
Multi-FPGA Prototyping Environment: Large
Benchmark Generation and Signals Routing

Mariem Turki
Habib Mehrez
LIP6, Paris 6

Email: mariem.turki@lip6.fr

Zied Marrakchi
FlexRAS Technologies

Paris, france
Email: zied.marrakchi@flexras.com

Mohamed Abid
CESlab

Sfax, Tunisia
Email: mohamed.abid@ceslab.org

Abstract—In multi-FPGA prototyping systems for circuit veri-
fication, serialized time-multiplexed I/O technique is used because
of the limited number of I/O pins of an FPGA. The verification
time depends on the number of inter-FPGA signals to share the
same physical wire and be time-multiplexed. In this paper, we
propose an adaptation of Pathfinder routing algorithm that min-
imizes the verification time of multi-FPGA systems by reducing
the multiplexing ratio per physical wire. To run real experiments,
we propose a large benchmark generation environment and we
show that the verification system clock frequency is improved by
17% on average compared with conventional methods.

I. INTRODUCTION

Circuit verification is one of the essential processes of VLSI
design. In circuit verification, it is often requested to use very
large test benches. In such cases, software RTL simulations
are too slow to adopt, and FPGA prototyping systems are
used. The verification time tends to increase according to the
increase in size and complexity of VLSIs. The desire to shorten
verification time is becoming stronger.
Although the device capacity of FPGAs is becoming very
large, circuits to be designed are often larger than the leading
edge FPGAs. Therefore, a prototyping system for such circuits
consists of multiple FPGAs. A large circuit is partitioned
into several sub-circuits each of which is implemented into
an FPGA. Each sub-circuit has to communicate with other
sub-circuits through I/O pins of the FPGA. The number
of I/O pins of an FPGA is becoming larger. However, the
number of inter-FPGA signals from a sub-circuit is usually
larger than the number of I/O pins of an FPGA even if a
circuit is partitioned so that the number of inter-FPGA signals
is minimized. Moreover, there exists a signal path that is
cut several times by partitioning even if its minimization is
pursued. Our goal is to propose software CAD tools to improve
performances of the design under test implemented on multiple
FPGA board. Thus, we need various and large benchmarks in
order to validate proposed tools. To cover a large spectrum
of cases, benchmark designs must be realistic, large enough,
have heterogeneous architectures and be testable. In fact, user
should always have controllability and observability on the
circuit under test.
The first initiative to generate such circuits was made by CBL
[1], [2] and MCNC [3]. However, these benchmarks are not
large enough to target the current challenges of prototyping
CAD tools, which require netlists with up to several millions

of gates. Indeed, the biggest circuits given by CBL is s38584
netlist and it contains only 2904 configurable logic blocks
(CLBs) [4].
More recently, researchers developed a benchmark generation
tool GNL [5] which generates netlists with more realistic
behavior. This tool is based on Rent’s rule [6] to control
the interconnection complexity. Indeed, the user defines the
number of gates, flip flop, the number of primary inputs,
outputs and also the rent exponent. GNL uses a bottom-up
approach, so it starts by establishing connections between a
set of gates which allows to create a number of clusters. The
clusters themselves are recursively paired further with other
clusters until all clusters are combined to one circuit. When
doing the connections, the program ensures the respect of the
Rent exponent at every level. The problem of this method, is
that since the assignment of the functionality to the gates is
still done in a random way, the generated circuits are highly
redundant. In addition such random generated circuits are not
testable since the generator does not provide input and output
test patterns.
Due to this lack of complex and realistic benches, we propose
to generate such design circuits. The proposed benchmark
generation framework is described in section 2. It includes the
hardware design and the application software flows. Section
3 and 4 describe the proposed design architectures details
and features. In section 5 and 6 we propose a multi-FPGA
prototyping flow and we introduce an innovative technique to
route inter-FPGA signals. Finally, experiments of the routing
technique are presented in section 7. Results are obtained
based on the generated benchmark circuits.

II. BENCHMARK GENERATOR FRAMEWORK

The Design Space eXploration (DSX) tool [7] allows the
co-design of multi-procrssors based hardware architectures
(MP-SOC). DSX uses component modules provided by the
SoCLib library [8]. The modules are written originally in
systemC and yet the generated description file of the platform
is written in systemC.
We extended DSX to generate, in addition to the SystemC
simulator caba, a synthesizable VHDL platform that can
target FPGA implementation. The initial systemC flow and
the working environment have been modified in order to
facilitate the generation of the synthesizable VHDL netlists.



Fig. 1. DSX framework

In the Fig 1, we present the proposed generation flow.
To generate specific architectures, user has to set the platform

characteristics in the input files.

A. Input files

Three files are needed to generate the architecture. The
first one is the platform description file which is written in
python language. This file contains the instantiation of each
component in the architecture with the specific parameters.
For example, to instantiate the simple ring bus which connects
all components, designer needs to specify the number of ini-
tiators (masters), the number of targets (slaves), the data width
etc.. This file contains also the description of connections
between all components.
This step is made using simple commands thanks to metadata
file (.sd) which contains a detailed description of the interface
of each component. All the ports of each module are enu-
merated with related details such as the port type, size, name,
sub-ports etc..
For example, in the case of VCI (Virtual Component Interface)
protocol. The user is not obliged to connect all the detailed
signals of this protocol. In the metadata file, the VCI port
is declared as a composed port which contains many related
signals as shown in Fig 2. So, when the user connects the bus
to any other component, he has to mention only the connection
between the composed ports of those components, and the
related signals will be connected automatically. For example,
the connection between the component and the ring is done
by the following expression:
VCI ring.port.vci // component.port.vci
The third input file describes the software application graph.

The applications should be written as multiple communicating
tasks (threads). In this way, we can easily distribute the appli-
cation on the platform. The goal is to get applications with a
variable number of tasks running on a platform having itself
a variable number of processor / coprocessor. The application
must allow accurate testalibility. Indeed the user is able to
check functional results using LEDs on the board or using
messages on the screen via serial communication between the
prototyping board and PC.

Fig. 2. Example of composed port

B. Output files

After preparing all the input files required to create the
architecture, DSX generates the resulting output files.
The first output is the VHDL Ram file. We use a Ram loader
called by DSX. This tool chain is presented in Fig 3.
The software application is compiled with a cross compiler

Fig. 3. Generation of loaded Ram module

related to the processor in the architecture. The binary
file passes through an ELF loader to extract the content
of each memory segment. The final step is to generate a
vhdl file which instantiates the corresponding ram-block
with the executed code targeting a specific FPGA memory
organization.
The VHDL Ram file, the topcell file and the VHDL
components are the inputs of the corresponding FPGA
environment (ISE/quartus) [12] in order to generate the
configuration bitstream.

III. BENCHMARK ARCHITECTURES

A. mono-cluster architecture

The proposed benchmarks are multiprocessors based
architecture and contain also several coprocessors.
These architectures represent a mix of homogeneity
(multiprocessors) and heterogeneity (multi-coprocessors). An
example of such architecture is represented in figure 4.

The generated architecture contains a set of components

Fig. 4. Example of multi-processors / multi-coprocessors architecture



which communicate via a VCI (Virtual Component Interface)
protocol. All these components are connected to a generic
ring bus, so the user can easily set the number of targets and
initiators. The example in the Fig 4 contains N processors and
3 targets: Ram, UART and a generic multi-fifos component.
The multi-fifos acts as a bridge between the coprocessors,
each with a fifo interface, and the ring network. The designer
can use a large set of coprocessors in order to have the
biggest design.
To add more complexity to the generated design we integrated
an embedded FPGA in the multicoprocessor architecture.
Indeed, recent SoC contains some field programmable cells
in order to reuse a portion of the chip and to introduce new
features in the design even after its fabrication. In addition,
FPGA vendors and new IP developers are now offering
hard embedded FPGA core that can be added into a SOC
design [9]. The embedded FPGA which we included in our
architecture has been developed by [10]. Figure 5 shows the
connection interface between the eFPGA and the multi-fifos
component.
To communicate with the eFPGA, we use one read fifo and

Fig. 5. Embedded FPGA (eFPGA) interface

one write fifo. The first one is used to configure the eFPGA
and send the input patterns. The write fifo is used to send
back the resulting outputs via the bus.

B. multi-clusters architecture

When we increase infinitely the number of processors, we
are faced to the bus bandwidth limitation. For this reason,
we choose to pack processors into clusters and create a
two-level interconnect architecture. The global (inter-cluster)
interconnect uses the DSPIN [15] Network on Chip that fits
the VCI standard. The local interconnect uses a simple ring
network communicating with the global network.
The DSPIN network on chip has a 2D mesh topology and
provides a truly scalable bandwidth. Each node in this mesh

Fig. 6. Integration of an asynchronous fifo

represents a router and its corresponding cluster (called sub-
system). The router has five modules. Four of them are placed
on the north, south, east, and west side of the subsystem in
order to route the packets between the clusters in the horizontal
and vertical sides.

IV. MULTI-CLOCK DOMAINS

Most of recent systems on chip use multiple clocks domains.
To be closer to reality we added this property to the generated
designs. The idea is to insert a bi-synchronous fifo between
the VCI local bus and the VCI external interface components
(UART for example). Actually, we decided to keep the VCI
interface of the UART component, and we transfer all the
control signals of the VCI protocol trough the bi-synchronous
fifo.
Figure 6 shows the connection protocol between the network
and the fifo from one side, and between the fifo and the UART
from the other side.

V. PROTOTYPING FLOW

The input, a netlist of the logic design (generated archi-
tecture) to be prototyped, is transformed into a multi-FPGA
configuration bitstream to be downloaded onto the prototyping
board. As shown in figure 7, the technology libraries, target
FPGA characteristics, and FPGA interconnect topology are
required to make the correct implementation.

A. Logic Synthesis

The input design netlist is mapped to a target library of
FPGA primitives. In our case we use commercial and public
domain tools for mapping [11].

B. Partitioning

After mapping the netlist to the target technology, it is
divided into partitions, each of which can fit into a single
target FPGA. This partitioner performs K-way partitioning
with multi-objectives function allowing to find the best tradeoff



Fig. 7. Multi-FPGAs Prototyping Flow

Fig. 8. Combinatorial hops example

between:
- Minimizing the maximum slots number: the ratio between
communication signals and available physical between each
FPGA pairs
- Reducing the maximum combinatorial hops: number of times
a combinatorial path exists an FPGA (see figure 8)
- Reducing the maximum routing hops: number of FPGA to
cross to route a signal between 2 FPGAs (see figure 9).

C. Routing and Multiplexing

In order to relax the I/O pins constraint, time multiplexed
I/O (TM I/O) technique, such as in [16], is used in multi-FPGA
prototyping systems. When TM I/O technique is employed, an
I/O pin is used as a TM I/O, which is shared by multiple
signals by time-division. Multiple inter-FPGA signals are
transmitted by a TM I/O in one system clock period. An
inter-FPGA signal transmission is far slower than an intra-
FPGA signal transmission, and the required time to complete

Fig. 9. Routing hops example

inter-FPGA signal transmissions by a TM I/O is far larger
than that by a normal I/O. Therefore, the system clock period
is mainly bounded by inter-FPGA signal transmissions (TM
I/Os). Thus, we propose as shown in figure 10 an iterative
routing technique to reduce multiplexing ratio. In this loop
we decrease the multiplexing ratio MR , we create group of
MR branches, called meta-branches, having the same source
and destination and then we try to route them. When the
multiplexing ratio is decreased the number of meta-branches
to route is increased and the router has to make more effort to
succeed. Consequently, the routing algorithm has to be very
efficient to deal with the increasing congestion.

D. FPGA Place & Route

Once routing is achieved, there is one netlist for each FPGA.
Each netlist must be processed with FPGA specific automated
place-and-route (P&R) software to generate configuration bit-
streams.

VI. ROUTING STRATEGY DESCRIPTION

The goal of the routing algorithm is to find a shortest
available path, in terms of FPGAs, between the source and
destination FPGA of a set of inter-partition branches. A
signal of fan-out N is transformed into N branches (bi-points).
Branches are grouped into MR meta-branches where MR is the
target multiplexing ratio. Then, meta-branches graph is routed
using available physical wires.

A. PathFinder adaptation

Common inter-FPGA routing algorithms are based on ob-
stacle avoidance techniques. For example, the router proposed
in [16] proceeds as follows. Before the beginning of routing
a reservation matrix is initialized to the number of physical



Fig. 10. Iterative Routing to minimize Multiplexing-Ratio

connections between FPGAs i and j in the board. Router
applies Dijkstra’s shortest path algorithm [17] to determine the
shortest path between the source and destination FPGAs. If the
shortest path exists, then the reservation matrix is updated by
subtracting 1 from each element along that path and router
returns with this path; else, router returns unsuccessfully. This
technique has the disadvantages to be dependent on the order
in which branches are routed. As we stated previously, the
efficiency of reducing the multiplexing ratio depends on the
quality of the router. Thus the routing algorithm we proposed
is an adaptation of ”PathFinder” [18]. PathFinder were widely
used to achieve intra-FPGA signals routing [19]. It uses an
iterative, negotiation-based approach to successfully route all
meta-branches in a netlist. During the first routing iteration,
meta-branches are freely routed without paying attention to
resource sharing. At the end of iteration, resources can be
congested because multiple meta-branches use them. During
subsequent iterations, the cost of using a resource is increased,
taking into account the number of meta-branches that share the
resource, and the history of congestion on that resource. Thus,
nets are made to negotiate for routing resources.

B. Routing graph

To apply PathFinder, we model the available board routing
resources as a directed graph abstraction G(V,E). As illus-
trated in figure 11, the set of vertices V represents the pins
(pads) of FPGAs. An edge between two vertices represents
a physical wire between 2 FPGA pins. Since inter-FPGA
connections are bi-directional each connection is presented by
two opposite directed edges. Since FPGA pins are equivalent
we add for each FPGA a virtual node (nodes F0, F1 and F2
in figure 11). Each virtual FPGA node has pair of edges to
all other FPGA pins node. A routing path starts from a source
virtual node and ends at a destination virtual node.

VII. EXPERIMENTS AND RESULTS

To evaluate the proposed routing technique we im-
plemented several generated designs on an industrial

Fig. 11. Routing Graph description

Dini board DNV6F6PCIe [14] which contains 6 Virtex-6
(XC6VSX475TFF1759). In table I, we present the charac-
teristics of the board in terms of logic resources capacity.
We show also the amount of resources required by each
synthesized design. Designs names correspond to the number
of processors they contain. To add heterogeneity we include
various coprocessors in each architecture. Each design is
partitioned, routed and implemented on the board. In table I,
we show the partitioning result of each design in terms of logic
resources occupancy, number of used FPGA, Cut (number of
signals crossing FPGAs) and combinatorial hops count (C-
Hops). The last parameter has an important impact on system
performance since it is correlated to the number of times a
signal has to be send in the same clock period [20]. In all
cases we obtain a partitioning with a maximum combinatorial
hop equal to 1. This good partitioning result shows the high
quality of the used timing driven partitioner [13].
For the same partitioning result, we applied the routing tech-
niques described in section IV-A:
- OAR: Obstacle Avoidance Routing
- NCR: Negotiated Congestion Routing
In both cases, as shown in figure 10, we try to achieve
routing with the smallest multiplexing ratio (Mux-Ratio) and
the minimal routing hops (R-Hop). In fact the clock fre-
quency is proportional to a combination of both factors. In
our experimentation we used a serial communication clock
frequency equal to 250 MHz (multiplexing data clock). Results



TABLE I
BOARD AND GENERATED BENCHMARK CIRCUITS CHARACTERISTICS

LUTs RAMLUTs DSP RAM REG
Board 2062080 556758 5184 4320 4124160

CPU 20 143217 6192 2 21 66937
CPU 30 213524 9272 12 33 99588
CPU 50 353697 15432 25 54 164587
CPU 75 510304 20230 20 76 191200
CPU 125 879897 38532 28 130 408712
CPU 150 995750 43280 23 152 449210
CPU 200 1240834 59310 33 207 630411

TABLE II
COMPARISON OF ROUTING STRATEGIES EFFECTS ON PROTOTYPING SYSTEM PERFORMANCE

Benchmark Partitioning OAR NCR Gain
Occupancy Used FPGA Cut C-Hops Mux-Ratio R-Hops Freq. (MHz) Mux-Ratio R-Hops Freq. (MHz)

CPU 20 25% 2 450 1 2 0 41 2 0 41 0%
CPU 30 31% 2 620 1 5 1 25 4 1 28 12%
CPU 50 34% 2 945 1 6 2 20 5 1 25 25%
CPU 75 37% 3 1743 1 7 3 18 7 1 21 16%
CPU 125 51% 4 2520 1 10 3 14 10 1 17 21%
CPU 150 58% 5 3700 1 13 2 12 12 1 15 25%
CPU 200 60% 6 5200 1 17 3 10 16 1 12 20%

show the important impact of the NCR iterative routing and
its efficiency to improve system performance. The frequency
is increased in average by 17% and the impact of NCR is
important for highly congested partitioning results (with high
Cut count). In fact thanks to its iterative aspect, it avoids easily
local minima and reduce the path length from a source FPGA
to a destination one. In addition it leads to a good tradeoff
between maximum multiplexing ratio and routing hops.

VIII. CONCLUSION

In this paper, we presented the framework of complex and
realistic benchmark generator. It is able to design various set
of circuits in a very small time using an existing component
library. The generation includes the hardware and the software
application parts of the circuit. Based on these benchmarks
we developed and validated a complete multi-FPGA based
prototyping environment. We proposed an innovative extension
of PathFinder routing algorithm to route inter-FPGA signals.
Compared to common obstacle avoidance algorithms we ob-
tained a significant prototyping system frequency improvement
of 17%.

REFERENCES

[1] Computer aided design benchmarking laboratory,
http://www.cbl.ncsu.edu/benchmarks/.

[2] C. J. Alpert, ”The ispd circuit benchmark suite”, in Proc. ACM/SIGDA
Intl. Symp. on Physical Design, 1998, pp. 85- 90.

[3] ”layout synthesis benchmark set”, microelectronics center of north car-
olina, research triangle park, NC, May 2006.

[4] R. Kuznar, F. Brglez, and K. Kozminski, ”Cost minimization of partitions
into multiple devices”, in In Proc. 30th ACM/IEEE Design Automation
Conf, June 1993, pp. 315- 320.

[5] D. Stroobandt, P. Verplaetse, and J. van Campenhout, ”Generating syn-
thetic benchmark circuits for evaluating cad tools”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 19, pp.
10111022, Sept. 2000.

[6] B. S. Landman and R. L. Russo, ”On a pin versus block relationship
for partitions of logic graphs”, IEEE Trans. on Comput, vol. C.20, pp.
14691479, 1971.

[7] N. Pouillon and A. Greiner, URL=https://wwwasim. lip6.fr/trac/dsx/,
2006-2008.

[8] ”Soclib project: Platform for modeling and simulation of integrated
systems on chip”, http://www.soclib.fr/.

[9] M. Inc, ”Menta efpga core-ii data sheet brief”,
http://www.menta.fr/down/DatasheetBrief-eFPGA-core- II.pdf, Feb.
2009.

[10] Z. Marrakchi and H. Mrabet and U. Farooq and H. Mehrez ”FPGA
Interconnect Topologies Exploration” Int. J. Reconfig. Comp. 2009

[11] Synopsys FPGA Synthesis User Guide, 2011.
[12] Xilinx. xst. www.xilinx.com/products/design tools/logic design/ synthe-

sis/xst.htm
[13] www.flexras.com.
[14] www.dinigroup.com/new/dnv6f6pcie.php.
[15] I. Miro-Panades and A. Greiner and A. Sheibanyrad, ”A Low Cost

Network-on-Chip with Guaranteed Service Well Suited to the GALS
Approach”, 1st Int. Conf. on Nano-Networks and Workshops, Sep 2006.

[16] J.Babb and R. Tessier and M.Dahl and S.Hanono and D. Hoki and A.
Aggarwal, ”Logic Emulation with Virtual Wires”, IEEE Trans. Comput.-
Aided Des. Inetegr. Circuits Syst., vol. 16, no.6, pp.609-629, June 1997.

[17] R. R. T. Cormen, C. Leiserson. ”Introduction to Algorithms”. MIT Press,
Cambridge, MA, 1992.

[18] L. McMurchie and C. Ebeling ”PathFinder: A Negotiation-based
Performance-Driven Router for FPGAs”. Proc. FPGA 1995

[19] V. Betz and J. Rose ”VPR: A New Packing Placement and Routing Tool
for FPGA research ” International Workshop on FPGA

[20] M.Inagi, Y.Takashima, Y.Nakamura, A. Takahashi ”ILP-based optimiza-
tion of time-multiplexed I/O assignment for multi-FPGA systems” ISCAS
2008: 1800-1803


