Accepted Manuscript

EMBEDDED
SOFTWARE

Scalable mpNoC for Massively Parallel Systems — Design and Implementation DESIGN

on FPGA

M. Baklouti, Y. Aydi, Ph. Marquet, J.L. Dekeyser, M. Abid

PII:
DOI:
Reference:

To appear in:

Received Date:

Revised Date:

Accepted Date:

S1383-7621(10)00020-2
10.1016/j.sysarc.2010.04.001
SYSARC 909

Journal of Systems Architecture

29 September 2009
15 March 2010
4 April 2010

Please cite this article as: M. Baklouti, Y. Aydi, Ph. Marquet, J.L.. Dekeyser, M. Abid, Scalable mpNoC for Massively
Parallel Systems — Design and Implementation on FPGA, Journal of Systems Architecture (2010), doi: 10.1016/

j-sysarc.2010.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.sysarc.2010.04.001
http://dx.doi.org/10.1016/j.sysarc.2010.04.001
http://dx.doi.org/10.1016/j.sysarc.2010.04.001

Scalable mpNoC for Massively Parallel Systems — Design and Implementation
on FPGA

M. Baklouti**", Y. Aydi?, Ph. Marquet®, J.L. Dekeyser®, M. Abid?

“CES Laboratory, National Engineering School of Sfax, Sfax, Tunisia
bUniv. Lille, F-59044, Villeneuve d’ascq, France
LIFL, Univ. Lille 1, F-59650, Villeneuve d’ascq, France
INRIA Lille Nord Europe, F-59650, Villeneuve d’ascq, France
UMR 8022, CNRS, F-59650, Villeneuve d’ascq, France

Abstract

The high chip-level integration enables the implementation of large-scale parallel processing architectures with 64
and more processing nodes on a single chip or on an FPGA device. These parallel systems require a cost-effective yet
high-performance interconnection scheme to provide the needed communications between processors. The massively
parallel Network on Chip (mpNoC) was proposed to address the demand for parallel irregular communications for
massively parallel processing System on Chip (mppSoC). Targeting FPGA based design, an efficient mpNoC low
level RTL implementation is proposed taking into account design constraints. The proposed network is designed as an
FPGA based IP (Intellectual Property) able to be configured in different communication modes. It can communicate
between processors and also perform parallel I/O data transfer which is clearly a key issue in an SIMD system. The
mpNoC RTL implementation presents good performances in terms of area, throughput and power consumption which
are important metrics targeting an on chip implementation. MpNoC is a flexible architecture that is suitable for use in
FPGA based parallel systems. This paper introduces the basic mppSoC architecture. It mainly focuses on the mpNoC
flexible IP based design and its implementation on FPGA. The integration of mpNoC in mppSoC is also described.
Implementation results on a StratixII FPGA device are given for three data parallel applications ran on mppSoC. The
obtained good performances justify the effectiveness of the proposed parallel network. It is shown that the mpNoC is
a lightweight parallel network making it suitable for both small as well as large FPGA based parallel systems.

Key words: Communication, FPGA, Network architecture, SIMD parallel processing, System-on-a-Chip.

1. Introduction matrix multiplication to image processing. Typically an
SIMD machine has a control unit which broadcasts in-

Modern applications-like audio/video compression, structions to N processors, numbered (addressed) from

image processing and 3D graphics, need high perfor-
mances and efficient architectures to be executed, espe-
cially in the embedded systems domain. These applica-
tions require high execution speed and often real time
processing capabilities. In the nineteens, designers fo-
cus on SIMD (Single Instruction Stream Multiple Data
Stream) architectures. This allows them to speed-up
significantly execution times of a variety of tasks from

*Corresponding author
Email addresses: mouna.baklouti@lifl.fr (M. Baklouti),
yassine.aydi@oous.rnu.tn (Y. Aydi),
philippe.marquet@lifl.fr (Ph. Marquet),
jean-luc.dekeyser@lifl.fr (J.L. Dekeyser),
mohamed.abid@enis.rnu.tn (M. Abid)

Preprint submitted to Journal of Systems Architecture

0 to N-1, and all active processors execute the same in-
struction at the same time [32]. The interconnection
network (ICN) can be used to connect processors to
memory modules. Alternatively, the network can be
used to interconnect processing elements (PE), where
each PE consists of a processor and a memory module.
But, until the last few years, silicon integration technol-
ogy doesn’t allow us to put such systems to the SoC
context, consequently these systems were then less and
less used. Since recently, we are able to integrate bil-
lions transistors in a single chip (giga and tera-scale in-
tegration GSI/TSI). On one side, new design method-
ologies such as IP (Intellectual Property) reuse and, on
the other side, the possible high integration level on a

April 12, 2010

chip let us envisage such a revival of SIMD architec-
tures. Nowadays we have a great variety of high ca-
pacity programmable chips, also called reconfigurable
devices (FPGAs) where we can easily integrate com-
plete SoCs architectures for many different applications.
Due to the inherent flexibility of these devices (Field-
Programmable), designers are able to quickly develop
and test several hardware/software architectures. In this
paper, we used Altera reconfigurable devices to imple-
ment the mppSoC (massively parallel processing Sys-
tem on Chip) architecture and get experimental results.

The complexity in circuit design grows rapidly, still
validating Moores Law. Therefore, the ability of imple-
menting complex architecture in a single chip always
presents new challenges. One of the issues met by de-
signers when implementing large SoCs is the communi-
cation between their (numerous) components. Intercon-
nects are considered as one of the most important chal-
lenges in GSI/TSI facing today. At the chip level, inter-
connects have become the major component in the delay
of critical paths, are the largest source of power dissi-
pation, and cause reliability problems [33]. So an effi-
cient ICN intra-chip, with low latency and high band-
width, is fundamental for high communication through-
put among one components’architecture. In fact, shar-
ing busses is no longer a good method for connecting
multiple processors or other IPs due to their lack of
scalability and important power consumption. An alter-
native to bus based communication is network-on-chip
(NoC) [17]. NoC is an emerging paradigm for commu-
nications within multiprocessor systems implemented
on a single silicon chip.

Our contribution to SIMD on-chip design domain
consists in the implementation at an RTL abstraction
level of a system called mppSoC [29]. It looks like an
on-chip version of the famous MasPar [35]. MppSoC
contains a number of processing elements (PE), each
one has its own private local data memory. The whole
system is mastered by a processor called Array Con-
troller Unit (ACU). The PEs communicate using a Xnet
neighborhood ICN. It permits regular and neighboring
communications between PEs, but is not really efficient
when communications become irregular. Thus, to im-
prove the communication performances of the mppSoC,
an additional communication network, to assure point
to point communications, is needed. The objective of
this work is to provide designers with more complete
parallel architecture with high performances. Our con-
tribution is to propose a flexible massively parallel NoC,
implemented as a VHDL IP, to be integrated in such par-
ticular systems. The mpNoC can be configured to sup-
port different communication modes by programming.

2

The communication instructions permitting to manage
the global router, the PEs and the ACU are defined. The
present paper concentrates on point to point communi-
cations. Two types of global router, crossbar and delta
multistage networks (MIN), are discussed in detail:

The rest of this paper is organized as follows. The
use of a NoC in parallel architectures state of the art is
proposed in the next section. Section 3 introduces the
mppSoC platform. The mpNoC implementation is de-
tailed in Section 4. In this Section, we propose an effi-
cient way to integrate the communication network with
the mppSoC processors and devices. The execution of
some representative applications varying mppSoC com-
munication networks is briefly described in Section 5.
Section 6 discusses the performance results of the mp-
NoC compared toother NoC implementations. Section
7 outlines the conclusion with planned future work.

2. Related Works

The research effort in performance evaluation of
communication scheme of multiprocessor SoCs and es-
pecially NoC has been widely tackled in order to guar-
antee optimal communication performance. There has
also been a growing interest in designing novel NoC
alternatives for parallel architectures. Parallel systems
have been designed around a variety of inter processor
communication networks. Due to rapid advancement in
VLSI technology, it has become feasible to construct
massively parallel systems based on static interconnec-
tion structures as meshes, trees and hypercubes. An-
other class of parallel systems includes crossbar, mul-
tistage switching networks such as delta network, etc.
These mechanisms exhibit various trade-offs between
processor throughput, communication delays, and the
programming complexity. The performance of ICN un-
der uniform traffic load has been studied with both an-
alytical methods and simulations ([16], [13], [10], [6],
(11D.

SIMD implementations usually consist of a Control
Unit, an arbitrary number of PE and an ICN, which of-
ten are custom-made for the type of application it is
intended for. Processors can communicate with each
other through the ICN. If the ICN does not provide di-
rect connection between a given pair of processors, then
this pair can exchange data via an intermediate proces-
sor. The ILLIAC IV [3] used such an interconnection
scheme. It is composed of 64 processors operated on
64-bit words. The ICN in the ILLIAC IV allowed each
processor to communicate directly with four neighbor-
ing processors in an 8x8 matrix pattern such that the
i processor can communicate directly with the four

neighbours: (i—1)", (i+1)", (i—8)" and (i+8)" proces-
sors. So, to move data between two PEs, that are not
directly connected, the data must be passed through in-
termediary PEs by executing a programmed sequence of
data transfers [2]. This can lead to excessive execution
time if more irregular communications are needed. Ac-
cording to [14] the ILLIAC network is considered as a
single stage SIMD network. MorphoSys [26] [5] is are-
configurable SIMD architecture that targets for portable
devices. It combines an array of 64 Reconfigurable
Cells (RCs) and a central RISC processor (TinyRISC)
so that applications with a mix of sequential tasks and
coarse-grain parallelism, requiring computation inten-
sive work and high throughput can be efficiently imple-
mented on it. In MorphoSys, each RC can communicate
directly with its upper, below, left and right neighbors
peer to peer. This gives efficient regular applications,
but unfortunately non-neighbors communications seem
to be tedious and time consuming. Other new SIMD ar-
chitectures have been proposed [24] [34] but they don’t
solve the problem of irregular communications since
they integrate only a neighborhood ICN. Among pop-
ular interconnected networks there are tree and hyper-
cube structures. Tree type structure is suited to certain
special kind of parallel processing where neighbour-
ing processors can communicate quite fast. However,
communication between non neighbouring processors
is slower and it requires intermediate processors to store
and forward message transfer. The hypercube structure
has shown suitability to fairly wide range of program-
ming tasks. However, relatively. very few hypercube
structures are implemented commercially. A nearest
neighbor communication network is good for applica-
tions where the communications are restricted to neigh-
boring PEs. However, there are several problems which
require communications between PEs which are sepa-
rated by a large distance: Massively parallel machines
typically have a scheme to cover such communications
patterns. The Connection Machine [4] has a hypercube
ICN, the MasPar MP-1 [35] has an Omega network,
DAP has row and column highways [23] and the DEC
massively parallel processing chip has been designed
with a router communication network [31]. These sys-
tems- can solve the problem of irregular communica-
tions. However they integrate a fixed ICN. The prob-
lem is that different applications might have different
demands for the architecture. In [15] author has demon-
strated that the perfect shuffle interconnection pattern
has a fundamental role in a parallel processor. It has
been shown that for some examples including the Fast-
Fourier Transform, polynomial evaluation, sorting, and
matrix transposition, the shuffle interconnection scheme

presents advantages over the near-neighbor (or cycli-
cally symmetric) interconnection scheme that is used
in the ILLIAC IV. So, the perfect shuffle interconnec-
tion scheme deserves to be considered for implementa-
tion in advanced parallel processors. Whether this in-
terconnection pattern should be used instead of, or in
addition to, other interconnection patterns depends very
much on the size and intended application of the paral-
lel processor. In [27], [14] a comparator study between
four MINs for SIMD architecture (Feng’s-data manip-
ulator, STARAN flip network, omega network, and in-
direct binary n-cube) is presented. - According to this
study, the networks may be ordered in terms of inter-
connection capabilities as follows: flip network, indirect
binary n-cube, omega network, and ADM. The Omega
network, for example, may have to use address transfor-
mations to perform all of the n-cube interconnections,
due to the reversed order of its stages. It has been also
shown that the omega, ncube, and ADM network have
control structures which allow them to function in a
multiple control environment. So, it has been proved
that some types of MINs are good networks for SIMD
systems.

This analysis shows that existing SIMD architectures
are not capable of responding to the communication de-
mands, especially of irregular type, of many data par-
allel algorithms. Hence, there is a need for an SIMD
architecture that can perform neighbor as well as non
neighbor communications integrating a NoC with good
properties. An efficient and flexible irregular FPGA
based communication network dedicated to massively
parallel systems is described. A systemC implementa-
tion has already been proposed [33]. This work focuses
rather on the RTL implementation and FPGA perfor-
mance results of the mpNoC which can use different in-
ternal routers. We are interested by dynamic intercon-
nection structures, in particular crossbar and Delta MIN.
The validation of the mpNoC is performed through im-
plementation and simulation.

3. Basic mppSoC architectural model

MppSoC [29], which stands for massively parallel
processing System on Chip, is a novel SIMD architec-
ture built within nowadays processors. It is composed
of a grid of processors and memories connected by a
X-Net neighbourhood network and a general purpose
global router. MppSoC is an evolution of the famous
massively parallel systems proposed at the end of the
eighties. Each processor executes the very same in-
struction at each cycle in a synchronized manner, or-
chestrated by an unique control processor. The ACU

P B ——
N
«©
5
Instructions. e e
Data R
oo

‘Sequential
‘memor

‘Global Router netwotk

2
o
0%
o /+
g

Parallel memory

Processing Elements

|
=g

=

X-Net interconnection network

Figure 1: The mppSoC Architecture

is responsible for fetching and interpreting instructions.
Two kinds of instructions are considered: parallel ones
and non-parallel (i.e. sequential) ones. The control
processor transfers parallel arithmetic and data process-
ing instructions to the processor array, and handles any
control flow or serial computation that cannot be par-
allelized. Each PE in the 2-D grid is potentially con-
nected to its 8 neighbors via the X-Net, a neighborhood
network. However, this router cannot perform all the
needed communications particularly irregular ones. So
the idea is to integrate another communication network.
A single shared bus between all PEs, for example, is not
sufficient, since in an SIMD machine it is desirable to
allow many processors to send data to other processors
simultaneously. Ideally, one would like each proces-
sor sends data directly to every other processor, but this
is highly impractical for large N, since each processor
would require N-1 lines:" So, one solution is the use
of NoC. NoC-based communications will also become
mandatory for many applications to enable parallel in-
terconnections and communication throughputs [7]. In
the mppSoC architecture, each PE is connected to an
entry of mpNoC, a massively parallel Network on Chip
that potentially connects each PE to one another, per-
forming efficient irregular communications. The ACU
synchronously controls the two networks of the system:
the X-Net and mpNoC. Figure 1 illustrates the mpp-
SoC global architecture. In this work, processors ACU
and PEs are built from the processor IP miniMIPS [39]
running at 50 Mhz. The ACU is a complete processor
whereas the PE is a reduced processor derived from the
same processor as the ACU [28].

MppSoC is programmed in a data-parallel language.
A data-parallel language distinguishes sequential in-
structions and parallel instructions. A sequential in-
struction concerns sequential data of the ACU memory

and is carried out by the ACU as in an usual sequential
architecture. A parallel instruction is executed in a syn-
chronous manner by all the PE of the system, each PE
taking its operands from its local memory and storing
the result in this same memory (or may be in its ‘own
local registers). Some specific instructions control the
two networks, allowing transfer of values from one PE
to another. Theses transfers are also executed in a syn-
chronous manner: all PEs communicating at the same
time with a PE designated by the instruction or one of
its operand values. A given X-Net communication for
example allows all PEs to communicate with a PE in a
given direction at a given distance. Direction and dis-
tance are here the same for all the PEs.

As already mentioned, the design of mppSoC is in-
spired from the famous MasPar [35]. Nevertheless three
major points distinguish mppSoC from the MasPar:

1. The mppSoC PEs are not any smaller 1- or 4-bit
processors as it was by the time of the Connection
Machine CM-1 and MasPar MP-1. MppSoC uses
32-bit processors.

2. The ACU and the PEs are designed from the same
processor. Some minor additions are made to this
processor to design the ACU, while its decode part
is suppressed in the PE, performing a better on chip
integration and reducing the power consumption.

3. The mppSoC global router not only connects the PEs
to each others, but also allows connecting the PEs to
ACU and to devices.

Another major difference between usual SIMD systems
and our mppSoC is the integration of mpNoC, a multi-
purpose NoC component in the mppSoC. The mpNoC
was designed as an IP that is able to synchronously con-
nect a set of inputs to a set of outputs. It is based on a
NoC router which transfers data from source to destina-
tion depending on the routing information. In this work,
we detail the implementation of the mpNoC based on a
crossbar and a Delta MIN. In the following section, we
introduce the mpNoC and the routing mechanism. The
used interconnection routers are also described.

4. MpNoC Design

MpNoC is the network component of the mppSoC
that allows a parallel communication of each PE to a
distinguished PE. One important property of the mp-
NoC is its ability to use different ICNs. An alternate
network which allows all processors to communicate si-
multaneously is the crossbar switch. The difficulty here
is that network costs grow with N?; given current tech-
nology, this makes crossbar switches infeasible for large

systems. The full crossbar is used only with a small
number of PEs. A more complex network is so needed
for big instances of mppSoC. In our case we also test
the integration of a Delta MIN in the mpNoC. MpNoC
allows exchanging data between any couple of PE in
parallel. It is considered as a global router of the mpp-
SoC. Nevertheless, if any communication between PEs
may be realized by a set of X-Net communications, as
performances and flexibility are concerned, the usage
of such a global router has an advantage over the X-Net
usage for many algorithms. Consequently, including or
not a global router in a given mppSoC design is a trade-
off between the cost in term of silicon and the advantage
in term of performance and flexibility, especially in the
case of a design targeting a configurable hardware such
as an FPGA. The nature of the targeted applications may
be the decisive element in this design choice.

Communications IPs generally are tedious to inte-
grate due to the number and the heterogeneity of con-
nection they manage. The IP blocks are also connected
into them through some fixed interface which will be
highlighted. The following subsection deals with partic-
ularities of each IP block and its integration into mpp-
SoC. We also demonstrate the flexibility of the mpNoC
integration in the mppSoC system.

4.1. MpNoC Overview

The mpNoC is designed as an IP that can be config-
ured to perform three functions in the mppSoC archi-
tecture. Firstly, the mpNoC is used as a global router
connecting, in parallel, any PE with another one. Sec-
ondly, the mpNoC is able to connect the PEs to the mpp-
SoC devices. Finally, the mpNoC is able to connect the
ACU to any PE of the mppSoC [33]. It is usually im-
practical to implement-all the interconnections that may
be needed by the system to perform a large variety of
computations, so the ability of a network to perform a
variety of interconnections is important. The mpNoC
includes an internal network which transfers data from
sources to destinations. This network is the key point
of mpNoC. In order to allow an efficient and a realis-
tic IP integration of this network, its interface is generic
enough to support a configurable size (4x4, 32x32 for
example). While targeting an mpNoC integration into
mppSoC, the number of mpNoC sources and destina-
tions is equal to the number of PEs used in the mppSoC
grid. PEs are not directly connected to the mpNoC but
are connected to switches that allow to connect either
the PEs, either the ACU, or some devices to the mp-
NoC. As shown in Figure 2, the mpNoC IP is connected
to mppSoC and its input/output devices via controlled
switches. These switches are also controlled via the

ch
se\e":(Eata
Data_IN ———> Mode Manager Addr
Address_IN | >
i
] —+—> Data_OUT
> Interconnection Network | 5 Adqdress OUT
mpNoC

Figure 3: mpNoC Architecture

ACU based on the mode instruction. In fact, the mp-
NoC contains a Mode Manager which establishes the
interconnections needed for one communication mode.
There are three different bidirectional communication
modes, as mentioned previously:

a) Mode PE - PE
b) Mode ACU - PE
¢) Mode PE -1/O device

The designed mpNoC is parameterized in terms of num-
ber of PEs connected to the network and the chosen
communication mode. The rest of this Section high-
lights the mpNoC implementation and covers crossbar
and Delta multistage switching networks in detail.

4.2. MpNoC Implementation

MpNoC is implemented as a VHDL IP (Figure 3)
composed of a Mode Manager, which is responsible of
assuring the needed communication mode, and an ICN
which is the router component that allows data transfer.
This router could be of different types such as a cross-
bar or a MIN or other. However, integrating a given
irregular NoC for a given application becomes tedious,
error-prone, and time consuming due to the lack of a
flexible and scalable interface. MpNoC is character-
ized by its flexible and scalable synchronous interface,
in order to be integrated in different sized mppSoC con-
figurations. Its interface is configured to transfer data
from multiple senders (PEs/ACU/device) to multiple re-
ceivers (PEs/ACU/device). It is extensible to arbitrary
number of ports. In fact, to support arbitrary numbers of
PEs in an mpNoC interface, a simple approach is to sta-
tically map each PE request to one input port configured
as a vector of length equal to the number of PEs. The
mpNoC interface in one mppSoC configuration, with a
VGA device for example, contains the following sig-
nals:

MpNoC IP input ports

Switches controlled by the ACU

mpNoC Router

Crossbar, MIN, ...

MpNoC IP output ports

Figure 2: mpNoC integration into mppSoC

clock : clock signal
reset : reset signal
cs : activation bit
- - - Processors - - - -
e IN----
datainPE : PE data (32bit data vector (length=number of PEs))
requestinPE : PE address (32bit address vector (length=number of PEs))
ram_wr_PE : PE read/write (1bit R/W vector (length=number of PEs))
datainACU : ACU data (32 bits)
requestinACU : ACU address (32 bits)
write_en : ACU readfwrite signal
---0UT----
dataoutPE : PE data Out (32bit data vector (length=number of PEs))
requestoutPE : PE address Out (32bit address vector (length=number of PEs))
dataoutACU : ACU data Out (32 bits)
requestoutACU : ACU address Out (32 bits)
- - - - Devices - - - -
dataoutVGA : VGA data Out (32 bits)
reqoutVGA : VGA address Out (32 bits)

The mpNoC always contains input and output ports ded-
icated to PEs and to ACU. The designer has to add only
the necessary needed connections with the mppSoC de-
vices. Such an interface can be easily incorporated into
different mppSoC configurations. The internal router
can service either a read or a write access at a time, as
the address is either read or write address respectively,
according to the read/write bit. If this bit is set to one,
a write operation is performed; otherwise a read opera-
tion is achieved. The data transfer is arbitrated between
all initiators in a round-robin fashion. To guarantee the
synchronous functioning of the mpNoC, a controller is
implemented. The Figure 4 illustrates how large the im-
plemented mpNoC controller is in comparison to the
different mpNoC components. We see that the size of
the mpNoC controller is about 27% of the whole mp-
NoC design. The size of the Mode Manager is signif-
icantly lower than that of the router. It only represents
29% of the mpNoC design. So the major component

Figure 4: Size comparison of mpNoC components

that consumes more FPGA area is the internal router.
The following paragraphs detail more the mpNoC
components.

4.2.1. Mode Manager

The Mode Manager is composed of switches respon-
sible of establishing the needed connections according
to the chosen communication mode. By default, the
PE-PE mode is established. In fact, the mpNoC has
as inputs the data coming from the PEs, the ACU and
the devices. So the Mode Manager has to select the
corresponding data depending on the communication
mode set by the programmer. A chip select component
may activate the mpNoC. The mode is selectable with a
mode instruction.

4.2.2. Interconnection Network (mpNoC Router)

The ICN is the mpNoC router responsible of transfer-
ring data from sender to appropriate receiver. It may be
of different types. It has scalable communication archi-
tecture in order to fit to different sized mppSoC architec-
tures. In this work, two mpNoC implementations have
been proposed: one is based on a full crossbar network,
another on a Delta MIN. An effective implementation

Switching Element

Sources Targets
Router Router

N <

P\ 4

our

1

il

i

1111

Figure 5: Example of 4x4 crossbar NoC

can be chosen depending, for instance, on the number
of PEs. Our choice is based on the fact that crossbar
networks are networks with good properties for systems
with small number of PEs. While targeting a huge net-
work size, it is necessary to deal between efficiency (ex-
pressed in average number of passes) and the silicon
space. MIN is considered as a promising solution for
applications which use parallel architectures integrating
a large number of processors and memories. They meet
the needs of intensive signal processing and they are
scalable to connect a large number of modules. The mp-
NoC router has N input data ports and N input address
ports, where N is the number of PEs in the system. If
PEs are senders so all input ports are activated. If the
ACU is the sender so the data of the ACU is transmit-
ted via the first input port of the network by the Mode
Manager. All the other input ports are disabled. The
same manner is applied to the output ports. In the fol-
lowing sections, we discuss the implementation of each
individual mpNoC internal network in detail. We func-
tionally verified each individual block and synthesized
each block and complete design using Quartus II syn-
thesis tool and the simulator Modelsim Altera. We con-
clude with a comparison between the two implemented
internal networks:

Crossbar based mpNoC

A full crossbar network allows simultaneously con-
necting any pair of nodes unoccupied. In general, it
is used to connect a limited number of processors and
memories. We look more closely into a packet-switched
crossbar.

Implementation

The crossbar ICN is a multiple bus system, where all
units are interlinked as shown in Figure 5. There is a
separate path available to each target. The architecture
is based on two main building blocks. Blocks on the
left hand side are called Routers_IN, and blocks on the
right hand side are called Routers_ OUT. The Router_IN

MPNoC

Mode Manager Router_out0
—
e : I o
e _'__.‘Mf“ == Router_outl
| HH
i | '
DATA_OUT
il Rovter N | T —_
o] Lt]
W |
! Router_outM
I [, __|--" Router_inM | 7 Ll

Figure 6: The crossbar architecture in the PE-PE mode

has the role of getting a request from its (left) input
port and sending it to the right Router OUT accord-
ing to‘its address. Inversely, the Router OUT detects
if there is data to be sent to this port. When this is
the case, a transfer occurs from the source to the target.
The Figure 6 shows in detail the crossbar architecture
connecting PEs to PEs (the case of the PE-PE mode).
The network architecture consists of input ports, out-
put ports, N routers, N arbiters (where N is the number
of PEs in the system) and switch fabric. The switch
fabric is the interconnection between inputs and out-
puts. The used ports communicate 32 bits wide data
and address busses. Each Router_out stores the incom-
ing data and address to which the data is destined in
buffers. The buffers are maintained as First-In-First-Out
(FIFO) queues. A common problem arises when several
senders are ready to send their data to the same receiver.
The round robin approach offers an elegant solution to
fix this issue [36]. The Router_out contains an arbiter
that assigns a priority token to one sender. As soon as a
transfer occurs, the token goes to the next sender in a cir-
cular way. If one FIFO that has the priority is not ready,
its nearest neighbor (in the round robin algorithm) that
contains data will complete its transaction, and so on.
In this way, a transfer can occur at each clock cycle for
each Router_out that has at least one full FIFO. All the
activities are synchronized to a global clock signal. Dif-
ferent buffer sizes are tested with the Router_out mod-
ule. Table 1 shows the implementation results varying
the buffer depth. It is clearly shown that using a buffer
of less size consumes less area than when using a bigger
size buffer. Since the mpNoC is dedicated to an SIMD
architecture, it functions in a synchronous way. In this
way, only one communication is executed at a time, then
the next communication is executed after the comple-

Table 1: Router_ OUT with different buffer sizes implementation re-
sults

buffer size Logic Utilization Total block

number of words | ALUTSs \ registers | memory bits

2 5 69 128
4 9 73 256
8 13 77 512
16 17 81 1024

tion of the first and so on. That’s why, every buffer
sufficiently needs two 32-bits wide words (data + ad-
dress), even with a larger number of PEs. The final im-
plemented crossbar contains FIFO buffers of size two.
The following paragraph presents performance evalua-
tion and analysis of the crossbar network.

Crossbar performances

In this paragraph, we evaluate the NoC performances.
In fact, NoC evaluation metrics, such as area and aver-
age latency became essential aspects for optimizing the
implementation of networks in a multi processor SoC
design. The implementation results on the FPGA Altera
Stratix 2S180, in terms of logic utilization, maximum
throughput (TP) and latency are reported in Table 2. The
TP is defined as the average number of data transfers de-
livered by the network per cycle per output port. The la-
tency is the time spent to achieve a communication from
the sender to the corresponding receiver. Minimum and
maximum latency values are measured. We clearly see
that when increasing the number of connected nodes,
the crossbar network occupies more area on the target
FPGA. One of other major difficulties with the crossbar
is the rapid growth rate of the number of connections
that must be made when new nodes are added. Cross-
bar has the complexity of N> connections, where N is
the number of switches in this non blocking network.
Test results also show that the max TP decreases as the
number of connected nodes increases.

Delta MIN based mpNoC

A MIN can be defined as a network used to inter-
connect a group of N inputs to a group of M outputs
using several stages of switches elements led by linking
stages [8]. A MIN is defined by: its topology, switch-
ing strategy, routing algorithm, scheduling mechanism,
and fault tolerance [37]. Among the proposed various
ICNs, those most commonly used are the class of delta
networks [16] which includes the omega network [12],
indirect binary n-cube network [18], and the cube net-
work [27]. Because of their low complexity, delta net-
works have always been considered as the alternatives
to crossbar switches for interconnecting processors and

Stages switches
' o

N~ @ o & ®w N 2 o

N
Crossbar (2x2)
Connection blocs

Figure 7: Delta MIN Architecture (Case of Omega network)

64 31 0
Dest Memory @
(RN J X J

R ~
Bit r/w Data Address
Figure 8: Delta MIN data packet

memory modules in multiprocessor systems [16]. In
this work, we focus on Delta MIN which derived from
Banyan networks characterized by one and only one
path between each source and destination [9].

Implementation

General a" x b" delta network consists of a” sources
and b" destinations, n number of stages and the ith
stage has a"! b"~! crossbar modules or Switching Ele-
ments (SE) of size a x b (in our case crossbars of size
2x2). Figure 7 shows a three stages 23 x 23 switching
Omega network. The nodes pairs are connected to each
other with switches which are dynamically set by con-
trol logic associated with interconnected network. Delta
network possesses full access property since it is possi-
ble to connect every node (;) to the other (N;). In a
MIN, a path between a source and a target is obtained
by operating each corresponding switch of the stage i in
straight mode if the i’ bit of the destination address is
equal to 1, otherwise in exchange mode.

The basic building blocks of the Delta MIN are SEs,
connected by links. The SE is composed of two FIFO
and a scheduler who decides when data is sent from par-
ticular inputs to their desired outputs following a round
robin scheduling algorithm. We can vary the topology
of the network (omega, baseline, and butterfly) just by
varying the topology of interconnection links between
the crossbar stages. The implemented MIN is a packet
data communication network. The package is composed
of three parts, as shown in Figure 8. The 65-bits packet
data is mainly composed of:

- The head of the packet (1 bit): contains the bit

Table 2: Crossbar performance results

Number | Logic Utilization | Total block memory | Latency Max TP
PEs ALUTs \ registers bits (cycles) | (32bits/cycle)
4PEs 281 483 512 2-5 1.232
8PEs 548 806 1024 2-9 1.131
16PEs 957 1469 2048 2-17 1.045
32PEs 1905 2818 4096 2-33 0.923
64PEs 4191 5917 8192 2-65 0.833
128PEs | 10184 13609 16384 2-129 0.782
12000
Table 3: Delta MIN performance results 10000
Number | Logic Utilization | Latency Max TP ¢ 2000
PEs ALUTsSs | registers | (cycles) | (32bits/cycle) 3 oo
4 402 1404 6-9 1.260 % w000 f‘—ﬁ"oss"ﬂf .
8 1101 3885 9-16 1.193 L T
16 1456 5401 12-27 1.085
32 2099 7746 15-46 0.886 ’ i & i B EG
64 2905 9022 18-81 0.812 Nimberoldonnctednois
128 3834 10397 21-148 0.742

read/write to determine the nature of the memory ac-
cess read/write.

- The data (32 bits)

- The tail of the packet (32 bits): composed of the des-
tination and the memory address.

Delta MIN performances

Simulation results give statistical values for FPGA
area, latency and the maximum throughputs of the
blocking network which are reported in Table 3. As the
crossbar, the Delta MIN requires more FPGA resources
when increasing the number of connected nodes. We
clearly see from the above tabulated results that the data
transfer rate decreases as the number of nodes increases.
One major difference is the network latency which is
higher in the MIN compared to the crossbar.

Crossbar/Delta MIN Comparison

The implementation of the two internal networks
shows that the mpNoC is a flexible and an efficient net-
work. "The choice of the utilized network should be
based on the application requirements. The most im-
portant metrics helping the decision process are inter-
connection area and TP. Comparing between the two
different mpNoC ICNs, as shown in Figure 9, we no-
tice that the area of a full crossbar network is increas-
ingly important than MIN while increasing the size of
the two networks (more than 64 connected nodes). The
area of interconnection depends on the topology (topol-
ogy weakly connected will have an area smaller than

Figure 9: Logic utilization of the crossbar and Delta MIN networks

1400

1200 -
1000
800

600 —o—Crossbar TP

200 —m—Delta MIN TP

data transfer/cycle (x10%)

200

0

4 8 16 32 64 128

Number of connected nodes

Figure 10: Maximum TP of the two internal mpNoC networks

topology completely connected), located services (more
the established mechanisms are complex and numer-
ous, more resources area is important) and the size of
buffers included in the routing resources. As a result,
Delta MINs are performing in terms of area to connect
a large number of nodes. The area of MIN is propor-
tional to Nlog,N, compared to N? for full crossbar net-
works. In Figure 10, the obtained maximum TPs of a
crossbar and a Delta MIN networks with different num-
ber of nodes are compared. Results demonstrate that
the TP of the delta MIN and the crossbar are compa-
rable. The delta MIN has a TP higher than the cross-
bar with smaller number of PEs (less than 32 PEs), and
vice-versa. According to these results, it seems that the
delta MIN is better suited for systems with small trans-

requestoutPE
[PEO,...,PEM]
requestoutACU
N MpNoC
reqoutDevice > P I
N Controiier notif
mode
send

receiv

Figure 11: MpNoC Controller Interface

missions. When transmissions become longer, cross-
bar has a higher TP which is mostly constituted by the
fact, that there are more interconnection paths available
in parallel. Whereas, delta networks suffer from inter-
nal blocking which severely degrades their TP perfor-
mance.

We deduce that the crossbar network offers multi-
ple simultaneous communications with the least amount
of contention, but at a very high hardware complex-
ity. The crossbar is a low latency, non-blocking ICN
for large data transfers. However, it becomes expen-
sive for large values of N. In comparison, multistage
switching networks may offer a better cost (area and
power)/performance (delay and TP) compromise for
large complex systems.

4.2.3. MpNoC Controller

To assure synchronization, which is the key char-
acteristic of an SIMD system, an mpNoC controller
IP must be integrated in the architecture when using
the mpNoC. It has a functioning dependent on the
communication mode. This IP verifies if data trans-
ferred by a sender is received by the corresponding re-
ceiver. The verification is carried when there are mul-
tiple receivers or multiple senders to assure all data
transmissions.. Otherwise, the single receiver sends
directly an acknowledgement to the ACU. The mp-
NoC controller (Figure 11) has as inputs: the addresses
signals transferred via the mpNoC (requestoutPE and
requestoutACU or reqoutDevice), the communication
mode mode, send and receiv signals coming from
senders and receivers respectively; and a notification
signal notif as output port. send and receiv signals are
configured as bit arrays of length equal to the number
of PEs as it is the maximum number of connections of
the mpNoC. If the sender is the ACU or a device, it has
to set the first bit of the send signal to ’1°, otherwise it
is set to ’0’. The same manner is followed if we only
have one receiver which can be the ACU or a device.
If the PE is the sender it has to set the bit which has

10

the same number as its identity to *1’. The same man-
ner is applied by the PE receiver. For example in the
case of 4 PEs, send and receiv signals are configured as
4-bits arrays (array (nb_slave-1 downto 0) of std_logic;
where nb_slave is equal in this case to 4). If the ACU
sends data to the PE1 then the ACU has a send signal
configured as ”0001” and the PE1 has a receiv. signal
configured as "0010” when receiving its data. The mp-
NoC controller continuously verifies if the communica-
tion is achieved form senders to appropriate receivers. It
also verifies if all needed communications are success-
ful. Based on the mode communication, it compares
between send and receiv signals taking into account the
transmitted addresses via the mpNoC. When the com-
munication is successful, the mpNoC controller gener-
ates a notification signal to the ACU in order to continue
executing the remaining instructions.

In order to allow sending and receiving data through
networks, we use different communication instructions
that will be described in the following subsection.

4.3. Communication instructions

We use the MIPS assembly language for development
of mppSoC parallel programs. From an mppSoC assem-
bly code, the mppSoC compiler generates a binary that
can be used by the FPGA implementation. This mpp-
SoC compiler is a modification of the GNU MIPS as-
sembler. MpNoC is managed through communication
instructions based mainly on the processor load (LW)
and store (SW) instructions. To set the communication
mode we employ a mode instruction which consists in
writing the mode value in a defined address. It is based
on the SW processor instruction: SW cst, @ ModeMan-
ager, where:

- @ModeManager = ”0x9003”

- cst is a constant which can have five different values
corresponding to five different interconnection modes
respectively.

Below, the definition of mode constant values in the
VHDL configuration file is showed.

—MPNoC Modes

constant ModeO : positive := 0; — PE — > PE
constant Model : positive := 1; —ACU — > PE
constant Mode? : positive := 2; — PE — > ACU
constant Mode3 : positive := 3; — PE — > Device
constant Mode4 : positive := 4; — Device — > PE

From an implementation point of view the communi-
cation mode constant is a three bits value. After set-
ting the required mpNoC interconnection, data transfers
will occur through communication instructions which
are SEND and RECEIVE instructions.

SEND instruction: serves to send data from a sender
to a corresponding receiver, relying on the SW memory
instruction: SW data, address. The 32-bits address can
be partitioned in different fields depending on the estab-
lished communication mode. It contains in case of:

1. PE-PE Mode: the identity of the PE receiver (32-
SL_add_width bits) and the PE dest memory address
(SL_add_width bits);

2. PE-ACU Mode:
(MS_add_width bits);

3. ACU-PE Mode: the identity of the PE receiver (32-
SL_add_width bits) and the PE dest memory address
(SL_add_width bits);

4. PE-Device Mode: the device address (32 bits);

5. Device-PE Mode: the identity of the PE receiver (32-
SL_add_width bits) and the PE dest memory address
(SL_add_width bits).

MS_add_width and SL_add_width are the parametric
memory sizes of the ACU and the PE memories respec-
tively. When needed, zeros are inserted into the emptied
bits to obtain the 32-bits address. The communication
modes ACU-Device and Device-ACU are direct point
to point communications.

RECEIVE instruction: serves to obtain the received
data, relying on the LW memory instruction: LW data,
address. It analogously takes the same address field as
SEND instruction.

Itis clear from the above address coding that the num-
ber of PEs in the system also depends on the memory
size. However, increasing the number of PEs leads to
decreasing the PE memory size which is the advantage
of the SIMD architecture. For example when each PE
has a memory of 256 K-bytes we can integrate up to
65536 PEs, which is a‘sufficient number.

Furthermore, we notice that the execution time of a
communication.instruction can vary depending on the
communication mode. If multi-senders want to send
their data to a same receiver (PE-ACU mode for ex-
ample), the data is sequentially transferred since the re-
ceiver can accept one data at a time. So the total ex-
ecution time of this communication instruction is the
execution time considering one to one communication
multiplied by the number of senders (N) since we have
to repeat it N times (we find the same process in the
traditional SIMD systems like Maspar [35]).

The Xnet neighborhood network is programmed as
the mpNoC. It is managed by SEND and RECEIVE
instructions. Their address field takes three operands:
the distance, the direction and the memory address.
The distance defines the number of paths needed to
achieve the communication between the PE sender and

the ACU memory address

11

Table 4: SW MIPS Format

31-26 | 25-21 | 20-16 | 15-0
101011 base rt offset
Table 5: SEND Format
31-26 | 25-21 | 20-16 | 15-0
101011 rd rt offset

the other receiver on the same row or column or diago-
nal. There are eight direction 3-bits constant values that
the programmer can specify/ to denote each of the fol-
lowing directions: North (000), East(010), South(001),
West(011), North East(100), North West(101), South
East(110) and South West(111).

SEND and RECEIVE instructions rely on LW and
SW MIPS instructions with some added modifications.
In fact the'SW instruction has the format shown in Ta-
ble 4. In this format, the address is composed of 21 bits
(offset+base) and the value to be stored is contained in
the register rt. In comparison, the SEND instruction re-
places the base field, as shown in table 5, by the number
of 'the register (rd) that can contain the address to be
transmitted. In this case, the address field is the sum of
the register rd value and the offset, and is 32 bits wide.

5. MppSoC Applications

The objective of this section is to test the use of dif-
ferent communication networks: from a neighborhood
network to an irregular network with different inter-
connection routers. We want to test the reliability and
the effectiveness of the NoC and compare the perfor-
mances of the various parallel configurations with dis-
tinct communication networks. Two mpNoC networks
were tested: full crossbar and Delta MIN with three
topologies (Omega, Baseline and Butterfly). These lat-
ter differ in the number of different N-to-N interconnec-
tion patterns they can achieve. Three parallel algorithms
were implemented: image rotation, 2D convolution and
FIR Filter. There are two main considerations in the
mapping of parallel algorithms onto mppSoC. First is
the number of available PEs and the second is the se-
lection of the best configuration to map the algorithm.
The purpose of this Section is to evaluate performance
of three parallel algorithms when mapped onto mpp-
SoC system. Implementation results and performance
evaluation of each algorithm are presented. The analy-
sis provides the flexibility to vary several parameters,
and therefore, it is easier to study the effects of alter-
native approaches. The results identify the communi-

&

Figure 12: Extract from image rotation assembly codes

cation network suitable for an algorithm. As already
mentioned, the MIPS instruction set was extended to
program the mppSoC [28]. The execution of mppSoC
binary needs first to integrate the binary program in the
instruction memory and, after the synthesis, is deployed
with the bitstream to the FPGA board. We target Altera
Stratix 25180 FPGA which includes 143 520 ALUTSs
for hardware logic [38].

5.1. Image Rotation Algorithms

Image rotation algorithms seem to be simple and
good examples to use the mpNoC. In fact, in this sit-
uation, communications are very irregular: PEs need
to communicate using several different directions and
lengths. Obviously, it is possible to realize that using
the X-Net network, but this needs several communica-
tion steps (as much as the number of PEs). We realize
17161-pixel image rotations on different sized mppSoC
designs. The resulting images of Figure 12 were pro-
vided by an execution of binary programs on-mppSoC
mapped to an FPGA. In this work, we are specifically
interested by image mirroring and special image rota-
tion by 90, 180 and 270 degrees. It is-quite simple to do
these rotations by remapping the pixel locations: choos-
ing the source pixel that corresponds to each destination
pixel and setting the destination pixel to that value. In
these algorithms we are considered that the number of
PEs is equal to N where N=n>. The PEs are arranged in
a 2D (nxn) grid. As an example for an image rotation
(of size (MxM)) by 90 degrees, each PE performs the
rotation on its submatrice of size (M/nxM/n). Then all
PEs send their data in order to the VGA device to re-
construct the final rotated image. The mpNoC is used
to connect PEs, ACU with PEs and to also connect PEs
with a VGA device allowing displaying image on the
screen. So, the mpNoC is necessary in this application
since it assures parallel I/O data transfers. The follow-
ing code shows the reconstruction of the rotated image
by the VGA device:

(ST1) For i=0 to n-1 do
(ST2) For j=0 to n-1 do
(ST3) Read data from PE(i)
(ST4) i:= i+n

(ST5) end For j

(ST6) end For i

12

Table 6: Clock frequency for mppSoC on Stratix 2S180 FPGA

Number Max. Freq. (MHz) Max. Freq. (MHz)
of PEs | (mppSoC with crossbar) | (mppSoC with Omega)
4 53.39 543
8 53.04 53.46
16 51.27 51.77
32 48.63 41.68
64 41.48 40.70

120
100
80 —4—Logic utilization (Omega)

~~ —@—Combinational ALUTs
(Omega)

FPGA Ressources (%)
P
g

40 Dedicated Logic registers
(Omega)

—s4=Crossbar Logic utilization

4 8 16 32 64 84
(17160) (8580) (4288) (2148) (1076) (820)

Number of PEs (Memory size: bytes/PE)

Figure 13: Synthesis results of Delta MIN/crossbar based mppSoC
designs

When varying the number of PEs, we also vary the data
memory size of each PE. Two internal mpNoC ICNs are
tested: a crossbar and a Delta MIN with three topologies
(Omega, Butterfly and Baseline). The table 6 presents
the maximum clock frequency for the different mppSoC
designs varying the number of processors and the used
mpNoC interconnection networks: crossbar and omega
networks. Clock frequency drops due to the used net-
work. Although the frequency decreases, all designs
approximately run at the first frequency which is 50
MHz. The mppSoC with the omega network runs at
a frequency higher that when using the crossbar for a
number of PEs lower than 16. This conforms the re-
sults obtained in table 2 and 3. Performance results in
terms of computation cycles, logic area and energy con-
suming are also analysed. Figure 13 demonstrates that
84 PEs could be implemented if using Delta MIN con-
figured in the Omega topology, on the StratixIl. How-
ever, when using the crossbar based mpNoC we are lim-
ited by the huge size of the crossbar network and 64 is
the maximum number of PEs that we could integrate on
the StratixII FPGA. It is also the same number that we
could integrate when using both neighbouring and mp-
NoC networks in the same system. The table 7 gives
the resources occupation for the ACU and the PE. It is
shown that one of the advantages of the SIMD parallel
system is a saving in the amount of logic. About 30%
of the logic on a typical processor chip is devoted to

5000
4500
4000

E 3500

& %

K] 2000

8

S 1500

1000
500

Number of PEs

Figure 14: Execution time of image rotation algorithm for different
sized mppSoC designs

Table 7: Processors FPGA logic utilization

Processors | ALUTs | registers | FPGA occupation
ACU 2851 1936 2%
PE 1031 321 <1%
control.

As illustrated by Figure 14, the speedup increases
when increasing the number of PEs. SIMD systems can
provide a high throughput, as long as the processing al-
gorithm exhibits a high degree of parallelism at the in-
struction level. However, this is not the case when us-
ing the Xnet network since the PE spend more time to
do communication than computation. Since communi-
cations are irregular, we need many cycles to-achieve
all the communications between PEs. It is so shown
that the Xnet network is not efficient for the image rota-
tion. This is due to the fact that the communications are
not regular enough to be managed.by the Xnet network.
We demonstrate that the irregular communications are
very tedious to realize using the neighboring network.
We deduce that the crossbar based mppSoC design per-
forms a speed up higher than a Delta MIN based mpp-
SoC design. It has also been shown that the baseline
topology is the most appropriate topology if the de-
signer wants to implement a Delta MIN based mpNoC
with this application. The three different MIN topolo-
gies differ in terms of the connection links between the
crossbar based stages.

In order to estimate the embedded system efficiency,
we measure the amount of energy E =TxP required to
compute the algorithm, where P(W) is the power dis-
sipation. P values are measured using the PowerPlay
power analysis tool of Quartus II. It can be observed
from the Figure 15 that, as we increase the number of
PEs, the energy consumption decreases. We clearly see
that the crossbar based mppSoC consumes less energy
than a baseline MIN based mppSoC. This is due to the
fact that the crossbar achieves less execution time. Ac-
cording to these different performance results, we de-

13

@ baseline MIN
B Crossbar

Energy Consumption (J)

NN\

.

Number of PEs

Figure 15: Energy Consumption of different sized mppSoC designs

duce that the choice of a crossbar internal network is
better, in our case, than a Delta MIN, depending on the
application requirements. It should be also noted that
the complexity of the crossbar network pays off in the
forms of reduction in the time complexity as well as
energy consuming. However, if the designer wants to
integrate more than 64 PEs in the mppSoC system, he
should choose a Delta MIN based mpNoC.

5.2. 2D Convolution Algorithm

Two-dimensional (2D) convolution is a basic oper-
ation in image processing and requires intensive com-
putation. The SIMD model is considered suitable for
this kind of application. In fact, the image convolution
involves local image transformations resulting in thou-
sands of potentially parallel operations. We focus on the
2D convolution computed in the discrete wavelet trans-
form (DWT) [20]. In this work, we perform convolu-
tion on a 256x256 32-bit pixels image. Multiple pix-
els are mapped onto a separate PE. For an image NxN,
each processor has M=N?/P pixels in its local memory,
where P (assume P=pxp) is the total number of PEs.
In general, pixel(i,j), 0<i<N-1, 0<j<N-1 is mapped to
PE((i mod p),(j mod p)). Therefore this mapping pre-
serves the adjacency of any two pixels. In an initial-
ization phase, the ACU sends to every PE the corre-
sponding pixels to be stored in its local data memory.
The convolution operation is performed as follows: for
each pixel(i,j) a 2x2 sliding template, called convolu-
tion kernel, is convolved with the 2x2 window centered
on pixel(i,j). That is, each value into the pixels win-
dow is multiplied by the corresponding signed weight
into the convolution kernel. Then, the 2x2 products ob-
tained in this way are added to produce the output pixel
value. Each PE has the kernel coefficients stored in its
local data memory. The algorithm performs the con-
volution by each processor distributing its pixel values
to the neighborhood in a pipelined manner. In this case,
the Xnet neighborhood network is used. But only North,
South, East and West connections are required. At any

100

90

80

70

60

50

20 —&—Crossbar

Logic Utilization (%)

30 Xnet
20

4 8 16 32 64

Number of PEs
Figure 16: FPGA Resources of Crossbar/Xnet based mppSoC designs

step all PEs have the same neighbor connection. We
also test the use of a crossbar based mpNoC and com-
pare it with the neighborhood network.

In this case, the relationship between the input pix-
els B,(x,y) (each PE performs a convolution on its bloc
image denoted by B;) , the convolution kernel weights
h(i,j) and the convolved pixels r¢(X,y) is given by:

rs(X,Y) = Bs * N
n n

:ZZBS(x—i+1,y—j+l)xh(i,j) (1

i=1 j=1
where s € [1,nb_PEs]; n=2

At any time, every PE computes a partial sum for its
convolution. The implemented algorithm is similar to
that explained in [19], [1]. We address the scaling of
mppSoC to match the computational complexity of a
convolution application. The impact of scaling is quan-
tified in terms of FPGA allocation, execution time and
energy consuming. As shown in Figure 16, the crossbar
network is considerably larger, especially in the imple-
mentation with 64 PEs. With 4 PEs the crossbar is about
1,5 times as big-as the Xnet, but with 64 PEs this rela-
tionship is increased to twice. It is therefore likely that
this difference insize will increase further when imple-
menting larger networks.

The neighborhood network is more efficient for ap-
plications which needs inter processor communications
since it is designed for that purpose. As illustrated from
Figure 17, we can see that the regular network version
is the fastest one. For 64 PEs for example, the mppSoC
with Xnet takes 14 ms whereas with a crossbar it takes
25 ms which is approximately two times higher. In addi-
tion, the Xnet network has a latency of one cycle, due to
local communications, making it a more powerful and
efficient communication network to perform neighbor-
ing communications compared to mpNoC. Figure 18
demonstrates that the Xnet consumes less energy than

14

—e—Xnet

Execution Time (ms)
8

~m—Crosshar

Number of PEs

Figure 17: Execution Time of 2D convolution algorithm

@
S
3

a
=}
3

IS
3
3

@ Crossbar
o Xnet

Energy Consumption (J)
pow
8 8
8 8

=)
3

o

16 32 64

Number of PEs

Figure 18: Energy Consuming for Crossbar/Xnet mppSoC designs

the crossbar. Consequently, using a neighborhood net-
work for a 2D convolution is more suitable than inte-
grating the mpNoC.

5.3. FIR Filter

FIR (Finite Impulse Response) filtering is one of the
most popular DSP algorithms. It is well suited to be
executed on SIMD systems. FIR filters are easy to de-
sign. On the other hand, they require increased number
of multiplications and additions, and, what is also im-
portant, number of memory reads. A FIR filter is imple-
mented with the following equation:

M-1

Y(n) = Z beX(n — k) 2)
k=0

where X is the input signal and by are filter coefficients.
M is the filter order or number of taps. An M-order
FIR filter requires M multiplications and M additions
for every output signal sample. It also requires 2M
memory read operations, M of them is for input signal,
the rest for them is for filter coefficients. In this work
an adapted version of the difference equation called the
Direct Form Structure (Figure 19), is implemented. To
run the FIR-filter, we tested two mppSoC designs based
on two different communication networks: the neigh-
borhood network Xnet and the crossbar. Application
results describe the performance and speedup of the im-
plemented FIR-filter. Shown in Figure 20 are the clock
cycles needed when running the FIR filter application.

2500 -
2000 -
1500 -

o Xnet
B Crossbar

1000

Clock Cycles

500 -

Number of PEs

Figure 20: Execution Time of a FIR algorithm for different sized mpp-
SoC designs

The results are based on a 64-tap FIR and an impulse
response with a length of 128. When PEs are added
to the system, a larger part of the output signal can be
calculated on at the same time. On the other hand, com-
munication instructions are decreased and this results
in a maximum speed up of about five. As expected,
the mppSoC architecture based on the neighbourhood
inter-processor network is the most effective for the FIR
application. These results show that, based on flexible
communication networks in the mppSoC system, the
programmer would use the best interconnect suited to
his application and its requirements.

It has been proved from these experiments that avail-
ability of flexible communication is critical to achieve
high performance.

6. Network architecture comparison

Many NoC architectures proposals have been inves-
tigated. The challenge consists in offering the best con-
nectivity and throughput with the simplest and cheap-
est architecture, particularly for parallel architectures as
SIMD ones. Unfortunately, very few of these propos-
als provided any kind of implementation or performance
data that could be used for relevant comparison against
this work. In addition few NoC implementations have
been proposed for SIMD parallel systems. As a result
it is difficult to perform direct comparison with other
SIMD dedicated network approaches. However, other
NoC implementations for multiprocessing/parallel sys-
tems could be representative to be compared with our
mpNoC.

15

Table 9: MCNoC and mpNoC performance results

NoC Version | Occupation Throughput
FFs | LUTs
MCNoC 3951 | 4731 280 MB/s
mpNoC 806 548 | 305,115 MB/s

Our proposal is the massively parallel network on
chip, mpNoC, which is flexible and can implement dif-
ferent interconnection networks. This flexibility is a key
characteristic of mpNoC that distinguishes it from the
other proposed NoC. It also supports different commu-
nication modes: one to many, many to one and many to
many communications offering parallel data transfers.
The mpNoC is scalable and can cope with a large num-
ber of cores. Comparing it with some other NoC im-
plementations, we find that our mpNoC is efficient and
provides powerful performances.

Forexample, in [22] a multiprocessor architecture for
the massively parallel GCA model is presented. It con-
tains an omega network. The table 8§ compares between
this network and our omega MIN based mpNoC. We see
that our network presents better results when increas-
ing the number of PEs since it consumes less ALUTSs
in the FPGA (reduction of the hardware cost by over
3x with 32 cores). This makes it efficient for massively
parallel on chip architectures. In [30] a parallel routing
mechanism for a MIN on the circuit-switching mode is
presented. The authors take into account only one-to-
one and one-to-many permutations. However, many-
to-one and many-to-many permutations are not consid-
ered. Our approach differs from the previous one. In
fact, our target architecture is an SIMD massively par-
allel architecture where multicast has an important role,
and one-to-one permutation almost never takes place.
The proposed mpNoC can be also configured to sup-
port different communication modes by programming.
Through experiments, we show that a configurable par-
allel router that can change its communication mode in
accordance with the applications communication need
can potentially increase the performance of the NoC and
the final system. In [25] a multi-cluster NoC architec-
ture for parallel processing is proposed. It shows better
performance than conventional NoCs. When compar-
ing the area occupation and the network throughput for
8 cores with our crossbar based mpNoC, we find that
the mpNoC achieves better results, as demonstrated in
table 9 . Accroding to table 9, the mpNoC presents a
high throughput than the MCNoC (1.089x). In [21] a
programmable NoC is proposed. It has a flexible archi-
tecture dedicated to be used in FPGA-based systems. It

Table 8: Synthesis Results

Network | Comm. accesses ALUTSs
4PEs | 8PEs | 16PEs | 32PEs
Omega Only read 279 818 2344 6092
mpNoC | Read and write 402 | 1101 | 1456 2099
Table 10: PNoC and mpNoC router characteristics
Network Flexibility Parameter Switching
PNoC Network topology Data-path width circuit
& connected nodes
mpNoC | Interconnection network | connected nodes packet
Table 11: PNoC and mpNoC performance results
Number Network Area Speed
of nodes (MHz)
4 PNoC 366 slices 138
4 mpNoC (crossbar) | 445 Logic Elements 123
8 PNoC 1305 slices 126
8 mpNoC (crossbar) | 802 Logic Elements 113

also shows better performances compared with a shared
bus implementation. The Table 10 compares PNoC and
our mpNoC in terms of router characteristics. The sig-
nificant difference is the network parameters. The actual
mpNoC version works with 32bits data width. We note
that ongoing work aims to parametrize the data width
of the mpNoC, however it is outside the scope of this
paper. The table 11 compares PNoC and crossbar based
mpNoC, working with 32bits data width, in terms of
area and speed for 4 and 8 connected nodes. We see
that the mpNoC achieves better performances in term of
area since it reduces the hardware cost when increasing
the number of connected nodes. However it decreases
slightly the speed. In general, it presents good area/time
performances.

We deduce from previous comparisons that the pro-
posed mpNoC is well suited for parallel architectures
achieving better performances. It is considered as
a lightweight network which requires few FPGA re-
sources making it suitable for both small and large
FPGA-based systems.

7. Conclusion

Having an efficient communication network in mod-
ern multiprocessor systems on-chip is certainly one of
the biggest challenges for designers. This is particu-
larly true for SIMD architectures. In this paper, we in-
troduced the mppSoC system which is an SIMD mas-

16

sively parallel processing System on Chip. Among its
important features, we emphasize on its communication
networks. The mppSoC platform uses X-Net network
for inter-processor communications. This network is
very efficient for neighboring communications. How-
ever, it is time consuming when dealing with point-to-
point communications. For that purpose, mppSoC also
integrates an efficient irregular communication network
IP called mpNoC, a massively parallel Network on Chip
that can be used alone or with X-Net.

The mppSoC platform is entirely described at RTL
level and implemented on FPGA. It can be configured to
use different sizes and network topologies. This config-
urability makes it possible to tailor the architecture for a
specific application and thereby increasing its effective-
ness. MpNoC can be configured in different communi-
cations modes: to communicate between processors and
also to perform I/O data transfer. This work shows the
gains that could be achieved with such strategy. Mp-
NoC uses a set of library internal networks that have
varying cost and performance metrics. Two networks
were tested: a crossbar and a Delta MIN with three dif-
ferent topologies (omega, baseline and butterfly). The
mppSoC designed networks are scalable and paramet-
ric in order to satisfy different data parallel application
requirements. The FPGA implementation, with vari-
ous configurations, has been validated on three signif-
icant applications. According to the performances of
each configuration, the designer can choose the most

appropriate one for the tested application. We have
demonstrated that it is vital to have a flexible intercon-
nection scheme which can be applied to the system de-
sign. Compared to other implemented NoC, the mpNoC
presents good performances making it suitable to FPGA
based parallel systems.

The implementation and evaluation of significant and
complete applications on mppSoC system are ongoing.
Future works deal with the choice of the processor IP.
The MIPS processor has been chosen for our first imple-
mentation because of its open source availability; how-
ever, it is not optimized for a particular FPGA. Our aim
is to test other processor IPs more optimized in order to
enhance the implementation effectiveness. Finally, on
the integration side, if large configuration may not be in-
tegrated on a single chip, we are considering multichip
implementations. Connecting together on a board, those
chips will be able to act like a unique SIMD machine ex-
ecuting a single program. The definition of a chip inter-
face and especially the splitting of the networks on the
different chips has to be studied with a special attention
on the scalability of the architecture.

References
[1] A.N. Choudhary and J. H. Patel, Parallel architectures and par-

allel algorithms for integrated vision systems (University of Illi-

nois at Urbana-Champaign, 1989).

B. Parhami, Introduction to Parallel Processing: Algorithms and

Architectures (Kluwer Academic Publishers; 1999).

R. Michael Hord, The Illiac IV: The First Supercomputer (Com-

puter Science Press, 1982).

W. D. Hillis, The Connection Machine (The MIT Press, Cam-

bridge, 1989).

M-H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi, E.

M. C. Filho and V. C. Alves, Design and Implementation of the

MorphoSys Reconfigurable Computing Processor. J. VLSI Sig-

nal Processing Systems. 24 (2000) 147-164.

M. Kumar and J.R. Jump, Performance Enhancement in

Buffered Delta Networks Using Crossbar Switches and Multiple

Links. J. Parallel and Distributed Comput. (1) (1984) 81-103.

M. Rupp, D. Milojevic and G. Gogniat, Design and Architec-

tures for Signal and Image Processing. EURASIP J. on Embed-

ded Systems. (2008).

T. H. Szymanski and V. C. Hamacher, On the universality of

multipath multistage interconnection networks, J. Parallel and

Distributed Comput. 7 (1989) 541-569.

C. P. Kruskal and M. Snir, A unified theory of interconnection

network, Theoret. Comput. Sci. 48 (1986) 75-94.

C. P. Kruskal and M. Snir, The Performance of Multistage Inter-

connection Networks for Multiprocessors. IEEE Trans. Comput.

32 (1983) 1091-1098.

C. P. Kruskal, M. Snir, and A. Weiss, The distribution of wait-

ing times in clocked multistage interconnection networks. IEEE

Trans. Comput. 37 (1988) 1337-1352.

D. H. Lawrie, Access and Alignment of Data in an Array Proces-

sor. IEEE Trans. Comput. 24 (1975) 1145-1155.

D.M. Dias and J. R. Jump, Analysis and Simulation of Buffered

Delta Networks. IEEE Trans. Comput. 30 (1981) 273-282.

(2]

(31

(41

(31

(61

[71

[8]

[9]

[10]

(11]

[12]

[13]

17

21

[22

(23]

(24]

[25]

[27

(28]

H. J. Siegel, Interconnection Networks for SIMD Machines,
Computer. 12 (1979) 57-65.

H. S. Stone, Parallel Processing with the Perfect Shuffle. IEEE
Trans. Comput. 20 (1971) 153-161.

J. H. Patel, Performance of processor-memory interconnections
for multiprocessors. IEEE Trans. Comput. 30 (1981) 771-780.
L. Benini and G. DeMicheli, Networks on Chips: A New SoC
Paradigm. IEEE. Computer. 35 (2002) 70-78.

M. C. Pease, The Indirect Binary n-Cube Microprocessor Array.
IEEE Trans. Comput. 26 (1977) 458-473.

S. Ranka and S. Sanhi, Convolution on Mesh Connected Multi-
computers. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence. 12 (1990) 315-318.

A. Al Muhit, Md S. Islam and M. Othman, VLSI Implementa-
tion of Discrete Wavelet Transform (DWT) for Image Compres-
sion, in: Proc. International Conference on Autonomous Robots
and Agents, ICARA’04 (New Zealand, 2004).

C. Hilton and B. Nelson, PNoC: a flexible circuit-switched NoC
for FPGA-based systems, in: Proc. IEEE Computers and Digital
Techniques (2006) 181-188.

C. Schack, W. Heenes and R. Hoffmann, A Multiprocessor Ar-
chitecture with an Omega Network for the Massively Parallel
Model GCA, in: Proc. 9 International Workshop on Embed-
ded Computer Systems: Architectures, Modeling, and Simula-
tion (2009) 98-107.

D. Parkinson, Experience in Using Highly Parallel Processing
Using DAP, in: Proc. Massively Parallel Scientific Computation
(NASA Conference Publication, 1986) 205-208.

F. Schurz and D. Fey, A Programmable Parallel Processor Ar-
chitecture in FPGAs for Image Processing Sensors, in: Proc.
Integrated Design and Process Technology, IDPT’07 (2007).

H. C. Freitas and P. O. A. Navaux, Evaluating On-Chip Inter-
connection Architectures for Parallel Processing, in: Proc. 11t
International Conference on Computational Science and Engi-
neering - Workshops (2008) 188-193.

H. Du, M. Sanchez-Elez, N. Tabrizi, N. Bagherzadeh, M. L.
Anido and M. Fernandez, Interactive ray tracing on reconfig-
urable SIMD MorphoSys, in: Proc. Design, Automation and
Test in Europe Conference, DATE’03 (2003).

H. J. Siegel and S. D. Smith, Study of multistage SIMD inter-
connection networks, in: Proc. 5 annual Symp. Computer Ar-
chitecture (1978) 223-229.

M. Baklouti, Ph. Marquet, M. Abid and JL. Dekeyser, A design
and an implementation of a parallel based SIMD architecture for
SoC on FPGA, in: Proc. Design and Architectures for Signal
and Image Processing DASIP (2008).

Ph. Marquet, S. Duquennoy, S. Le Beux, S. Meftali and JL.
Dekeyser, Massively parallel processing on a chip, in: Proc. 4
International Conf. Computing Frontiers (2007) 277-286.

R. Ferreira, M. Laure, A. C. Beck, T. Lo, M. Rutzig and L.
Carro, A Low Cost and Adaptable Routing Network for Recon-
figurable Systems, in: Proc. IEEE International Symposium on
Parallel & Distributed Processing IPDPS (2009) 1-8.

R. Grondalski, A VLSI Chip Set for a Massively Parallel Archi-
tecture, in: Proc. International Solid State Circuits Conference,
ISSCC’87 (1987).

S. D. Smith and H. J. Siegel, An Emulator Network for SIMD
Machine Interconnection Networks, in: Proc. 6 annual Ssympo-
sium on Computer architecture (1979) 232-241.

S. Duquennoy, S. Le Beux , Ph. Marquet , S. Meftali and JL.
Dekeyser, MpNoC Design: Modeling and Simulation, in: Proc.
15" IP Based SoC Design Conference, IP/SOC (2006).

S. E. Eklund, A Massively Parallel Architecture for Linear Ma-
chine Code Genetic Programming, in: Proc. 4" International
Conference on Evolvable Systems: From Biology to Hardware

[35]

[36]

[37]

(38]
[39]

(2001) 216-224.

T. Blank, The MasPar MP-1 Architecture, in: Proc. IEEE Com-
peon Spring90 (IEEE Society Press, San Francisco, CA, 1990)
20-24.

X. Gao, Z. Zhang and X. Long, Round Robin Arbiters for
Virtual Channel Router, in: Proc. Multiconference on Compu-
tational Engineering in Systems Applications, IMACS (2006)
1610-1614.

Y. Aydi, S. Meftali, M. Abid and JL. Dekeyser, Dynamicity
Analysis of Delta MINs for MPSOC Architectures, in: Proc.
International Conference on Sciences ans Techniques of Auto-
matic control and computer engineering, STA’07 (2007).

Altera Corporation, Stratix IT Device Handbook. (2004).
OpenCores, miniMIPS overview.
<http://www.opencores.org/project,minimips>.

18

