
Ext-ValidRoutep (r, m, Top) £ | (First (r[0]) = Orgm (M)

r/7 Top [7 (len(r)>1)
(4-112)
Définition 4-5. Définition de la fonction « Routing » étendu
Ext-Routing (Top,M)= /7 (List (Ids(m),Frmy(m),0-ext(Org, (m), Desy (m), Top))
m M
(4-12)

68

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

3.3.3. Criteres de correction

GeNoC décrit trois contraintes sur la fonction detage(cf. les théorémes 4-2, 4-3 et 4-4)
Dans le cadre de notre extension, nous nous istEresuniquement aux deux premieres
contraintes. Ainsi, le théoréme 4-2, décrit en fammcdu prédicaialidRoutep est redéfinit a
travers le théoréme 4-8 en fonction du nouveauigaéd Ext-ValidRoutep »

La deuxiéme contrainte sur la fonctianRouting » ne fera pas l'objet de grandes
modifications. En réalité, il suffit de remplacea tomposante nceuddlodeSet)par la
composante topologi€rop) pour avoir le théoreme 4-9. On redéfinit en plugpiédicat de

validité des missiveBls;; en fonction de la topologi@ op)

Théoréme 4-8Validité des routes produites par la fonctiprext
HM, M|stp (M,TOp)

=00m/ M, Jr [J p-ext (Orgy (m),Desy (m),Top), Ext-ValidRoutep (r,m,Top)
(4-13)

Théoréme 4-9Validité des voyages produits par la fonction «wfag »

[IM, Mstp (M, Top) = Vistp (Ext-Routing (M, Top))
(4-14)

4.Conclusion

Nous avons exposé tout au long de ce chapitre ramneeption d’'une composante
topologie générique et d’'une composante routagelaeeafin de les intégrer dans le modéle
générigue GeNoC. Au début de ce travail, nous awnsque l'approche du modéle
générique GeNoC pouvait étre appliquée telle gar'edit pour valider les MINs de la famille
Delta. Cependant, aprés une étude exhaustive délenetiune exploration des réseaux déja
validés a travers cette approche et des réseaut-étages, nous avons constaté qu’'une
extension au niveau générique du modéle est indssiide. Nous détaillerons dans le chapitre
suivant notre modele formel des Delta MINs, ainge ga validation a travers le modéle

générique étendu.

69

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Chapitre 5 : Vérification formelle des réseaux mulitétages de la famille
Delta : Etude de cas

1.Introduction

Nous avons défini dans le chapitre précedent liesitan au niveau générique du modéle
GeNoC. Cette extension a été nécessaire pour geleédeaux sur puce ne faisant pas
intervenir explicitement la notion de « connexionslans leurs algorithmes de routage,
puissent étre validés en appliquant I'approche ggueé étendue. Ainsi, il nous est possible
maintenant de valider formellement les communicetidans des réseaux multi-étages dediés
aux systemes multiprocesseurs sur puce (MPSoCs).

Nous exposons dans ce chapitre la spécificationdte développée pour décrire les MINs
de la famille Delta. Au fur et a mesure de cettécdration formelle, nous dévoilerons les

différents théorémes développés pour la validgtomelle.

2.Formalisation des réseaux Delta MINs dédiés aux MFOCs

Dans cette partie, nous détaillons dans la logdyudémonstrateur de théoremes ACL2 les
différentes étapes suivies pour la formalisatios dseaux multi-étages de la famille Delta
dédiés aux MPSoCs. Nous formalisons dans ce centegtdeux composantes topologie et
routage en effectuant une validation suivant le @®&eNoC étendu. Cette formalisation est
réalisée a partir des descriptions informelles ahigpes dans la littérature sous forme de
textes et schémdsoir chapitre 3)

Nous appuierons notre travail par les fonctionshébrémes principaux définis dans la
logique ACL2. Nous essayerons a chaque fois delsinces définitions en les commentant
par des descriptions textuelles détaillées. Néamsndi se peut que la logique ACL2 semble
un peu ambigué ou que certaines fonctions déperdiantres fonctions qui ne sont pas
présentées ici. Dans ce cas, une revue bréve si;mtaxe ACL2 disponible en annexe peut

sembler nécessaire.

2.1. La logique ACL2 : des précisions

Il est a noter que nous nous intéressons uniqueamenpreuves Vérifiées par ordinateur,

c'est-a-dire par I'assistant de preuves d’ACL2.shinn théoréme soumis au prouveur est soit

70

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

automatiguement admis, soit doit étre enrichi pas demmes intermédiaires. Cet
enrichissement dénote les tactiques a suivre laslad démonstration (application de
théoreme, réécriture, simplification...) pour fair@prendre et accepter a I'assistant toutes
les étapes de raisonnement.

Vu que le démonstrateur ne formalise qu’'un sougrabte du langage Common Lisp, il
est courant qu’une preuve soit tres difficile dbétadans ACL2. C’est pour cette raison qu'il
est souhaitable d’enrichir le monde logique du déstrateur par les différentes bibliotheques
disponibles sous forme de « books ». Deux bibligpties que les experts ACL2 conseillent
toujours d’inclure sont le « book » d’arithmétigiaeithmetic 3)et le « book » manipulant les
structures de donnéddata-structures) Il s’avere trés bénéfique d’inclure dans ACL2 ces
deux « books » surtout pour les novices. Toutef@gut de ces « books » peut aussi ralentir
I'admission des théorémes a démontrer. D’ailleansdit toujours qu& plus grand le monde
logique, plus lentement ACL2 fonctionnerabn effet, pour accomplir une démonstration,
ACL2 doit mettre en pratique toutes les redledes) figurant dans sa base de données et qui
lui semble applicables. Ainsi, plus la base de @esrest grande, plus I'espace de recherche
sera grand et plus ACL2 ira moins vite dans sesodétrations. Une méthode se basant sur
un mécanisme d’activatiofenable)et de désactivatiofdisable)locale des regles inutiles
peut néanmoins accélérer considérablement le mosedadmission. Cette méthode sera

illustrée dans ce qui suit.

(local

(in-theory (disable elim-dieze-l assoc OUR-DIGIT -CHAR-P NONNEGATIVE-
INTEGER-QUOTIENT DEFAULT-+-2 DEFAULT-+-1 DEFAULT-*- 2 DEFAULT-UNARY-MINUS
NFIX DEFAULT-<-2 DEFAULT-<-1 ASSOCIATIVITY-OF-+ ZP- OPEN)))

2.2. La composante topologie d’un Delta MIN

L’approche du modeéle générique étendue détaillés Bachapitre précédent, nécessite de
spécifier et de valider dans un premier temps latramte sur I'ensemble des nceuds du
réseau (théoréme 4-1), ensuite de décrire et ddievéformellement I'ensemble des

connexions par les théoréemes 4-5, 4-6 et 4-7 ¢Elad.g 2008).

2.2.1. Formalisation de I'ensemble de nosuds

Avant de présenter la formalisation de I'ensembés doeuds d'un Delta MIN, nous

commencerons par la spécification d'un nceud éléairerdu réseau.

71

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

2.2.1.1.Spécification d’'un nceud

- Principe : un nceud du réseau est représenté par une paireoddgoonéeqX Y) La
coordonnéeX est décimale et représente I'étage de commutatmugsiel appartienne le
noeud. La coordonnééest binaire et elle décrit la position du nceuthérieur de cet étage.
Pour générer la coordonnée binafteon a utilisé la fonction ACL2xplode-nonnegative-
integer. Cette fonction permet de faire la conversion dhwmbren non négatif dans une
baser donnée. Les valeurs possibles de la base sont1B,& 16. On peut remarquer d’aprés
I'exemple donné ci-dessous que cette conversiost pas aussi directe puisqu’elle ne donne
pas exactement le nombre binaire (1 1 1) mais pluné liste de caractéres associés a des
«# ». Il a fallu alors plusieurs autres fonctigasir arriver a la représentation voulue. Il est &
noter que nous avons opté pour une représentatiairdde la coordonnéédu nceudpour
faciliter par la suite I'application des fonctiode permutations lors de la génération des

connexions.

Exemple : explode-nonnegative-integer
ACL2 !>(explode-nonnegative-integer 7 2 nil) > ‘(#1 #1 #1)

- Spécification :on définit la fonctiony-gen-nodequi fait appel a toute une série de
fonctions élémentaires pour donner la représemtatéinitive de la coordonnéédu nceud.
Cette fonction prend en entréda position décimale du nceud dans I'étage, & nombre de
bits sur lequel doit étre représenté le nombreitdnen sortie. On définit aussi la fonction
gen-nodequi produit le format souhaité du nceud et cecifasant appel a la fonction
secondairey-gen-node Finalement, on pose le prédicatlid-node-dminqui reconnait la
validité d’'un nceud. Ce prédicat a pour réle defiegrgue la représentation d’un nceud est

correcte c'est-a-dire a exactement la forme ((X).(Y

- Expression dans ACLZ2la traduction des fonctions spécifiees précédemmians ACL2
est donnée a travers les définitions 5-1. Les té&subde simulation correspondants a ces

fonctions sont donnés a la suite.
Définitions 5-1. Spécification d’'un nceud dans ACL2

;;fct de génération de la coordonnée y
(defun y-gen-node (d i)
(let* ((I (elim-dieze-I (explode-nonnegative-inte geri 2 nil)))
(nb-z-0 (- d (len 1)))
(I-0 (list-nb-z-0 nb-z-0)))
(append 1-0 1))

72

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

;;fct de génération d’'un noeud
(defun gen-node (d i ind)

(list (list ind) (y-gen-node d i)))
;;prédicat valid-node-dmin
(defun valid-node-dmin (1)

(and (consp I)(consp (cdr 1)) (null (cddr 1)) (c onsp (car l))
(natp (caar I))(consp (cadr 1)) (valid-01 (cadr 1))

Simulation des définitions 5-1 Spécification d’'un nceud dans ACL2
ACL2 !>(y-gen-node 3 4) >> ‘(10 0)

ACL2 !>(gen-node 3 4 3) >>*((3) (1 0 0))

ACL2 !>(valid-node-dmin ‘((3) (10 0))) >>T

ACL2 !>(valid-node-dmin ‘((r) (1 0 0))) >> NIL

2.2.1.2.Spécification de 'ensemble des noeuds

- Principe :un réseau du type Delta MIN a la caractéristiqgagair deux types de nceuds :

des terminaux et des commutateurs. Pour profitéa detion d'étages, nous avons opté pour
une génération des nceuds par étages. Cependagtievie nombre de nceuds sur chaque
étage n’est pas le méme, nous ne nous pouvonstgiasrues mémes parametres pour
générer tous les nceuds. Ainsi, la génération dguehdype de nceuds se fera de facon

indépendente, ensuite on pourra les fusionner dia@seule liste.

- Spécification :on définit la fonctiorgen-nodes-dmigui généere tous les noeuds du réseau.
Elle prend en parameétrels le nombre total des étages de commutateurs darséaur, le
degré des commutateurs,nettwork le nom du réseau Delta. A partir de I'argumegndn est
capable de déduire les informations pertinentegivels au réseau c'est-a-dire le nombre total
de nceuds terminaux qu’on a qualifié helans le chapitre 3 et le hombre de commutateurs
par étage(N/r=N/2). La fonction gen-nodes-dmirfait principalement appel a la fonction

récursivegen-nodes-invl-cafpour la génération des noeuds d'un étdg®nné.

- Expression dans ACL2 aldéfinition de toutes ces fonctions dans ACL2desinée dans
les définitions 5-2. La figure 27 donne un aperedalfacon dont les nceuds sont représentés

dans un réseau Oméga (8, 2).

Définitions 5-2. Spécification des nceuds d’un Delta MIN dans ACL2

;;fct de génération secondaire de tous les nceudts éfage
(defun gen-nodes-invl-call (d Nb ind)
(declare (xargs :guard (and (natp d) (hatp Nb)(n atp ind))
:verify-guards nil))

73

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

(if (zp Nb) nil
(cons (gen-node d (1- Nb) ind)
(gen-nodes-invl-call d (1- Nb) ind))))
;;fct d'appel
(defun gen-nodes-dmin-pms-1 (d r network)
(declare (ignore r network))
(let ((S (gen-nodes-dmin-s d))
(Sw (gen-nodes-dmin-sw-1 (1- d) d))
(D (gen-nodes-dmin-d d)))
(append S (append Sw D))))

;;fct de génération de tous les noeuds
(defun gen-nodes-dmin (pms)
(gen-nodes-dmin-pms-1 (car pms)(cadr pms)(caddr pms)))
Simulation des définitions 5-2 Spécification des noeuds d’'un Delta MIN dans ACL2
ACL2 !>(gen-nodes-invl-call 2 4 2)

(((2)(00) (A 1) (A1 0) (A1 1)))
ACL2 !>(gen-nodes-dmin ‘(3 2 omega))
(((4)000)) ((4(001)) ((4(010)) (4011)
((4)(100)) ((4(101))((4(110) (4111)

((3)(0 0)) ((3)(0 1)) ((3)(1 0)) ((3)(1 1))
((2)(0 0)) ((2)(0 1)) ((2)(1 0)) ((2)(1 1))
((1)(0 0)) ((1)(0 1)) ((1)(L 0)) ((1)(1 1))

((0)(000)) ((0)(001))(0)010))(O)011)
((0)100)(O)(101))(O)(110))(O)(111)

54 Cc3 s3 c2 S2 Cc1i sS1i [o{s] SO
((4)(000)) : |~ ((0)(000))
((4)(001)) SR S el i ((0)(001))
((4)(o10)) _ | - . ((0)(010))
((4)(011)) ((3)(01)) . ((2)(01)) ((1)(01)) | - ((0)(011))
((4)(100)) . ((0)(100))
((4)(101))) (E b)) ((2)(10}) ((1)(10))| - " ((0)(101))
((4)(110)) _ __ ((0)(110))
((4)(111)) _'_:_((3)(11)) ((2)(11)) ((1)(11))_— ((0)(111))

Figure 27.Spécification formelle des noeuds

2.2.1.3.Vérification du théoréeme 4-1

La génération de tous les nceuds est contraintdeptrtéoréme 5-1 qui n'est qu’'une
instance du théoreme générique 4-1. Pour la valdbs parametres de génération de tous les
nceuds, on pose le prédisalidParamsp-dminOn définit également un autre prédicat appelé

valid-nodes-dmirpour vérifier la validité de I'ensemble de nceu@s. prédicat fait bien sar

74

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

appel au prédicavalid-node-dmin(définitions 5-3). Le tableau 10 résume les fandi

utilisées dans cette partie.

Tableau 10.Résumé des fonctions de spécification des noeuds

Fonction Argument (s)| Réle

y-gen-node di génere la coordonnédeen binaire d’'un nceud
gen-node diind génere le nceud a la positiode I'étageind
valid-node-dmin I teste la validité d'un nceud représenté par unellist
ValidParamsp-dmin pms teste la validité des parametres de génératios
gen-nodes-invl-call d Nbind géneére lesN nceuds de I'étagad

gen-nodes-dmin pms génere tous les noeuds du réseau en fonctipmde
valid-nodes-dmin X teste la validité de tous les noeids

Définitions 5-3. Prédicats de validité des paramétres et des nceuds

;;predicat qui valide tous les noeuds
(defun valid-nodes-dmin (X)
(if (endp X) t
(and (valid-node-dmin (car X))
(valid-nodes-dmin (cdr X)))))

;;prédicat de validité des paramétres
(defun ValidParamsp-dmin (pms)

(and (consp pms)(consp (cdr pms))(consp (cddr pms)) (null (cdddr pms))
(natp (car pms))(>= (car pms) 1) (natp (cadr pms))
(< 0 (cadr pms))(dmin-networkp (caddr pms))))

Théoréme 5-1Validité de la définition des nosuds d’'un Delta MIN

[pms,ValidParamsp-dmin (pms}//x//gen-nodes-dmin (pms), valid-node-drfxn

(5-1)
Dans ACL2, ceci donne :
(defthm gen-nodes-dmin-correct

(implies (ValideParams-dmin pms)
(valid-nodes-dmin (gen-nodes-dmin pms))))

Preuve :La preuve du théoreme 5-1 fait appel a plusieursries intermédiaires. A vrai dire,
le fait d’avoir opter pour une représentation hi@aie la coordonné¥ du nceuda rendu
compliquée la procédure de génération des nceudsdewex lemmes intermédiaires de base
gu’'on a di démontrer dans ce contexte, concerrdgpé de données retourné par la fonction
explode-nonnegative-integé¢ithéoremes 5-2). Sans ces deux théoremes, iltaiéaien fait
impossible de démontrer la validité d’'un nceud (jmaidsalid-node-dmii et par la suite la
validité de lI'ensemble des nceuds. Le théoréme 5-&éaaussi indispensable pour la
démonstration du théoreme 5-1. Il exprime la v&didiun noeud via la fonctiogen-node

75

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Théoremes 5-2Les deux théoremes concernant explode-nonnegatager

(defthm character-listp-explode-n-generalized
(implies (character-listp ans)
(character-listp (explode-nonnegative-in teger n 2 ans))))

(defthm character-listp-explode-n
(character-listp (explode-nonnegative-in teger n 2 nil)))

Preuve : Le premier théoreme figurant dans la liste desréérées 5-2 est une généralisation
du deuxieme théoréme. Ainsi, une fois ce premiéotdime admis dans ACL2, le second sera

automatiqguement démontré par une simple dédugtewrite rule)

Théoréme 5-3Validité d’un noeud

(defthm valid-node-dmin-gen-node
(implies (and (natp d)(natp i)(natp ind))
(valid-node-dmin (gen-node d i ind)))
‘hints (("GOAL" :in-theory (disable explode-nonne gative-integer))))

Preuve : Dans la preuve du théoreme 5-3, la seule astuceistenen la désactivation
(disable) de la fonctionexplode-nonnegative-integeDe cette facon, le démonstrateur ne
« bouclera » pas. En effet, I'utilisation de la dbon de conversion peut amener a des
démonstrations un peu étranges. On doit a chageegéméraliserle troisieme argument
(ans) Autrement, le démonstrateur ne trouvera pasutaent sur lequel il doit effectuer son

induction.
2.2.2. Les connexions
2.2.2.1.Spécification d’'une connexion

- Principe : dans un réseau Delta MIN, on représente une coymgar une liste ayant la
forme ((X px) (Y py))x représente I'origine de la connexigx le port dex inclut dans cette
connexiony la deuxieme extrémité @l le port dey. Par exemple, la connexion représentée
par (((3) (0 1)) O0) (((2) (1 0)) I0yénote que le port O0 »du commutateu((3) (0 1)) est
connecté au port K » du commutateuf(2) (1 0))

- Spécification :on définit la fonctiongen-one-cnxqui génére la connexion ayant pour
origine le porti du nceucextl Cette fonction prend en argument le ncext, le porti de
connexion et la fonction de permutatifma appliquer (définitions 5-5). Suivant le type de
nceud(cond équivalente a caseaette fonction fait appel a deux autres fonctiges-ext2et
gen-ext2-pdont les définitions sont aussi données ci-desd@ipremiere sert pour générer le

nceud extrémité de la connexion sans le port deecomm et la seconde sert a générer ce port.

76

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Ces deux fonctions font appel aux deux fonctinast-y-sw et next-p-sw(définitions 5-4)
mettant en évidence la facon de « commuter » déedrdifférentes fonctions de permutation.
On peut remarquer que l'application des fonctioagpdrmutations n’est pas intégrée dans la
fonction gen-one-cnxll est alors possible d’ajouter autant de pertnuta qu’on veut ; il
suffit pour cela d'implémenter le code ACL2 corresgant (exemple des fonctioagmak-
app-1 et sigmak-app-2pour la permutatiorsigmal. Le tableau 11 donne un résumé des

différentes fonctions utilisées pour la spécifioatd’'une connexion.

- Expression dans ACL2L’expression dans ACL2 de toutes les fonctionatiets a une

connexion, est donnée aux définitions 5-4 et 5-5.
Définitions 5-4. Spécifications des fonctions de connexions

;;fct applique sigmak-fp retourne la liste (y-extpres permutation
(defun sigmak-app-1 (y-s i)
(let* ((I (Gen-input y-s i))
(I-sig (sigmak-fp 1)))
(rem-last I-sig)))

;;fct applique sigmak-fp retourne une liste conten@umport)
(defun sigmak-app-2 (y-s i)
(let* ((I (Gen-input y-s i))
(I-sig (sigmak-fp 1)))
(last I-sig)))

;;fct génere le prochain noeud suivant la permutatip a appliquer
(defun next-y-sw (y-sw i fp)

(cond

((equal fp 'sigmak) (sigmak-app-1 y-sw i))

((equal fp'l) (I-app-1 y-sw i))))

;;fct géneére le prochain port suivant la permutatip a appliquer
(defun next-p-sw (y-sw i fp)

(cond

((equal fp 'sigmak) (sigmak-app-2 y-sw i))

((equal fp'l) (I-app-2 y-sw i))))

Définitions 5-5. Spécification d’'une connexion dans la logique ACL2

;; fct génére une connexion élémentaire d'un nakarhé
(defun gen-one-cnx (extl i fp)
(let* ((I-ext2 (gen-ext2 extl i fp))
(x-ext2 (car (x-node l-ext2)));;=(caar I- ext2)
(p-ext2 (car (gen-ext2-p extl i fp)));;nu mport-ext2 sans les ()
(p-extl (car i)));;port ext1=i=0, 1

(cond
;;ext2=d-node ==> ajouter port local L

((equal x-ext2 0)
(list (gen-extl-cnx extl 'O p-extl) (gen-ext2-cn X [-ext2 'L 'nil)))

77

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

;;extl=s-node ==> ajouter port local L

((equal i nil)

(list (gen-extl-cnx extl 'L 'nil) (gen-ext2-cnx [-ext2 'l p-ext2)))
;;extl=switch et ext2=switch ==> ajouter les port s du switch I et O
(t

(list (gen-extl-cnx extl 'O p-extl) (gen-ext2-cnx [-ext2 'l p-ext2))))))

;;fct gen-ext2 géneére le noeud ext2 extrémité dmiamexion
(defun gen-ext2 (extl i fp)
(let* ((y-extl (y-node extl))
(y-ext2 (next-y-sw y-extl i fp))
(p-ext2 (next-p-sw y-extl i fp)) ;; génere le port ext2
(ext2-2 (append y-ext2 p-ext2))
(x-ext2 (- (car (x-node extl)) 1)))
(list (list x-ext2) (if (equal x-ext2 0)
ext2-2
y-ext2))))

;;fct gen-ext2-p génére le port de cnx sous for@ke (1)
(defun gen-ext2-p (extl i fp)

(let* ((y-extl (y-node extl)))
(next-p-sw y-extl i fp)))

Simulation des définitions 5-4 et 5-5Spécification d’'une connexion

ACL2 !>(sigmak-app-1‘(0 1) ‘(1)) >> ‘(1 1)
ACL2 1>(sigmak-app-2 ‘(0 1) ‘(1)) >> (0)
ACL2 !>(next-y-sw ‘(0 1) (1) ‘sigmak) >> ‘(1 1)
ACL2 '>(next-p-sw ‘(0 1) ‘(1) ‘sigmak) >> ‘(0)
ACL2 I>(gen-ext2 ‘((2) (0 1)) (1) ‘sigmak) >> ‘(1 1)
ACL2 !>(gen-ext2-p ‘((2) (0 1)) ‘(1) ‘'sigmak) >> (0)
ACL2 !>(gen-one-cnx ‘((2) (0 1)) (1) ‘sigmak)
>>"((((2) (0 1)) O1) (((1) (1 1)) 10))

Tableau 11.Résumé des fonctions de spécification d’'une coonexi

Fonction Argument (s)| Réle

sigmak-app-1 y-si applique la perm. sigmak-fp et retourne la cooréeny
sigmak-app-2 y-si applique la perm. sigmak-fp et retourne le proclgairt

next-y-sw y-sw i fp génere la coordonnée y suivant la perm. fp a apgliq

next-p-sw y-sw i fp génére le prochain port suivant la perm. fp a gpeli

gen-ext2 extlifp génére la coordonnée y aprés application de la.gprm
gen-ext2-p extlifp génere le prochain port aprés application de lenpfr
gen-one-cnx | extlifp génere toute la connexion résultante de I'apppdrufport i de extl

78

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

2.2.2.2.Spécification des connexions

- Principe : pour valider les connexions en suivant I'approdeela topologie générique
présentée au chapitre 4, il faut commencer patiftima liste des fonctions de connexions a
appliquer sur un graphe directe de la topologiendda cas des MINs Delta, en orientant le
graphe de la topologie de gauche a droite, cetie $iera toujours constituée de trois fonctions
a appliquer respectivement au premier étage deesaoms(Cq+1)), aux étages du milie(C;
avec (0 <i<d+1))et au dernier étagé,. Nous effectuerons alors une génération par <«eétag

de connexions ».

- Spécification :la fonction principale de génération de toutesdesnexions d’'un MIN
Delta estgen-top-dmin C’est une fonction qui fait appel a trois autfesctions qu’on
désigne pagen-top-dmin-src_swgen-top-dmin-sw_swt gen-top-dmin-sw_desLe role de
chacune de ces fonctions est de générer les camsexiun type d’étage donn@ous-
topologie) Ainsi, gen-top-dmin-src_swpermet la génération du premier étage de connexions
entre les nceuds sources et le premier étage dehswitEnsuite, la fonctiogen-top-dmin-
sw_swproduit les étages de connexions du « milieu sé&deau c'est-a-dire entre étages de
switches. Finalement, la fonctigen-top-dmin-sw_degermetla génération du dernier étage
de connexions. Chacune de ces fonctions prendq@ammetres I'ensemble des nceuds de
I'étage origine des connexions, la permutafiipra appliquer et un dernier argument dénoté
pmsrelatif aux caractéristiques du réseau.

La fonctiongen-top-dminprend en entrée un seul parametre dépots-t Ce dernier est
en effet produit par la fonctioparams-top-ta partir des paramétrggnsde génération des
noeuds. C’est notamment a partir du second parardepms c’est a dire le nom du réseau
networkgu’on pourra sélectionner les permutations adéguatl réseau en question. Enfin,
on pose le prédicatalid-top-dminqui reconnait la validité d’une topologie. Ce pecéd est
une fonction récursive définie en fonction du pecétivalidp-cnxqui admet une connexion
valide. Ce dernier prédicat vérifie que la connaxiproduite posséde exactement la
représentation souhaitée. Le tableau 12 donne sume& des fonctions utilisées dans la

spécification de la topologie.

- Expression dans ACLZ2lillustration de toutes les fonctions spécifieggecédemment
dans ACL2 est donnée aux définitions 5-6 et 5-8.tk@is premieres fonctions des définitions

5-6 ; a savoilgen-top-dmin-src_swgen-top-dmin-sw_swt gen-top-dmin-sw_dessont des

79

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

fonctions récursives définies en fonction de lacfmn de génération d’'une connexion

élémentairgyen-one-cnx
Définitions 5-6. Spécifications de la topologie d’un Delta MIN

;;fct de génération du premier étage de connex{gonarces-switches)
(defun gen-top-dmin-src_sw (S pms-s fp-s)
(if (endp S) nil
(cons (gen-one-cnx (car S) pms-s fp-s)
(gen-top-dmin-src_sw (cdr S) pms-s fp-s))

;;fct de génération des connexions des étages lkeuniswitches-switches)
(defun gen-top-dmin-sw_sw (Sw pms-sw fp-sw)
(if (endp Sw) nil
(append (gen-cnx-node (car Sw) pms-sw fp-sw)
(gen-top-dmin-sw_sw (cdr Sw) pms-sw fp -sw))))

;;fct de génération des connexions du dernier é@dgeonnexions (switches-destinations)
(defun gen-top-dmin-sw_dest (D pms-d fp-d)
(if (endp D) nil
(append (gen-cnx-node (car D) pms-d fp-d)
(gen-top-dmin-sw_dest (cdr D) pms-d fp -d))))

;;fct gen-top-dmin pour la génération de toutedpdlogie par étages
(defun gen-top-dmin (pms-t)

(let* ((x1 (car pms-t))(x2 (cadr pms-t))(x3 (caddr pms-t))
(S (car x1))(pms-s (cadr x1))(fp-s (caddr x 1))
(Sw (car x2))(pms-sw (cadr x2))(fp-sw (cadd r x2))
(D (car x3))(pms-d (cadr x3))(fp-d (caddr x 3))

;1(S pms-s fps)
(top-S (gen-top-dmin-src_sw S pms-s fp-s))

;7 (Sw pms-sw fpsw)
(top-Sw (gen-top-dmin-sw_sw Sw pms-sw fp-sw)

;;(D pms-d fpd)
(top-D (gen-top-dmin-sw_dest D pms-d fp-d)))

(append top-S (append top-Sw top-D))))

Définitions 5-7.Prédicats de validité d’'une connexion et d’'une tog®

;;fct qui reconnait une connexion valide
(defun validp-cnx (c)
(and (consp c) (consp (car c)) (consp (cadr c))
(consp (cdr c))(null (cddr c))))

;;fct valid-top-dmin
(defun valid-top-dmin (top)
(if (endp top)
t

(and (validp-cnx (car top))
(valid-top-dmin (cdr top)))))

80

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Simulation des définitions 5-6 et 5-7Spécification des connexions

ACL2 > (gen-top-dmin (params-top-t '(3 2 omega))))

(((((4) (00 0)) L) (((3) (0 0)) 10))
((4) (00 1) L) (((3) (0 1)) 10))
(((4) (01 0) L) (((3) (1 0)) 10))
(((4) (01 1) L) (((3) (1 1))10))
(((4) (1 00) L) (((3) (0 0)) 11))
(((4) (10 1) L) (((3) (0 1)) 11))
((4) (1 10) L) (((3) (1 0)) 11))
(4 (11 1) L) (((3) (1 1)) 11))
((((3) (0 0)) OO) (((2) (0 0)) 10))
((((3) (0 0)) O1) (((2) (0 1)) 10)
((((3) (0 1)) ©0) (((2) (1 0)) 10)
((((3) (0 1)) O1) (((2) (1 1)) 10))
((((3) (1 0)) ©0) (((2) (0 0)) 1))
((((3) (1 0)) O1) (((2) (0 1)) 11))
((((3) (1 1)) ©0) (((2) (1 0)) 1))
((((3) (1 1)) O1) (((2) (1 1)) 11))
((((2) (0 0)) ©O) (((1) (0 0)) 10)
((((2) (00)) O1) (((1) (0 1)) 10))
((((2) (0 1)) O0) (((1) (1 0)) 10))
((((2) (0 1)) O1) (((1) (1 1)) 10)
((((2) (1 0)) ©0) (((1) (0 0)) 1))
((((2) (1 0)) O1) (((1) (0 1)) 11))
((((2) (1 1)) ©0) (((1) (1 0)) 1))
((((2) (1 1)) O1) (((1) (1 1)) 11))
((((1) (0 0)) ©0) (((0) (0 0 0)) L))
((((1) (00)) O1) (((0) (O 0 1)) L))
((((1) (0 1)) ©0) (((0) (0 1 0)) L))
((((1) (01)) 01) (((0) (O 1 1)) L))
((((1) (1 0)) ©0) (((0) (1 0 0)) L))
((((1) (1 0)) ©1) (((0) (1 0 1)) L))
((((1) (1 1)) ©0) (((0) (1 1 0)) L))
((((1) (1 1)) 01) (((O) 1 1 1)) L))

ACL2 !> (valid-top-dmin (gen-top-dmin (params-top-t (32 omega))) >>T

Tableau 12.Résumé des fonctions de spécification de la topolog

Fonction Argument (s) Réle
gen-top-dmin-s_sw S pms-s fp-s | génére le premier étage de conneXiogn)
gen-top-dmin-sw_sw| Sw pms-sw fptgyénere les étages de connexion du milieu

(G, 0<i<d+l)
gen-top-dmin-sw_destD pms-d fp-d génere le dernier étage de conneXits)
gen-top-dmin pms-t génere toute la topologie
validp-cnx C teste la validité d'une connexian
valid-top-dmin top teste la validité de toute la topologap
params-top-t pms permet de construire la liste da®is-ta partir dgpms

2.2.2.3Vérification des théoremes 4-5 et 4-6

Le théoreme 5-4 est une instance valide du théoi. A travers ce théoréme, nous

démontrons que peu importe la fonction la permomagippliquée pour avoir une connexion,

81

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

I'extrémité de cette connexion sera dans I'enserdbfenceuds du réseau. La prise en compte
de toutes les fonctions de permutations est p@ssiblle prédicaValidfp-dmin(définition 5-

8). Ce premier théoreme servira comme lemme intdiairé@ pour pouvoir démontrer le
théoreme 5-5 suivant. Ce dernier établit le faie dgs extréemités de toutes les connexions
forment un sous-ensemble de I'ensemble des nceedhéboréme 5-5 n’est qu’une instance

du théoréme 4-6.
Définition 5-8. Définition du prédicat Validfp-dmin

(defun Validfp-dmin (fp)
(or (equal fp 'sigmak)(equal fp 'lI)(equal fp ‘tet ak))

Théoréme 5-4 Validité d’'une extrémité de connexion

(defthm ext2-gen-one-cnx-in-nodes
(let* ((nodes (gen-nodes-dmin pms))
(c (gen-one-cnx x i fp))
(ext2 (y-node c)))

(implies (and (ValidParamspD pms) (Validfp-dmin f p)
(member-equal x nodes)(valid-node-d min ext2))
(member-equal ext2 nodes)))
‘hints (("GOAL" :in-theory (disable gen-nodes-inv1))

Preuve : La preuve de ce théoreme est directe mais assgmdarar le démonstrateur doit
faire appel a toutes les définitions des fonctisasondaires, ce qui fait un nombre de cas

extrémement grand.

Théoréme 5-5Validité des fonctions de connexion

(defthm gen-top-dmin-generates-nodes-in-nodeset
(let* ((pms-t (params-top-t pms))
(nodes (gen-nodes-dmin pms))
(top-dmin (gen-top-dmin pms-t))
(ext2s (ext2s-top top-dmin)))
(implies (ValidParamspD pms)
(subsetp-equal ext2s nodes)))
:hints (("GOAL" :induct (ext2s-top top-dmin))))
Preuve : Le théoréme 5-5 a pu étre démontré grace a trmisipaux lemmes intermédiaires.
Chacun de ces lemmes est utilisé pour démontrerlegiextrémités d’'une sous-topologie
forment un ensemble inclut dans I'ensemble de ndnatkes) Par exemple, le théoreme 5-6
est établi dans le but de vérifier que toutes Jgemités de la sous-topologie générée par la
fonctiongen-top-dmin-src_swsont effectivement dans I'ensemble des nceudéskau. Il en
est de méme pour les deux autres fonctgerstop-dmin-sw_set gen-top-dmin-sw_destes

théoremes similaires ont di étre démontrés.

82

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Théoreme 5-6Validité des extrémités générées par la fonctiamig@-dmin-src_sw

(defthm gen-top-dmin-src_sw-generates-nodes-in-node set
(let* ((pms-t (params-top-t pms))
(x1 (car pms-t))
(S (car x1))
(pms-s (cadr x1))
(fp-s (caddr x1))
(nodes (gen-nodes-dmin pms))

(top-dmin-s_sw (gen-top-dmin-src_sw S pm s-s fp-s))
(ext2s (ext2s-top top-dmin-s_sw)))
(implies (and (ValidParamspD pms)(valid-params-t pms-t)

(valid-ext2s-dmin ext2s))
(subsetp-equal ext2s nodes)))
:hints (("GOAL" :induct (ext2s-top top-dmin-s))))
Preuve : Le théoréme 5-6 n’est automatiquement admis dans2Aqtie si on lui fournit le
conseil (hint) d’effectuer une induction sur la structure dedaction ext2s-topqui est une

fonction définie récursivement.

2.2.2.4 Vérification du théoreme 4-7

La concrétisation du théoreme 4-7, qui concernaldité de la représentation de toute la

topologie générée, est illustrée a travers le #réers-7.
Théoréme 5-7Validité de la topologie d’'un Delta MIN

;;thm de validité de toute la topologie
(defthm valid-gen-top-dmin
(let* ((pms-t (params-top-t pms))
(top (gen-top-dmin pms-t)))

(implies (and (ValidParamspD pms)(valid-params-t pm s-t))
(valid-top-dmin top)))
:hints (("GOAL" :in-theory (disable Validfp-dmin G EN-NODES-DMIN-S-pms
gen-nodes-dmin-sw-1-pms G EN-NODES-DMIN-d-pms))))

Preuve : L’admission du théoreme 5-7 dans ACL2 n’'est pasatie. En effet, de fagon
similaire a la stratégie utilisée dans la démotisttadu théoréme 5-5, il a fallu aussi
raisonner par étages. Ainsi, on a décomposé |laaiote a démontrer sur toute la topologie
en trois contraintes élémentaires a vérifier suacahe des sous-topologies générées
respectivement par les fonctiomgen-nodes-dmin;gen-nodes-dmin-swt gen-nodes-dmin-

d. L'un de ces lemmes intermédiaires est illustn@eers le théoreme 5-8.

Théoréme 5-8Validité du premier étage de connexion d’'un DeltdNM

;;thm de validté du premier étage de connexion
(defthm valid-gen-top-dmin-src_sw
(let* ((S (gen-nodes-dmin-s-pms pms))
(top-s_sw (gen-top-dmin-src_sw S pms-s fp))

83

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

(implies (and (valid-pms-SubS pms)(valid-S S)

(valid-SubS pms-s)(Validfp-dmin fp))
(valid-top-dmin top-s_sw)))
:hints (("GOAL" :induct (gen-top-dmin-src_sw S pm s-s fp))))

Preuve : En conseillant le prouveur d’ACL2 d'essayer de détrey le théoréeme en
procédant par induction sur la structure de la tioncgen-top-dmin-src_swa preuve du

théoreme 5-8 est alors automatique.

2.3. La composante routage

2.3.1. Spécification de la fonction de routage

Dans ce qui suit, nous spécifions l'algorithme damitage utilisé dans les réseaux
d’interconnexions multi-étages, ainsi que sa triadocdans la logique ACL2 (Ellet al.a
2008). Enfin, nous développons quelques théoreéraes k& but de vérifier la conformité des

fonctions définies.

- Principe :I'algorithme de routage des Delta MINs, dénoté lkreaiting », ne dépend que
de l'adresse destination. Cette derniere est @ppalssi séquence de contrdle (control
sequence). Puisque les Delta MINs qu'on modéligsent des crossbars 2x2, I'algorithme
de calcul d’'une route a le principe suivant : $PTEbit courant de la séquence de contrdle est
a 1 alors le message sera commuté a travers lehaortdu commutateur, sinon par le port
bas.

Dans ce contexte, on doit aussi définir une fomctjai calcule toutes les routes valables
des missives ou messages d’'un ensemble donné & @mivelle fonction fera appel a la
fonction de routage élémentaire définie précédenimen

- Spécification On désigne parouting-dmin la fonction principale de routage. Cette
derniere est une instance de la fonctiemExt-Routing »décrite au niveau générique
(définition 4-4). Elle prend en arguments I'enseell des messages a router et la topologie
Top du réseau en question (définition 5-10). Cettection doit nécessairement faire appel
aux accesseutdy, Orgy, Desty et Frmy pour accéder aux différents éléments d’'un message
et mettre ainsi le message résultat (appelé vogage la notation GeNoC) dans le format
souhaité(id frm routes) La méme fonctiorrouting-dmin doit en plus faire appel a une
fonction récursive appeléeompute-routes-dmimpour calculer une route élémentaire entre

I'origine et la destination du message a router.

84

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

En réalité, la fonctiorcompute-routes-dmim’est autre qu’une instance de la fonction
génériquep-ext Ainsi, pour chaque missive ou messagele I'ensembléV, cette fonction
teste ei®™®bit courant de la séquence de contrble et appellenietibn secondaire désignée
par rech-toppour chercher la connexion correspondante auiptahs la topologie. Sachant
que chacun des ports au niveau d’'un nceud possedeammexion unique avec l'un des

nceuds de I'étage suivant, la valeur retournéegpfamictionrech_topest alors unique.

- Traduction dans ACL2Ie pseudo code, ainsi que le code ACL2 relatif @canisme de
routage élémentaire sont illustrés dans la défimith-9. La fonctionrech_top utilisée au
niveau du pseudo code de la fonctammpute-routes-dmjrest substituée par deux fonctions
ACL2 : switch et assoc-equallLa premiere sert a commuter le message au nidaau
switch en fonction du bit courant [it_rtg), alors que la seconde permet de retourner la
connexion correspondante a partir de la topologie.

Définition 5-9. Spécification de la fonction de calcul d’'une roatémentaire dans ACL2
- Pseudo code de la fonction de calcul d’'une route :

compute-routes-dmin (from dest top)
if (from = dest) /* destination reached */

then take the local port of the destination
else

if (dest [i] = 0) /* ith bit equals 0 */

then take the upper output of thecdwat Si
from = rech_top (from top 0)
compute-routes-dmin (from dest top)

else /* ith bit equals 1 */

take the lower output of the swatISi
from =rech_top (from top 1)
compute-routes-dmin (from dest top)

- Traduction dans la logique ACL2 :

(defun compute-routes-dmin (from to top)
(if (endp to)
nil
(let* ((bit_rtg (car to))
(from-a (switch from bit_rtg))
(cnx (assoc-equal from-a top))
(next-node (cadr cnx)))
(cons cnx (compute-routes-dmin next-node (cdr to) top)))))

85

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Heu

Définition 5-10. Spécification de la fonction de routage

(defun routing-dmin (Missives topology)
(if (endp Missives)
nil
(let* ((miss (car Missives))
(from (OrgM miss))
(to (DestM miss))
(id (IdM miss))
(frm (FrmM miss))
(cdrto (cadr to)))
(cons (list id frm
(compute-routes-dmin from (append '(s) cdrto) topology))
(routing-dmin (cdr Missives) topology) N)

Simulation de la définition 5-10.Spécification de la fonction de routage

Nous simulons I'exécution de la fonction de routagenée a la définition 5-10 pour la
liste de missives du tableau 13 et ceci dans watEe®meéga de taille 8 utilisant des crossbars
2x2. La figure 28 présente les chemins empruntédgsadeux missives sur le schéma de

I'Omeéga (8, 2). Les résultats de cette simulatmmt dlustrés au tableau 14.

Tableau 13.Une liste de missives

id | origine | contend destination
1| ((4) (001))] frm1 | ((0) (100))
2 | ((4) (110)| frm2 | ((0) (111))

s4 c3 s3 C2 s2 c1 s1 co S0
((4)(000)) - — — ((0)(000))
-' KQICD) IER ((HTCL)) I ((€67(10)] IR

|- . ((0)(001))

((4)(010))
((4)(011))

| (0)(010))

((2)(01)) {(1)(01))

___ ((0)(011))

((4)(100))

((4)(101)) wem

- [@ao L ((0)(101))

((2)(10))

| (0)(110)

Cleam| P k@] P O

Figure 28.lllustration des résultats de simulation

86

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Tableau 14.Les résultats de simulation de la liste de missives

id 1 2
étage
C3 ((((4) (001) L) (((3) (01)) 10))| ((((4) (110)) QX(3) (10)) 11))
C2 ((((3) (01)) O1) (((2) (11)) 10)), ((((3) (10)) OLY(2) (01)) 11))
C1 ((((2) (11)) O0) (((1) (10)) 11)), ((((2) (01)) OLY(1) (11)) 10))
Co ((((1) (10)) OO) (((0) (100)) N ((((1) (11)) OW(O) (111)) L))

2.3.2. Validation de la fonction de routagerouting-dmin »

Nous détaillons dans cette derniére partie, lesacfaux théoremes validés dans le
contexte de la fonction de routageiting-dmin définie précédemment.

2.3.2.1Vérification de théorémes intermédiaires

Avant de veérifier les deux principales contraindesla fonction de routage, il existe deux
autres théoremes a démontrer (théorémes 5-9 e}. 3288 derniers assurent que pour un
ensemble donné de missives valides (reconnu parddicat Missivep), tous les noeuds
origines et destinations de ces missives sont sr(slbsetp)dans I'ensemble des nceuds du
réseauNodeSet)L’'acces a ces deux ensembles se fait via les tnotionsM-orgs et M-

Dests

Théoréme 5-9L’ensemble origine des missives est inclus daneSetd

(defthm M-orgs-subsetp-Nodeset
(let ((NodeSet (gen-nodes-dmin pms))
(pms-t (params-top-t pms))
(top (gen-top-dmin pms-t)))
(implies (and (ValidParamspD pms) (Missivesp M top)
(valid-params-t pms-t))
(subsetp (M-orgs M) NodeSet)))
:hints (("GOAL" :in-theory (disable EXPLODE-NONNEGA TIVE-INTEGER MOD FLOOR
DIGIT-TO-CHAR DEFAULT-<-2 Y-GEN-NODE GEN-NODE))))

Théoreme 5-10L'ensemble destination des missives est inclus NadgSet

(defthm M-dests-subsetp-Nodeset
(let (NodeSet (gen-nodes-dmin pms))
(pms-t (params-top-t pms))
(top (gen-top-dmin pms-t)))
(implies (and (ValidParamspD pms) (Missivesp M top)
(valid-params-t pms-t))
(subsetp (M-dests M) NodeSet)))

:hints (("GOAL" :in-theory (disable EXPLODE-NONNEGA TIVE-INTEGER MOD FLOOR
DIGIT-TO-CHAR DEFAULT-<-2 Y-GEN-NODE GEN-NODEY))))

Preuves :Les preuves des deux théorémes sont automatiquapides. ACL2 exécute les
deux démonstrations par une simple induction swstdacture des fonctions accesseurs M-

87

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Orgs et M-Dests. Finalement, ces deux théoremesntseutiles dans les futures

démonstrations.

2.3.2.2Vérification du théoréme 4-8

Le théoréme 5-11 suivant est une instance validéhéaréme générique 4-8. Ce dernier
doit assurer la validité des routes produites pdohctioncompute-rtes-dminPour cela, on
doit vérifier le prédicaExt-ValidRoutepdéfini déja de facon statique. On rappelle que ce
prédicat exige que la longueur d’'une route calculéé supérieure ou égale a 1 et que le
premier élément de la premiere connexion de cetitersoit égale a l'origine du message a

router.

Théoréme 5-11Validité des routes produites par la fonction comapries-dmin

M, Msyp (M, Top)= Om L M, Jr [J compute-routes-dmin (Qug(m),Desy (m), Top),
Ext-ValidRept(r,m,Top)

Dans ACL2, ceci donne :

(defthm rte-ext-validroutep

(let ((rt (compute-routes-dmin-call from to top))
(implies (and (valid-node-dmin from) (va lid-node-dmin to)
(not (endp (ASSOC-EQUAL (C ONS FROM ‘(L)) TOP)))
(valid-top-dmin top)(alist p top)(not (endp rt)))
(ext-validroutep rt)))
‘hints (("GOAL" :in-theory (disable compute-routes- dmin MOD FLOOR DIGIT-TO-

CHAR DEFAULT-<-2 Y-GEN-NODE GEN-NODE EXPLODE-NONNEGTIVE-INTEGER))))

Preuve : La preuve de ce théoréme n’est pas directe. ConenpmeédicatExt-ValidRoutep
n'est autre que la conjonctidget) de deux autres prédicalen et first) on doit procéder par
décomposition du but final en deux lemmes interaiéel (théorémes 5-13 et 5-14). Chacun
de ces deux lemmes sera relatif a chacun de cdggi® Un autre théoreme est aussi utile
(théoreme 5-12) pour achever cette preuve. Enfirdait effectuer la désactivatigdisable)

de quelques définitions pour que le démonstratedes prenne pas en considération.

Théoreme 5-12Type de valeur retourné par compute-rtes-dmin

(defthm true-listp-compute-routes-dmin
(let* ((pms-t (params-top-t pms))
(top (gen-top-dmin pms-t))
(rt (compute-routes-dmin from to top)))
(implies (and (valid-node-dmin from)
(valid-node-dmin to)
(ValidParamspD pms) (valid-params-t pms-t))
(true-listp rt)))
‘hints (("GOAL" :in-theory (disable compute-routes- dmin))))

88

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Preuve : Il s’agit d’'une preuve triviale mais nécessaire laACL2. En réalité, le

démonstrateur n'a méme pas besoin de connaitieyfegheéses fournies, il lui suffit de faire
appel a la regle de réécriture relative au typevaleur stocké correspondant a la fonction
compute-routes-dmin (:type-prescription-rulé@)’ailleurs, on désactive méme la fonction

compute-routes-dmiafin de guider au maximum la démonstration.

Théoréme 5-13Longueur d’'une route produite par la fonction congrtes-dmin

(defthm len-routing-dmin->=-1
(let ((rt (compute-routes-dmin from to top)))

(implies (and (valid-node-dmin from) (valid-n ode-dmin to)
(not (endp (ASSOC-EQUAL (CONS F ROM ‘(L)) TOP)))
(valid-top-dmin top)(alistp top)(not (endp rt)))
(>= (len rt) 1))
:hints (("GOAL" :in-theory (disable MOD FLOOR DIGIT -TO-CHAR DEFAULT-<-2 Y-

GEN-NODE GEN-NODE compute-routes-dmin EXPLODE-NONNE GATIVE-INTEGER))))

Preuve : La seule condition(not (endp rt)) permet au démonstrateur de procéder par
déduction. En effet, il existe une régle stockéesda base de données qui associe a chaque

liste non nil, une longueur supérieure ou égale a 1.

Théoreme 5-141 e premier élément d’'une route produite par la tamt compute-rtes-dmin

(defthm first-routing-dmin
(let ((rt (compute-routes-dmin from to top)))

(implies (and (valid-node-dmin from) (valid-nod e-dmin to)
(not (endp (ASSOC-EQUAL (CONS FRO M (L)) TOP)))
(valid-top-dmin top)(alistp top)(not (endp rt)))
(equal (caaar rt) from)))
:hints (("GOAL" :in-theory (disable compute-routes- dmin MOD FLOOR DIGIT-TO-

CHAR DEFAULT-<-2 Y-GEN-NODE GEN-NODE EXPLODE-NONNE&TIVE-INTEGERY))))

Preuve : Le prouveur d’ACL2 opere automatiquement par inducsur la structure de la
fonction compute-routes-dmipour compléter la preuve de ce théoreme. Danagelm’est
pas nécessaire de fournir a ACL2 himt (conseil) lui montrant le schéma d’induction a
utiliser (:induct). Comme il existe plusieurs manieres pour effectwee démonstration
donnée, il faudra encore avoir recours au mécanidmedésactivation. Autrement, les
démonstrations risquent d’étre inutilement allorsgé®autres lemmes plus élémentaires, non

cités ici, ont d0 aussi étre fourni.

2.3.2.3Vérification du théoréme 4-9

Le théoréme 4-9, concrétisé a travers le théoredts Boit vérifier la validité des voyages
produits par la fonctiomouting-dmin Cette validité est reconnue par le prédicat @tur

Validfields-TrLst Ce prédicat assure que chacun des voyages afmaida fonctiomouting-

89

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

dmin posséde le format souhaité (prédicatidfield-travelp, que son identificateur est un
naturel(natp (IdV tr)) que le contenu de son message est correctenpeéseatgFrmV tr)

et enfin que 'ensemble des routes calculées formmea liste(true-listp (RoutesV tr))

Définition 5-11. Définition du prédicavalidfields-TrLst

(defun Validfields-TrLst (TrLst)
(if (endp TrLst)
t
(let ((tr (car TrLst)))

(and (validfield-travelp tr)
(natp (IdV tr)) i d is a natural
(FrmV tr) o f rm /= nil
(true-listp (RoutesV tr))
(Validfields-TrLst (cdr TrLst))))))

Théoreme 5-15Validité des voyages produits par la fonction mgtdmin
[IM, Mistp (M, TOp) = Visyp (routing-dmin (M, Top))

Ce qui donne en ACL2 :

(defthm Valid-voyg-routing-dmin
(let* ((pms-t (params-top-t pms))
(NodeSet (gen-nodes-dmin pms))
(top (gen-top-dmin pms-t))
(voyg (routing-dmin M top)))
(implies (and (ValidParamspD pms)(valid-param s-t pms-t)
(Missivesp M NodeSet))
(Validfields-TrLst voyg))))
:hints (("GOAL" :in-theory (disable MOD FLOOR DEFAU LT-<-2 Y-GEN-NODE GEN-
NODE gen-nodes-dmin compute-routes-dmin EXPLODE-NON NEGATIVE-INTEGERY))))

Preuve : En procédant par décomposition du but final en dmis €lémentaires, deux
théoremes sont nécessaires pour parvenir a acedmgimonstration. Ce sont les théoremes
5-16 et 5-17.

Théoreme 5-16Type de valeur retourné par routing-dmin

(defthm True-listp-routing-dmin
(let* ((pms-t (params-top-t pms))
(NodeSet (gen-nodes-dmin pms))
(top (gen-top-dmin pms-t))
(voyg (routing-dmin M top)))
(implies (and (ValidParamspD pms)(valid-param s-t pms-t)
(Missivesp M NodeSet))
(true-listp voyQ))))

:hints (("GOAL" :in-theory (disable MOD FLOOR DIGIT -TO-CHAR DEFAULT-<-2 Y-
GEN-NODE GEN-NODE gen-nodes-dmin compute-routes-dmi n EXPLODE-NONNEGATIVE-
INTEGERY))))

Preuve :La preuve de ce théoreme est directe. Le démoagtridit juste appel a la régle qui
donne le type de la valeur retournée par la fonatbmting-dmin (:type-prescription-rule)

90

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Cette regle a d0 étre stockée dans la base de eéomepuis I'admission de la fonction

routing-dmin
Théoréme 5-17. Validité du format d’un voyage donné

(defthm valid-field-travelp-rt
(let* ((pms-t (params-top-t pms))
(NodeSet (gen-nodes-dmin pms))
(top (gen-top-dmin pms-t))
(rt (compute-routes-dmin from to top)))
(implies (and (ValidParamspD pms)(valid-param s-t pms-t)
(Missivesp M NodeSet))
(validfield-travelp tr))))

:hints (("GOAL" :in-theory (disable MOD FLOOR DIGIT -TO-CHAR DEFAULT-<-2 Y-
GEN-NODE GEN-NODE gen-nodes-dmin compute-routes-dmi n EXPLODE-NONNEGATIVE-
INTEGER))))

Preuve : La preuve de ce théoreme est assez longue. Eliefaloé appel a toutes les
définitions des fonctions élémentaires définiesrpeérifier que la route produite par la

fonctioncompute-routes-dmiest au format du prédicaalidfield-travelp

2.4. Vérification de la conformité des définitions congtes

Apres avoir démontré séparément les contraintagaiblres sur la topologie et le routage
dans un réseau Delta MIN quelconque, il faut maemé vérifier la conformité des
deéfinitions du niveau concret avec les définitiashs niveau générique. Cela revient a
démontrer que toutes les définitions du niveau rfau niveau du fichier top-dmin.lisp et
rt-dmin.lisp) sont des instances valides des fonctions générigueniveau du fichier gen-
top.lisp et gen-rt.lisp)Cette contrainte est illustrée a travers le thdmr 5-18 suivant.

Théoréme 5-18Conformité avec les définitions génériques

(defthm check-DMIN-TOP t

:rule-classes nil
.otf-flg t

:hints (("GOAL"
:use

((:functional-instance nodeset-generates-valid-node s
(ValidParamsp ValidParamspD)

(NodeSetp valid-nodes-dmin)

(NodesetGenerator gen-nodes-dmin)

(gen-top gen-top-dmin)

(params-top params-top-t)

(ValidParamsp-top valid-params-t)

(valid-top valid-top-dmin)

(valid-ext2s valid-ext2s-dmin)

(routing-dmin ext-routing))

91

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

lin-theory (disable subsets-are-valid nodeset-gene rates-valid-nodes gen-
top-generates-valid-top-1 gen-top-generates-nodes-i n-nodeset ext-routing))
("Subgoal 4" :in-theory (disable gen-top-generates- nodes-in-nodeset GEN-
NODES-DMIN-S-pms gen-nodes-dmin-sw-1-pms GEN-NODES- DMIN-d-pms ALL-Y-
EQLABLE-1 valid-nodes-dmin GEN-NODES-INV1-CALL gen -top-dmin gen-nodes-dmin

NOT PARAMS-TOP-S PARAMS-TOP-SW PARAMS-TOP-T))
;;:induct (ext2s-top top-dmin)

("Subgoal 3" :in-theory (disable gen-top-generates- valid-top-1 Validfp-dmin
GEN-NODES-DMIN-S-pms gen-nodes-dmin-sw-1-pms GEN-NO DES-DMIN-d-pms NETWORK-
PERM Validfp-dmin gen-nodes-dmin NOT PARAMS-TOP-S P ARAMS-TOP-SW PARAMS-
TOP-T VALIDPARAMSPD VALID-PARAMS-T valid-S valid-Su bS valid-D valid-SubD

valid-Sw valid-SubSw GEN-TOP-DMIN))

("Subgoal 1" :in-theory (disable nodeset-generates- valid-nodes rev GEN-
NODES-INV1-CALL GEN-NODES-DMIN-SW-1 GEN-NODES-DMIN EXPLODE-NONNEGATIVE-
INTEGER valid-nodes-dmin))))

Preuve : La preuve de conformité entre les niveaux générigueoncret dans ACL2 est
automatique. En effet, apres avoir démontré lestramtes sur la topologie de fagon
indépendante (théoremes 5-1, 5-5 et 5-7) et suougage (théoremes 5-11 et 5-15), le
prouveur va utilisetes regles de réécritureorrespondantes pour générer automatiquement la
démonstration du « check ». La seule astuce dansageconsiste en la désactivation de
guelques définitions au niveau de chaque sousSuligoal) pour que ACL2 ne refasse pas

certaines démonstrations déja produites auparavant.

2.5. Vérification du théoréme de correction global du m&le

Apres avoir démontré la conformité des deux compiesatopologie et routage de notre
modele formel des réseaux multi-étages de la faniilelta dédiés aux MPSoCs, nous
pouvons maintenant déduire que le théoréme globatadrection, assurant la fiabilité des
messages transmis a travers le réseau, est coftembeeme 5-19).

En réalité, I'approche générique n’exige pas deememhtrer son théoreme global de
correction. Ceci peut étre vérifié depuis les razegui ont été déja validés a travers cette
approche (Octagon, algorithmes de routage adagtdiie plus, méme en étendant le modeéle
(cas de Hermes), il n’a pas été nécessaire de madéen ce théoreme.

Les difféerents théoremes précédemment développésemi pour valider le théoréme
final 5-19. Dans la présentation de ces théorenmss avons essayé de fournir les principaux
lemmes intermédiaires servant a aboutir a la détratim du but final. Outre I'apprentissage
d’ACL2, la principale difficulté rencontrée concerie développement des tactiques pour

parfaire les différentes démonstrations. Ces lenmiéaient pas toujours réutilisables dans le

92

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

cadre d’'autres démonstrations. Dans certains Idafiait méme désactiver quelques uns pour
guider au plus le démonstrateur. Cette difficultét ran évidence le probleme du chapeau

mexicain évoqué au chapitre 2 (figure 12).

Théoréme 5-19Fiabilité des réseaux Delta MINs dédiés aux MPSoCs
(

rst ORIt [T, IdR(rst) = IdT(t)

< [J MsgR(rst) = MsgT(t)

[7 DestR(rst) = DestR(t)
\

Preuve : La preuve de ce théoréme dans ACL2 n’est pas r@oes®ar I'approche du

modele générique étendu, on peut déduire la caorede ce théoréme.

3.Conclusion

Nous avons détaillé dans ce chapitre notre spatiic fonctionnelle dans une notation
formelle des réseaux Delta MINs dédiés aux MPS®osis avons utilisé le démonstrateur
de théorémes ACL2 pour vérifier les différentes trintes sur le modéle défini. Le
développement du modéle formel dans ACL2 s’estsiaitune machine Pentuim 4 a 2,4 GHz
fonctionnant sous Linux avec une mémoire a 256 MBtemps de vérification des théoremes
n'est pas assez grand vu le mécanisme d’activatiale désactivation des régles auquel on a

eu recours.

93

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Conclusion et perspectives

1.Conclusion

Le propos de ce sujet de mastére a été le dévetmpped’'un modele formel pour des
réseaux multi-étages dédiés aux systemes multiggeaes sur puce (MPSoCs). Notre travail
décrit en effet une méthodologie pour lintégratioles méthodes formelles dans la
vérification des architectures de communicationgguoe.

Plusieurs étapes ont été essentielles pour le @gweient du modele formel. Pour mettre
le probleme dans son cadre, il a été nécessaitedité le domaine des systéemes sur puce
(SoCs), des formalismes et des réseaux multi-éfdidés) de la famille Delta. Au cours de
cette phase, plusieurs travaux antérieurs ontréldécuteé.

Dans le cadre de la vérification formelle des dpgtions, I'un de ces travaux nous a
particulierement intéressées. En effet, cette étadété basée sur une formalisation
complétement générique des communications sur ptibe.est concrétisée a travers un
modele appelé GeNoC (Generic Networks on chip)é&aier s’est avéré trés efficace lors de
la vérification de certains réseaux sur puce (Nd€ls)que I'Octagon. C’est un modele qui a
aussi témoigné d'une grande flexibilité pour validles communications sur puce dans le
réseau Hermes. La correction globale du modeleriggreéest illustrée a travers un théoreme
de fiabilité qui assure que «tout message émis damréseau atteint sa destination sans
modification de son contenu. ». L’approche GeNoCagt de la sorte la correction de ce
théoréme pour n’importe quel réseau sur puce,rinstde GeNoC et vérifiant ses contraintes
génériques.

Nous avons alors voulu appliquer la méme approcie yalider les réseaux multi-étages
dédiés aux MPSoCs. Toutefois, nous nous sommederapnt confrontées a une grande
contrainte : le modéle générique ne tient pas cemaphcretement de l'aspect topologie et
plus précisément des connexions entre les noewsaifeurs, il considere implicitement
I'existence des liens entre les nceuds d’une roalui@e ; or une telle connaissance serait
primordiale pour la validation des MINs. Pour réd@uce probleme, nous avons eu l'idée de
concevoir et implémenter une composante topologeégdque, ainsi que la composante
routage résultante du méme niveau. Pour dévelamgits extension, il a fallu identifier les
propriétés pertinentes et communes a toutes leslogips et les traduire sous forme de

théoremes dans la logiqgue ACL2. Durant cette phases avons essayé de tirer profit des

94

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

bases de la théorie des graphes pour construireefl@ment les connexions de toute la
topologie d’'un réseau sur puce. Les deux composaitesi développées ont pu finalement
étre intégré au sein du modéle GeNoC décrivantsalor modéle plus réaliste des
communications dans les réseaux sur puce.

Dans une seconde phase, nous avons formalisé msliapproche GeNoC étendue et
dans la logique du démonstrateur de théorémes AleEZ;ommunications dans les réseaux
multi-étages de la famille Delta. Nous nous sommegmment focalisées sur les deux
composantes topologie et routage. Durant chacuse@dges précédentes, il nous a fallu en
plus prendre en considération les contraintes gstermes multiprocesseurs sur puce pour
lesquels est destiné le modéle formel. Les réseaulti-étages ainsi spécifiés et vérifiés

formellement forment une instance valide du mosdéloC étendu.

2.Perspectives

Nous estimons qu'’il est possible d’appliguer I'eddi®n du modéle générique pour donner
une spécification formelle de toute architecturecdenmunication sur puce. En effet, pour
valider des réseaux ayant une topologie en grilldrizompléte ou des réseaux indirectes, il
faudra adopter le modele générique étendu et nanlpimodele GeNoC initial.

Il est vrai que dans le cadre de ce travail de énast’'objectif initial était de valider
formellement I'ensemble des communications dansrédsgaux multi-étages englobant le
routage et I'ordonnancement. Cependant, l'inténé¢ qous avons dd porter au modele
GeNoC nous a obligé de prévoir I'extension du nivgénérique de facon que la composante
ordonnancement n’ait pas pu finalement étre valitieis estimons qu'il suffirait de choisir
I'un des algorithmes d’ordonnancement déja vépféir I'intégrer comme une composante
pré-validée dans I'ensemble du modele final. Unéhode similaire a été utilisée pour valider
les algorithmes de routage adaptatifs dans deaugsg/ant une topologie en grille 2D.

Une autre perspective possible comme extensionmaastere consiste en la formalisation
de I'implémentation des réseaux MINs dédiés aux ME:S Ceci revient a descendre dans le
niveau d’abstraction pour s’occuper des détailsndeau implémentation de ces réseaux
(signaux, files d’attente...). Le modéle développéasdke cadre de ce mastere servira alors

comme un modele de niveau spécification pour herfptototype.

95

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Bibliographie
(ACL2) http://www.cs.utexas.edw@smoore/acl2/acl2-doc.html.
(ACM, 2006) ACM: Press Release, March 15, 2006.
(Arga, 1983) Argawal D.P., « Graph theomdti@nalysis and design of

multistage interconnection networks MEEE Transactions on
Computeryol. 32, n° 7, July 1983.

(Aria, 1996) « ARIANE 5 - Flight 501 Failure »ttp://www.cnes.fr/, rapport
n° 501, 1996.

(ARM, 1999) ARM Limited. AMBA specification, 2.0 &bns, 1999.

(Arte) Arteris, http://www.arteris.net.

(Ateris, 2005) Ateris, A comparison of Network-omi@ and Busses,
www.ateris.com, 2005.

(Beniet al, 2002) Benini L., Micheli G., «Networks on chipst new SoC
paradigm »|EEE Computervol. 35, n° 1, p. 70-78, 2002.

(Beret al, 1998) Berzin S., Campos S., Clarke E.M, « Coniposal Reasonning

in Model Checking »in COMPOS'97: The significant Difference
p. 81-102, Springer-Verlag, 1998.

(Bjer et al, 2006) Bjerregaard T., Mahadevan S., « A surveyredearch and
practices of Network-on-chip ACM Computing Surveysol. 38,
n° 1, 2006.

(Bol, 2001) Bolduc C., Les démonstrateurs autornasq de théoremes,

rapport de recherche, Faculté des sciences etrde, géniversité
de Laval, 2001.

(Borr et al, 2006) Borrione D., Helmy A., Pierre L., « ACL2deal Verification of
the Communications in the Hermes Network on ChigPrgc.
International Workshop on Symbolic Methods and isptbns to
Circuit Design (SMACD'06)2006.

(Brocet al, 1999) Brock B., Hunt W. A., « Formal analysis tok motorola CAP
DSP »,in Industrial-Strength Formal Method$pringer-Verlag,
1999.

(Bry, 1986) Bryant R.E., « Graph-based Algorithne Boolean Function

96

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

(Ceseet al, 2002)

(Cheu et al., 1986)

(Claret al, 1996)

(Claret al, 1986)

(Coll, 2003)

(Coq)
(Core)
(Desh, 2000)

(Elle et al, 2008)

(Elle et al.a 2008)

(Freek)
(Gebret al, 2005)

Manipulation »|EEE Transactions in Computergol. 8, n° 35, p.
677-691, 1986.

Cesario W.0O., Lyonnard D., Nicolescu G.vieaY., Yoo S.,

Gauthier L., Diaz-Nava M., Jerraya A.A.; « Multiggessor SoC
platforms: a component-based design approadkBEE Design

and Test of Computergol. 19, n° 6, p. 52—63, 2002.

Cheung T., Smith J. E., « Autation study of the CRAY X-MP
memory system 3EEE Transactions on Computersol. 35, n° 7,
IEEE Computer Society, Washington, p. 613—622, 1986
Clarke E. M., Win J. M., « Formal Metho&sate of the Art and
Future Directions »,ACM 50th-anniversary issue: strategic
directions in computing research, ACM Computing vBys
(CSUR) vol. 28 n° 4, ACM, New York, p. 626-643, 1996.
Clarke E.M., Emerson E.A., Sistla A.P., &dmatic Verification
of Finite-State Concurrent Systems Using Temporalgit
Specifications »in Transactions on Programming Languages and
Systemsvol.8, n° 2, p. 244- 263, 1986.

Collier M., « A Systematic Analysis &quivalence in Multi-
Stage Networks »LT, 2002.

http://pauillac.inria.fr/coq/.
http://www-3.ibm.com/chips/products/corececin

Desharnais J., Notes de cours du amifegique et structures
discretes. Département d’informatique, universégal, 2000.
Elleuch M., Aydi Y., Abid M., « Formal Spécation of Delta
MINs for MPSOC in the ACL2 Logic »n Proceedings of Forum
on Design and specification Languages - FDL (B&pparaitre).
Elleuch M., Aydi Y., Abid M., «Formal Sp#cation and
Verification of a Delta-MIN Based Interconnectiorrchitecture
for MPSoC »jn Proceedings of ReCoSoC '(8apparaitre).
http://www.cs.ru.nl/~freek/digimath/indetoh
Gebremichael B., Vaandrager F.W., Zhang Gloossens K.,
Rijpkema E., Radulescu, A., « Deadlock Prevention the

Aethereal Protocol », in D. Borrione and W. Paullitas,

97

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

(Giacet al, 1991)

(Gord,1989)

(Gottet al, 1983)

(Grieset al, 1994)

(Groet al, 2005)

(Hall, 1990)

(Ho et al, 2001)

(HOL)

(IMEC, 2006)
(Intel, 2006)

(Isabel)
(ISO)
(Jant, 2006)

(Kahl, 2005)

Proceedings 13th IFIP Advanced Research Workingféence
on Correct Hardware Design and Verification Methods
(CHARME'05), p. 345-348, 2005.

Giacopelli J., Hickey J., Marcus W., SirgesN., Littlewood M.,
« Sunshine: A high-performance self routing br@adb packet
switch Architecture »,IEEE Journal on Selected Areas in
Communicationsvol. 9, n° 8, p.1289-1298, 1991.

Gordon M.J.C., Lectures on the Spetifimn and Verification of
Hardware, notes de cours, université de Cambritigfg9.

Gottlieb A., Grishman R., Kruskal C.P., Mdiffe K.P., Rudolph
L., Snir M., « The NYU ultracomputer-Designing aMiMD
shared memory parallel computer ¥EE Transactions on
Computersvol. 32, n° 2, p. 175-189, 1983.

Gries D., Schneider F.B., A Logical Approdao Discrete Math.
Springer, 1994.

Groth D., Skandier TNetwork + Study GuideSybex, San
Francisco, 2005.

Hall A., « Seven Myths of Formal Metiso», IEEE Software p.
11-19, 1990.

Ho, Mai K., Horowitz M., « The future of s »,Proceedings of
the IEEE p. 490-504, 2001.
http://www.cl.cam.ac.uk/research/hvg/HOL/.

IMEC, « MultiMedia Multi-Format (3MR)odec », 2006.

Intel Corp, « New Dual-Core Inteldtam 2 Processor Doubles
Performance, Reduces Power Consumption 2006
http://www.intel.com/pressroom/archive/releases/.
http://www.cl.cam.ac.uk/Research/HVG/Idkbe
http://www.iso.org/iso/.

Jantsch, A., « Standards for NoC: What we gain? »f-uture
Interconnects and Networks on Chip Workshop, DATE62
2006.

Kahle, J., « The Cell Processor Asttitre »,in MICRO, IEEE
Computer Society, 2005.

98

Développement d’'un modéle formel des MINs dédiésMBSOCs

Maissa Hleu

(Kari et al, 2001)

(Kauf et al, 1996)

(Kauf et al, 2000)

(Kauf et al.a 2000)

(Kauf et al, 2001)

(Koy, 1990)

(Kropf, 1997)

(Kropf, 1999)

(Kut, 1994)

(Laprie, 1990)

(Leveet al, 1993)

(Man, 1982)

(Mark, 1994)

Karim F., Nguyen A., Dey S., Rao R., « ¢ip Communication
Architecture for OC-768 Network ProcessorsBroc. Design
Automation Conf. (DAC 012001.

Kaufmann M., Moore J. S., « ACL2: An indiat strength
version of ngthm »in Compass'96: Eleventh Annual Conference
on Computer Assurangcp. 23, 1996.

Kaufmann M., Manolios P., Moore JComputer-Aided
Reasoning: An ApproaciKiuwer Academic Publishers, 2000.
Kaufmann M., Manolios P., Moore JComputer-Aided
Reasoning: ACL2 Case Studidsluwer Academic Publishers,
2000.

Kaufmann M., Moore J S., « Structured Thdaevelopment for a
Mechanized Logic »J. Autom. Reasoning, Kluwer Academic
Publishers USA, p. 161-203, 2001.

Koymans R., « Specifying Real-Time Rmtigs with Metric
Temporal Logic »Real-Time Systemsol. 2, n° 4, p. 255-299,
Kluwer, 1990.

Kropf T.,Formal Hardware Verification - Methods and Systems
in Comparison Springer-Verlag, London, 1997.

Kropf T.,Introduction to Formal Hardware VerificatiQrSpringer
Verlag, London, 1999.

Kutvonen L., Comparison of the DRYADaliing System to
ODP-Trading Function Draft, rapport technique n$ Bhiversité
de Helsinki, 1994.

Laprie J.C., « Dependability: Basioncepts and Associated
Terminology », rapport technique n° 31, PDCS, M&@L9

Leveson N. G., Turner C. S., « An Invegsiayaof the Therac-25
Accidents »Computer vol. 26, n° 7, p.18-41, July 1993.

Manna Z., « Verification of sequentipiograms: Temporal
axiomatization »in M. Broy and G. Scmidt, editores, Theorical
Foundations of Programming Methodology 53-102, 1982.

Markoff J., « Circuit Flaw Causses fén to Miscalculate: Intel

Admits »,New York Times24th November 1994.

99

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

(McCa, 1962)

(McMill, 1992)

(Miller et al, 1995)

(Mooreet al, 1998)

(Moore, 2003)

(Nobl, 2002)

(ORA, 1999)

(Owreet al, 1994)

(Pandya, 2001)

(Pate, 1981)

(Pfiset al, 1985)

McCarthy, J., «Towards a Mathematic8icience of
Computation »,in Proceedings of the Information Processing
Cong 62 p. 21-28, 1962.

McMillian K., The smv system, rapgdotechnique, université de
Carnegie Mellon, 1992.

Miller S. P., Srivas, M. «Formal verificat of the AAMP5
microprocessor: A case study in the industrial v$eformal
methods »,in Proc. Workshop on Industrial-Strength Formal
Specification TechniquetEEE Computer Society, p. 2-6, 1995.
Moore J S., Lynch T., Kaufmann M., « A machlly checked
proof of the correctness of the kernel of the AMBBKfloating
point division algorithm »|EEE Transactions on Computensol.
47,n° 9, p. 913-926, 1998.

Moore J S., « Proving theorems ahlasa and the JVM with
ACL2 », In M. Broy and M. Pizka, editors, Models, Algebrda
Logic of Engineering Softwarep. 227-290, 10S Press,
Amsterdam, 2003.

Noblanc J.P., « EDA and Systems-ompCAi key Challenge for
MEDEA+ », in Proc. MEDIA+ Design Automation Conference,
Stresa ltaly, p. 23-25, 2002.

ORA Canada, « ORA Canada : EVES Vaiian System. ORA
Canada », 1999, http://www.ora.on.ca/eves.html.

Owre S., Rushby J. M., Shankar N., SrivaskMA tutorial on
using PVS for hardware verificatioim Proc. 2nd International
Conference on Theorem Provers in Circuit Design GDMP4),
LNCS vol. 901, p. 258-279, Springer, 1994.

Pandya K., « Model checking ctl*[dagh Proceedings of the 7th
International Conference on Tools and Algorithms filve
Construction and Analysis of Systems559-573, Springer, 2001.

Patel J. H., « Performance of proceasmory interconnections
for multiprocessors »EEE. Trans. Compuytvol. 30, n° 10, 1981.
Pfister et al., « The IBM Research PardHedcessor prototype

(RP3) : introduction and architecture 4985 International

100

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

(PVS)
(Rajan, 1997)

(Rijp , 2003)

(Roycet al, 2003)

(Schm, 2006)

(Schmet al, 2006)

(Soni)
(Spir, 2004)

(Spiv, 1992)

(Stunet al, 1995)

Conference on Parallel ProcessintP85.
http://pvs.csl.sri.com/.

Rajan S.P., Fujita M., Yuan K., LeeT™¥C., « High-level design
and validation of ATM switch »jn Proc. IEEE International
High-Level Design Validation and Test Workshop(HOT®Y),
IEEE Computer Society, p. 40-44, 1997.

Rijpkema, Goossens E., Radulescu«K, Trade Offs in the
Design of a Router with Both Guaranteed and BefkirEServices
for Networks on Chip »in Design, Automation and Test in
Europe (DATE’'03)2003.

Roychoudhury A., Mitra T., Karri S.R., «ihg Formal
Techniques to Debug the AMBA System-On-Chip Pratogan
Design, Automation and Test in EuropeEE Computer Society,
p. 828-10833, 2003.

Schmaltz J., Une formalisation fomotEle des communications
sur la puce, Thése de doctorat, Université Joseptridi—
Grenoble 1, 2006.

Schmaltz J., Borrione D., « Towards a Foérmbeory of
Communication Architecture in the ACL2 Logic Broc. of 6th
international workshop on the ACL2 theorem proverd aits
applications ACM Press, New York, p. 47- 56, 2006.
http://www.sonicsinc.com/sonics/index_html.

Spirakis, G., « Beyond Verificatiorormal Methods in Design »,
in A. Hu and A. Martin, editorsi-ormal Methods in Computer-
Aided Design (FMCAD '04), LCN%ol. 3312, Springer-Verlag,
2004.

Spivey J.M., The Z Notation: A RefewenManual, Second
Edition, Prentice Hall, 1992.

Stunkel C. B., Shea D. G., Aball B., A&kiM. G., Bender C. A.,
Grice D. G., Hochschild P., Joseph D. J., Natharisoh, Swetz
R. A., Stucke R. F., Tsao M., Varker P. R., « THe23High-
Performance Switch »BM Systems Journalol. 34, n° 2, IBM
Corp., Riverton, USA, p. 185-204, 1995.

101

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

(Szymet al, 1994) Szymanski T., Hamacher V., « On the unalégsof multistage
interconnection networks Y=EE Computer Society Press994,

p. 73-101.

(UPPAAL) UPPAAL. URL: http://www.uppaal.com.

(Wu et al, 1980) Wu C.L.,, Feng T.Y., « On a class of mudig® interconnection
networks »JEEE Transactions on Computeisugust 1980.

(Zegu, 1993) Zegura E. W., « Architectures for ATdWitching systems »,
IEEE Communications Magazing. 28-37, 1993.

(Zei et al., 2005) Zeitzoff P.M., Chung J. E., parspective from the 2003 ITRS »,

IEEE circuits & devices magazine, 2005.

(Zeves) http://www.ora.on.ca/z-eves/welcome.html.

102

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Annexes

L’annexe suivante comporte les éléments essentielsla syntaxe de I'outil de
démonstration de théoremes ACL2 (ACL2).

1.La syntaxe

ACL2

La syntaxe d’ACL2 est constituée des éléments stsva

- Variables :x, x, alist , temp2, prev-temp
- Constantes :
o Nombres 23, -7, 22/7 , #c(3 5)
o Caractéres #\A, #\a ,#, ,#Newline ,#Space
o Chaines de caractéresTest" , "He said \"Hi!\" as we passed."
o Symbolest, nil ,'ABC, 'abc , 'true-list , ‘key , math::abs , |[John|
o Paires(Conses):(123) ,'(A.1)(B.2) ,'((1.2).(3.4)
- Fonctions or les appels de macragn argl arg2 ... argn)

2.Les Commandes utiles d’ACL2

- Sélection d’'un packagqin-package "pkg")

« Création d'un package(defpkg "pkg" '(imported symbols))
« Modes:
(program)/:program Prototypage des définitions et tests
. s Définition de fonctions, preuve de terminaisongtes
(logic) / ‘logic s
propriétés
(redef) [:redef Permet les redéfinitions des fonctions

« Constantes (defconst* var * term)

« Définitions :

(defun fn (varl ... varn)
(declare (xargs :measure terml ; declarations are optional
:guard term2
‘hints hints
...others)
body)

103

Développement d’'un modéle formel des MINs dédiésMBSOCs

Maissa Hleu

- Vérification de guardes:set-guard-checking t/nil

- Compilation : :comp t

- Fonctions :une liste compléte des fonctions Common Lisp sugpgar ACL2 est

donnée ci-dessous.

- Procédures de contrble
(if xyz)
(equal xy)
(cond (x1y1l)
(x2y2)
tz))
(case key
(clyl)
(c2y2)
tz))
(let ((varlvall) ...) body
(let* ((varl vall) ...) body

(mv-let (varl...) vector
body)

(mvvall ..)

- Booléen

(and pqg..)
(or pqg..)
(implies p q)
(not p)

(iff pa)

- Arithmetique
(acl2-numberp x)
(integerp x)
(rationalp x)
(complex-rationalp x)

(equal x 0), (zerop x), (zip
X), (zp X)

(<xy)
(<=xy)
(>=xy)
(+xy..)
*xy..)
- xy)

si x est non-nil alory sinonz
prédicat d’égalité
(if x1lyl

(if X2 y2

z)
(cond
((equal key 'cl) yl)
((equal key 'c2) y2)
t 2)
lier les variables locales en paralléle
lier les variables locales de facon séquentielle

lier les variables a un vecteur a plusieurs valeurs

retourne un vecteur a plusieurs valeurs

opérateur logique de conjonction
opérateur logique de disjonction
implication logique

négation logique

équivalence logique

reconnait n'importe quelle type de nombres ACL2
reconnait les entiers

reconnait les rationnels

reconnait les nombres complexes

reconnait « x =0 »

relation strictement inférieure
relation inférieure ou égale
relation supérieure ou égale
opérateur d’addition
opérateur de multiplication
opérateur de soustraction

104

Développement d’'un modéle formel des MINs dédiésMBSOCs

Maissa Hleu

- %)

(/' xy)

(1-x)

(1+x)
(numerator r)

(denominator r)

- Caractéres
(characterp x)
(char-code char)

(code-char n)

- Chaines de caracteéres
(stringp x)

(char str n)

(coerce str 'LIST)

(coerce charlist 'STRING)
(length str)

- Les paires « cons » et les listes

(consp Xx)

(cons x y)

(car pair)

(cdr pair)

(endp x)

(atom x)

(list x0 x1 ... xk)

(list* x0 x1 ... xk cdrk)
(caar pair)
(cadr pair)
(cdar pair)
(cddr pair)

(cddddr pair)
(append x vy ...)
(assoc-equal x alist)
(nth n Ist)

(length list)
(true-listp x)

opérateur de négation

division rationnelle

décrémente de 1

incrémente de 1

numérateur d’un nombre rationnel
dénominateur d’'un nombre rationnel

reconnait les objets caracteres
convertit le code caractére au code entier

convertit le code entier au code caractéere

reconnait les chaines de caracteres

cherche le nieme caractére de la chaine str
convertit la chaine de caractéere en une liste
convertit une liste en une chaine de caractére

longueur d’'une chaine de caractéres ou d’une liste

reconnait les paires ordonnées

construit les paires ordonnées

le premier composant d’une paire ordonnée
le deuxiéme composant d’'une paire ordonnée
reconnait les non-paires

reconnait les non-paires

construit une liste d’éléments donnés

construit une liste d’éléments avec cdrk comme
dernier élement

le car du car
le car du cdr
le cdr du car
le cdr du cdr

le cdr du cdr du cdr du cdr

concatene les listes linéaires

retourne I'’élément associé a x dans une liste
d’'association
retourne le nieme élément d'une liste

longueur d’une liste (ou d’'une chaine)
reconnait les listes linéaires

105

Développement d’'un modéle formel des MINs dédiésMBSOCs Maissa Hiteu

Cycle de Formation Doctorale

~_ Reépublique Tunisienne dans la Discipline informatique
Ministere de I'Enseignement Supérieur, ¢ .
De la Recherche Scientifique /gé Mastére NTSID
et de la Technologie ENT= Mémoire de MASTERE

Université de Sfax N°drordre : 2008 - 496

Ecole Nationale d’Ingénieurs de Sfax

DEVELOPPEMENT D’UN MODELE FORMEL POUR DES
RESEAUX MULTI-ETAGES DEDIES AUX SYSTEMES
MULTIPROCESSEURS SUR PUCE

Maissa ELLEUCH SAHNOUN

s il il sall e (Rl dpans 1) 5kl gl alall U1 Cpana Jaad) 138 50 1 AwadAd)

Aadii Y e g sl 13gd diaiadall (5 shall saxie IS o) zisal skl s araal (e ally

Sle st g ACL2 kil ol hie & disea (e @31 &g ¢ Lo 2ana 8 =350l 128
GeNOoC 4 sa3 2303 sl

Résumeé: Ce travail est inclus dans le cadre de I'applicaties méthodes formelles dans la
vérification des circuits numériques. Il consistela conception et le développement d'un
modele formel pour des réseaux multi-étages dé&digsystemes multiprocesseurs sur puce.
Ce modéle est spécifié et vérifié dans la logiqualémonstrateur de théoremes ACL2. |l est
basé sur I'extension d'un modele générique déena@BId& (Generic Networks on Chip)
décrivant les communications sur puce.

Abstract: This work is to be seen as within the general odnté formal hardware
verification. It consists on the design and thealiggment of a formal model for multistage
interconnection networks dedicated to multiprocessgstems-on-chip. This model is
specified and verified in the ACL2 theorem proveryironment. It is based on the extension
of a generic model called GeNoC (Generic Networks ©hip) describing on-chip
communications.

(Gl shall Baaxie AN s U 3kl el i pall (e BRI BN e Sl il
ACL2 g ylais jallas

Mots clés: réseaux sur puce, vérification formelle des ciguimériques, réseaux multi-
étages, démonstration de théoremes, ACL2.

Key-words: networks on chip, formal hardware verification, tiathge interconnection
networks, theorem proving, ACL2.

106

