Self adaptive reconfigurable system based on
middleware cross layer adaptation model

Kais Loukil, Nader Ben Amor, Mohamed Abid
CES Laboratory
ENIS National Engineering School
Sfax, Tunisia
Email: Kais_loukil@ieee.org

Abstract—The emergence of mobile multimedia systems and
the diversity of the supported multimedia applications put new
challenges for their design. These systems must provide a
maximum application quality of service (QoS) in the presence of
a dynamically varying environment (e.g. video streaming and
multimedia conferencing) and multiple resources constraints (e.g.
remaining energy). To respond to the changing resource
availability and application demands, a new class of adaptation
method is emerged. It combines the adaptation simultaneously
upon the different layers related to the target system. This paper
presents a framework dedicated for mobile multimedia systems.
It supports application QoS under real time and lifetime
constraints via coordinated adaptation in the hardware, OS, and
application layer. In this framework, we present a new
middleware approach based on a global and a local manager. The
global manager (GM) is used to handle large and long-term
variations whereas the local manager (LM) is used to guarantee
the real time constraint. The GM intervenes in three layers but
the LM intervenes only in the application layer and OS layer. We
have implemented this approach on reconfigurable platform
using Altera technology.

Index Terms—Adaptation, middleware, Embedded systems,
Quality of Service.

L. INTRODUCTION

The embedded popular electronic multimedia systems has
actually been emerged and wused frequently. Their
functionalities are increasingly complex which need high
performance architecture (a priori dedicated architectures). Due
to their mobility, those systems must also function under often
difficult conditions: fluctuation of network transmission,
limited energy resources, etc which involves the use of
programmable or reconfigurable architectures. So, these
systems must be, on the one hand, powerful enough to treat the
complex multimedia applications. On the other hand, they must
be quite flexible to be able to adapt to the external variable
environment and to respect the functional stringent constraints
(like real time, lifetime, and quality of service). As those
constraints are generally antagonistic, the system must find the
right compromise between performance and flexibility
according to its state (number of running applications, user
choices, state of the battery, etc).

Various adaptation techniques were proposed for the
respect of the constraints of the system while giving a better

quality of service. These techniques can intervene on three
different levels: on the application level, operating system level
or on the hardware level. As the constraints imposed on the
embedded systems are increasingly strong (increase in the
number of supported applications and their complexities,
limitation of available energy resources, etc), it is necessary to
adopt a more global adaptation strategy which combines the
previously described adaptations methods. In this context, our
work consists of the addition of a middleware layer, which
allows the dynamic cross layer adaptation of the system. In this
paper, we present a new approach of adaptation dedicated for
embedded systems which comprises primarily two managers
(global manager and local manager). The global manager can
intervene in the three layers in order to answer the great
variations of the system constraints whereas the local manager
intervenes only in the layers application and in the operating
system. It is of a great importance to mention that the LM is set
up to control the respect of the real time constraint of the
system. The LM can also question the global manager if it does
not manage to find a solution to solve the problem.

Our work has two major contributions. First, we propose
the use of the cross layer adaptation approach. The second
contribution consists of the design and the real implementation
of the cross layer adaptation approach on a reconfigurable
system.

This paper is organized as follows: The first part is devoted
to the presentation of the state of the art. The second part
presents the adaptation model. The third part treats the various
algorithms set up for the implementation of the approach on a
real system. We devote the last part of our paper to the
validation of the approach and the presentation of some
prospects concerning this issue.

II. STATE OF THE ART

Recently, there were many research contributions on the
auto-adaptation for the autonomous systems. These adaptations
can be applied to the following layers: the architectural layer,
the operating system layer (OS) and the application layer.
Hereafter, we will show these various techniques, their
contributions and their limitations.

A. Adaptation at the architecture level (HW adaptation)

Many HW adaptation techniques were proposed. One of
them is the dynamic voltage scaling (DVS). It consists of

adjusting the frequency and the power supply of the CPU. It is
based on the application workload prediction using heuristic
methods [4, 16] or worst cases CPU time estimation [2, 3]. HW
adaptation was also applied to reconfigurable platforms. The
change of the system architecture is made according to the
needs for the application and the environmental constraints.
Such method was applied for the partitioning of the system
using two techniques: the former uses a heuristic algorithm
[13] and the latter uses a genetic algorithm [15].

B. Adaptation at the operating system level(OS adaptation)

Much of researches have dealt with the operating system
and middleware layer to provide predictable CPU allocation
and adaptation services of the operating system [5, 7]. In [9, 12,
17, 1] the managers of CPU resources, provide performances
guarantees in soft real time. Schedulers further adapt the
scheduling policy to handle the variations of application
runtime [5, 6, 7]. In [1, 11, 19], the authors use a middleware
layer to facilitate the adaptation of QoS for the application
system which is submitted to the time constraints of execution
and to the supplied energy.

C. Adaptation at the application level

Several projects recommend the adaptation at the
application layer for different purposes. For example, the
authors of [18] explore the technique for adapting the
behaviour of the application to the constraints of energy
consumption. Mesarina and others discuss in [8] how to reduce
the energy for the “decoding MPEG” application using
parameter modifications. In [12, 13, 14] two approaches are
proposed for the deterioration of the quality of an object 3D to
satisfy the constraints of resources and network bandwidth.

D. Cross layer adaptation

Many researches have, recently, been elaborated to profit
from the advantages of the previously described techniques and
to reduce their restrictions. Most of these researches were based
on methods which work on the various layers of the system
such as model GRACE-1 [1] and TIMELY [20]. However,
these approaches suppose that the material layer is not
reconfigurable. The only possible adaptation to this level is on
the CPU frequency.

Our model targets a mobile system with adaptive hardware
architecture and running a set of parameter tuned applications
(which is the case of the most poplar multimedia applications).
It optimizes the system resources use under constraints of
lifetime, real time and quality of service. The suggested model
uses adaptation in the three layers hardware, operating system
and application. For the hardware layer, adaptation is done
using one of the different application implementations called
configuration that are previously set up and characterized.
Those configurations vary from a pure SW configuration
(called config_sw) to a mixed implementation with several HW
components (called config hw). As config sw involves only
CPU resources, it will consume less energy than config_hw but
will less performing. So those, the system can choose the
adequate configuration according to the constraints and the user
preferences. Adaptation at application layer is performed by
modifying the application parameters or algorithm according to
the imposed constraints. The third adaptation level is made at

the operating system layer in order to allocate necessary time
CPU for each task (we suppose that each task is an one
application).

I1I. ADAPTATION MODEL

In this section, we present our cross layer adaptation
models. We present also the interaction between the various
layers. We end the section by the presentation of the different
conditions of activation of the adaptation task.

A. Hardware adaptation model

At the hardware layer, an offline step is used to characterize
the different configurations (their energy consumption and
execution time). Those information’s stored in a database are
used on line to choose the most suitable configuration. As the
system performance (energy consumption and execution time)
may vary from test conditions (made off line) to real conditions
(on line) even using the same architectural and application
parameter, we may notice a difference between real values and
stored database ones. As the system performs frequent real
measures, database information can be easily updated.

B. Operating system adaptation Model

The execution of any task requires a number of CPU cycles.
In order to respect the real time constraint, we must allocate,
for each task, a number of cycles CPU. However, the same task
can consume various numbers of CPU cycles according to its
implementation (hardware or software or mixed), the data
types, etc. Hence there is a need for allocating, for each task, a
well-defined number of cycles according to the applicative and
architectural parameters. This time is estimated by using the
profiling technique.

C. Application adaptation model

The adaptation at the applicative level is made by changing
the parameters and/or the treatment algorithm. This adaptation
technique is more and more used since many of multimedia
applications such as MPEG, H264, speech coding or 3D image
processing have different working modes and functional
parameters. For instance, in the application of 3D synthesis
images, an object can be generated using various polygons
number and different shade algorithm (Gouraud, flat, Phong) so
with different visual qualities.

At this stage, an offline study must be also investigated to
get different performance model (energy consumption and
execution time) according to the application parameters and
modes.

The coordination of the adaptation in the three layers offers
a “cross layer adaptation model”. Specifically, to have a quality
of service for a given application which consumes a quite fixed
quantity of energy, we need the configuration of adequate
architecture in the hardware layer, the allowance of a number
of processor cycles for each task in the operating system layer
and the suitable applicative parameters in the application layer.

D. Adaptation triggers

We consider in this paper two modes of adaptation
activation. The first adaptation mode is related to the execution
of the task of the GM. It occurs in fours cases. The first one
occurs when there is a change of the number of tasks in the
system. The second one takes place when there is an

unexpected change of the energy level in the battery. The third
one is when there is a modification of the user preferences
(level of QoS, Lifetime). The last one occurs when there is a
request from the LM. The second adaptation mode, is related to
the execution of the task of the local manager. This task is
activated in the event of deadline missing.

IV. CROSS LAYER ADAPTATION MODEL

This section presents the design of the cross layer
adaptation approach. So we shall describe the architecture and
the operating mode of this approach.

A. Overview

The proposed adaptation technique is integrated in a
framework which coordinates the adaptation in the three layers.
The figure 1 presents an overview of this framework. It is
primarily made up of a global manager, a local manager, an
adapter of task for each task, an OS adapter, an architecture
adapter, a battery monitor and a configurations database.

The global manager coordinates between the three layers
based on the supplied energy and the user preferences (desired
level of the quality of service and lifetime).

The local manager coordinates between the application
layer and the operating system in order to guarantee the real
time constraint.

The task adaptor makes it possible to adjust the parameters
or the algorithm of the task.

The OS adaptor makes it possible to adjust the number of
affected CPU cycle for each task.

The architecture adaptor deals with the change of hardware
architecture system.

The battery monitor gives an indication of the remaining
energy of the battery.

The database of the configurations contains all the possible
mixed configurations (hardware or software) for our system.

Task adaptor Adapt - Task
AR &
Application Application parameters Application layer
U parameters| '_"_“:?_____ ________________________
Uszer Tl
; Real time constraints [
preferences Global manager Local manager schedule
(Life time, Eesie T
_ i xecute -
QoS min] 4 ' E:';ne-:l.Jti-:m'?I
_________________ __ g _fme . _ | Middleware layer
Adapt !
Config 0S5 Adaptor N Operating
list " system
Power Architecture 05 layer
Battery Configurations Architecture Adapt | Architecture
base adaptor "

Hardware layer

Figure 1. Cross Layer adaptation approach

As mentioned above, the adaptation approach must have a
minimum cost. Thus, the challenge is to provide best possible
quality of a system while respecting the constraints of the
system with a minimum overhead. To address this problem, our
approach uses three techniques. The first one is an automatic
adaptation when a new task is activated in the system or an

existed one is stopped. In the case of a newly added task, the
GM configure the hardware layer with adequate architecture, to
assign to the application the suitable applicative parameters and
to allocate with each task a number of cycles CPU (in the case
of a new activated task). In the case of a stopped of finished
task, the GL reallocate its architecture resources. The second

adaptation technique is the use of estimation technique for
lifetime computation. As the battery monitor activity consumes
non negligible energy, estimation technique can be used to
reduce direct measures (and their relative energy and time
costs). When the prediction gives correct results, period of
direct measures can be increasing. The battery monitor is
activated all the periods of time (Pa). The found value is
compared with estimated value. If it is close to the estimated
one, the system increases the period of direct measures
((Pat+=n*Pa) with n>0). In the opposite case, direct measure
period is readjusted. The third technique used to reduce the
total cost of the adaptation approach consists of the use of a
local manager which allows changing the applicative
parameters of a task in the event of a deadline miss. This permit
a more local adaptation (restricted to real time constraint) that
not require a heavy cost whole system architecture
reconfiguration. In case where the local manager does not find
a solution for the system it can activate the global manager. In
the following section, we give more details on these three
techniques.

B. Global manager “GM”’:

The global manager is activated only in three events: i)
when a task appears or leaves the system, ii) when the residual
energy level in the battery reaches a breaking value or iii) to
answer a request of the local manager. In such a case, the GM
coordinates between the three layers (application, OS,
hardware) to choose the best system requirements starting from
the base of configuration, which makes it possible to provide
the best quality of service while respecting the preferences of
the user.

The entries for the GM are the user preferences (see figure
2). For the moment, we consider two parameters, the desired
lifetime “Lt” and the minimum level of quality of service
accepted “LQoSmin”. Through these preferences the user seeks
to maximize the level of quality of service of the multi-media
application running for a fixed given lifetime.

[EE B — (Taskl, Pl

l |

Lifie time (Lt} —
F. af' ti
LQSmin Global Manager - Canfiguration
Avalable power Configuration base

Figure 2. Global Manager

We suppose that the system executes N concurrent task.
Each task noted as “Ti”, 1<i<n, requests a number of CPU
cycles noted as “Nci” of period called “Pi” and consumes an
energy “Eci” during one period. We note with “ED” the
quantity of energy available in the battery.. The Global
Manager seeks to find a configuration that provides a quality of
service “Qi” and lifetime “Lt” according to the equation 1 to
equation 4.

Maximize Q (Q1, , Qn) Equation 1
Under constraint :
(" Qi>=LQoSmin Equation 2
S LT
ZEci *—<=Ed Equation 3
= Pi
Zn:& <=1 Equation 4
\ =l Pi

Equation 1 and 2 guarantee to provide to the user the best
quality of service which must be higher than the fixed
minimum QoS level. Equation 3 guarantees the satisfaction of
the lifetime constraint. Equation 4 represents system scheduling
constraint. This constraint requires that the execution time of
all the tasks divided by period should not exceed 1 since we use
the EDF scheduling algorithm. The global manager will have to
select the adequate configuration for each task (architecture +
applicative parameters) from the configuration database of
which will have to contain information relating to each
configuration such as the levels of QoS, the number of required
cycle CPU, and the quantity of power consumption for one
period. Thus, in order to choose the best configuration of each
task, the GM is in front of an Np-complete problem, since it
will have to extract all the possible combinations which can
answer the already quoted constraints. For example, if it is
considered that our system executes three concurrent tasks and
we have “N” possible configurations for each task the GM will
have to check n’ solutions to extract all the possible
combinations to fulfil the requirements of the system. As the
adaptation task must have a very small overhead, the resolution
of this problem even with heuristic techniques can have a big
impact of the adaptation cost. So, we try to find out another
solution simpler to solve this problem. We use a more local
method based on energy and execution time budgets, allocated
to each task, in order to reduce the search time of the adequate
configuration.

The desired Lt is divided in equal periods of a fixed value
called Quantum Q which corresponds to the moments of
energy measurements. This quantum is a multiple of the hyper
period (lowest common multiple of all the periods) system and
can vary during the system operation (as it is mentioned
above). In each Quantum, there is a budget of energy and CPU
cycles (processing time) allocated which should not be
exceeded (under penalty of not satisfying the constraints Lt and
real time) (see figure 3).

T0,Ed0 T1,Edl T, Edj Desired lifetime
| | | | | | .

| ! ! "

QuantumQ

Figure 3. Quantum and energy budget

It should be noted that:

e We treat the case where the system executes
several applications during the Quantum Q.

e Each application can be running one or more time
during Q.

e The power consumption depends on the number of
execution time of the application during Q

e The system has several constraints: Lt, real time
and QosS.

1) Allocation of cycles CPU to each task
In order to respect the real time constraint, all the tasks
must be running at each period. Thus, in the hyper period “h”
of the system, the task Ti of period pi will have to be running

ni= Ftimes. Thus, the problem amounts assigning to each
1

task Ti an execution time Tei is given by equation 5 where n is
the number of applications

ZTei *ni<=h. Equation 5
i=1

Generally, we must satisfy the equation6:

n h .
z_' *Tei <= h Equation 6
i Pi

In this manner, we guarantee that all the tasks are running
in the hyper period of the system witch satisfies the equation3.

The GM is in front of a great number of possible solutions
to respect its constraints. The challenge is to put in place a
mechanism which can find the good solution for the system
with an acceptable overhead. The solution installation is based
on the assignment of a budget of time for each task. Then, we
choose the configuration which uses the nearest execution time
and which respects the other constraints of system (QoS and
LT).

In order to affect a budget of execution time for each task
we proceed as follows:

We calculate the maximum total execution time of all the
applications Smax as shown is equation 6.

n .
.) Equation 6
Smax = Z Temaxi * ni q

i=1

With Temaxi the maximum execution time for a task i
among all the possible configurations of the system

If the Smax is lower than the hyper period of the system,
we can affirm that all the possible configurations represent a
solution for our state. On the opposite case, we calculate the
occupation “Oci” of Temaxi in Smax for each task according to
equation 7

_ Temaxi

Oci = Equation 7

Smax

We apply the found value Oci to the quantity of time exceeded:

Tdepi = Oci *(Smax - h) Equation 8

The budget of affected time to the spot Ti is:

Tei = Temaxi - Tdepi

Equation 9

ni

Otherwise:
Temaxi* Smax - h

Te1 = Temaxi -

Temaxi * ni
ni

*(Smax - h)

Equation 10

In this way, it is guaranteed that all the tasks can be running
by the necessary number of times in a hyper period. However,
it was not guaranteed that each task is running by all the
periods once. For example if a task which has a little high
execution time compared to the other tasks we can maintain the
CPU for two periods of another task. To allow this possibility,
we use the EDF (Earliest Deadline First) scheduling algorithm.
The task which has the smallest execution time will be running
initially.

2) Allocation of the energy budgets :

The energy management is done in an interval of time equal
to Q. In each quantum Q, there is a budget of energy “Beq” that
should be not exceeded. The energy consumption depends on
the applications in the course of execution. The budget of
energy for a quantum is given by equationl1:

Beq=——
q NQ

where ED is the remaining energy in the battery and NQ is
the number of quantum to reach desired Lt.

Equation 11

We divide the affected budget with a quantum on all the
applications. Since the tasks do not consume the same quantity
of energy, we proposed to use a factor of assignment of energy
for each task. This factor must be fixed by the designer of the
system and reflect its priority for the various tasks execution.

The budget of energy for a task Ti:

* facteur affecter *100
z facteurs

Bei=Beq Equation 12

Since each application will be running several times in a
quantum, it is necessary to divide the budget allocated for each
application by the number of times that it will be running by ni.

The Budget of energy for each application during one
period will be given by equation 13.

. Bei Equation 13
Bei=——-
ni

Thus, all the data are ready to choose the adequate
configuration for our system (acceptable level of QoS provided
by the user, the number of cycle CPU as well as the affected
budget of energy for each task).

3) Search of the solution:

The search of the best solution uses the configurations
database. It contains all necessary informations such as the
applicative and architectural parameters, the worst case
execution time , the level of QoS as well as the quantity of
power consumption by each configuration. The best solution
for each task offers the best QoS while respecting the following
constraints:

e Eci<=Bei
o Tei<Btei
e NQoS>NQoSmin
The algorithm proposed allows:

e to climinate the states which have an unacceptable
level of quality by the user (NQoS< NQoSmin)

e to propose values for the execution time of each
application.

e To affect the budgets of energy

e To check if the states which give best quality (best
effort) for all the tasks, respect the constraints
user, so yes we can choose these states directly as
a solution for the system if not we seek a solution
in the base of the configurations for each
application to which the execution time is closest
it’s the time already calculated with the proviso of
respecting the affected budget of energy.

e To start again a new iteration in goal to improve
the quality of service of some tasks by gathering
the differences between the allocated budgets and
the values of the selected configurations.

Once the GM chooses a new state for the system, it will
have to send its instructions to the adapters of architecture, OS
and application in order to change the requirements system.

C. Local manager

Local manager “LM” can be considered as a “watch dog”
which permits to detect any overtaking in the expiry time of the
tasks. Since the embedded multi-media systems are often
subjected to hard real time constraints, if one of the tasks
misses its deadline, the LM must check if this overtaking
influences the operation system (i.e. if all the tasks are running
normally throughout the hyper period of the system). If there is
no influence, the LM does not intervene and the system
continues to function with the same parameters. On the
contrary case, initially, the LM will have to check if it has a
configuration in the base which can solve the problem without
a costly hardware reconfiguration of the system. If it finds an
adequate configuration it sends its instructions to both
application and OS adapters to change their parameters.
Otherwise, the LM will request to the GM to reconfigure the
totality of the system. We gives more explanations through a
simple example shown in figure 4 We consider a system which
runs three consecutive tasks T1, T2, T3 of respective period:
160, 40, 80. The hyper period of the system is thus 160.
Consequently, task T1 is executed once, T2 twice and T3 four
times during one hyper period. The starting configuration
chosen by the GM has affected with the three tasks the

execution times: 50, 10, 30. We note, according to the diagram
of execution of these three tasks through EDF scheduling (see
figure 4), that:

e During the first hyper period all the tasks be carried out in
their expiries.

e During the second hyper period we note that task T1
exceeded the affected execution time, but without an
influence on the execution time of the other tasks thus the
local manager does not intervene and the system
continuous to function with the current parameters.

e At the time of the third hyper period we note that the tasks
T1 and T2 have overtaking (noted as Dep in figure 4) of
the affected execution time. But in this case, task T1
could not carried out during the hyper period of the
system. At this time the LM must intervene to search a
new configuration for the system either or by activating
the GM without finished the execution of task T1 to not
cause a delay of the complete system.

e The system begins again execution with the new
configuration.

Figure 4. Local manager intervene

V. IMPLEMENTATION

We plan to validate the proposed adaptation model on a
reconfigurable platform based on ALTERA FPGA (including
NIOSII as a processor soft core).

A. Configuration Database set up

We use QUARTUS software as development environment
for the HW design and NIOS IDE for software implementation.
This environment comprises also the real time operating system
(RTOS) MicroC_OS-II. This development tool allows us the
build of a set of heterogeneous configurations around the NIOS
processor: purely SW configurations using the NIOS alone or
other configurations using NIOS II with specific HW functions
implemented as internal coprocessors or HW accelerators via
the NIOS Avalon extension bus (see figure 5).

HW accelerators can be applied through two methods. The
first one is by using specific communication lines called PIO
(parallel input output). In this case the accelerator is slave. The
second method consists in manually interfacing the accelerator
directly on the Avalon bus. In this case the accelerator can be
master or slave. The two methods make it possible to accelerate

differently the treatment of a task. Master accelerator is more
quick since it can reach the memory reads the data, makes its
treatment and writes the result in the memory without direct
intervention of the main processor. At the end of computations,
the master sends an interruption to the processor.

Coprocessors

#——p Accelerator2

n

3

o

c

L p Acceleratorl
Processor Core =

=4

o

=

T

5 Flash Memory
Main Memory . _

[hardware configuration)

- /

The choice of candidate HW task from the all application
task is critical to have an efficient and optimized HW
configuration. From a pure software application description, we
detect most called tasks using profiling techniques. Further
tests are made to select the most suitable tasks for a HW
implementation [22].

Figure 5. Hardware architecture

Unfortunately, contrary to Xilinx, Altera FPGA does not
allow dynamic reconfiguration. We cannot change the
hardware architecture of the system during the system
operation by a dynamic reconfiguration involving a complete
modification of the architecture. Actually, the change of
configuration is made simply by a switch between HW
components or using a load of another SW code (in the case of
application adaptation).

To set up the configurations base for our system, we make
some tests, off line, to determine some settings which are used
to characterize each state.

Figure 6 and 7 show time execution model based on offline
measures for the 3D application using both flat and Gouraud
shading method. NbPoly represent the polygon number of the
3D object. HW implementation correspond to a one HW
accelerator

Texe=f(triangle_nb) (Flat shading)

70 //’

60
2 50
% 20 g —e—Texe_SW(ms)
£ 20 A _=Texe_HW(ms)
@ /

20—

10 P —

0 T T T T T T

62 8 114 146 191 266 366

triangle_nb

Figure 6. Texe/triangle nb variation for flat shading

Texe=f(triangle_nb) (Gouraud Shading)

« s
/

0
k3 60 /———V —e— Texe_SW(ms)
% 40 —u— Texe HW(ms)
i
20
- _/I/.
0 T T T T T T
62 86 114 146 191 266 366
triangle_nb

Figure 7. Texe/triangle nb variation for Gouraud shading

Figure 8 shows the consumed power model based on real
measure in the board for both Flat and Gouraud shading
method in HW/SW implementation.

40H0
3500

3000 /
2500 —
2000

1500

1000

500 /:/

triang_nb

——Tlat 5W

P Conso miff

——Flat HW
Gouraud SW

e Gouraud HW

Figure 8. Power/triangle nb variation for HW/SW Flat/Gouraud shading

For QoS computation, we use a model inspired from [21] to
quantify the QoS of a 3D image. This model was modified to

add Gouraud influence of the original model. Figure 8 shows
this model.

0; i

0,6 ‘

R
o

0 T T T T T T

o o 9o o
- ® O K

—— Plat
—=— Gouraud

= e g e NbPoly
N N

Figure 9. QoS model for the 3D image synthesis

Thus, we can build our configurations base. It contains, for
each state, the type of implementation HW or SW, the number
of polygons, the type of the algorithm of shade and the
execution time.

B. Adaptation module implementation

We integrated the approach in a middleware layer which is
a transition layer between the operating system and application
layer and which uses components of these two layers.

The implementation of the software part was made by using
the C language and the MicroC_OS-II routines. It uses a pre-
emptive scheduling at fixed priority which is not adapted for
our adaptation model that needs the EDF (earliest deadline
first) scheduling. As this RTOS is open source we easily give
necessary modifications.

We created two tasks Local Manager and Global Manager
which are blocked on standby event. We used a controller
piloted by a hardware timer to supervise the execution of the
various tasks throughout the hyper period “H” of the system. In
the event of a deadline miss, the controller creates an event to
activate the Local Manager task.

The adaptation approach was tested using a configuration
database. The test are made by a modification of the constraints
of the system (lifetime) and the user preferences.

VI. CONCLUSION

This paper presents a cross layer adaptation approach for
the embedded multi-media reconfigurable systems. This
approach makes it possible to improve the quality of service of
a system while respecting the constraints of the system (energy,
real time, QoS) and the user preferences (level of minimum
QoS, lifetime). The problem is to provide an approach which
allows of co-ordinate between the different layers of system:
hardware, OS and application to maximize QoS of the system
for desired lifetime. This approach will owe presented an
acceptable overhead not to influence the performances of the
system. With an aim of addressing this problem, we proposed
to add to the system a middleware layer which comprises
primarily: (1) a global manager who coordinates between the
three layers for configured according to the constraints of the
system and the user preferences by choosing the adequate
configuration of the system starting from a configuration base;
(2) a local manager who allows to guarantee the aspect real
time of the system. This last intervenes only in the application
and operating system layers.

Tyyyympleyyntation of this appryychyyasndade chyjugh
Altera EXCALIBUR de two yynt environment. We validated
our approach through 3D synthesis images applications. Each
time we change the constraints of the system and we study the
behaviour of our adaptation model. Our future work consists of
(1) validating this approach through two applications. For this,
we chose the 3D synthesis images application and MPEG 1I.
(2) We evaluate the performances and the overhead approach
through these applications. (3) We validate the same work on a
dynamic reconfigurable platform via Xilinx.

REFERENCES

[1] Wanghong Yuana, Klara Nahrstedta, Sarita V. Advea, Douglas L.
Jonesb, Robin H. Kravets “Design and Evaluation of a Cross-Layer
Adaptation Framework for Mobile Multimedia Systems” Appears in
SPIE/ACM Multimedia Computing and Networking Conference
(MMCN), 2003

[2] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in Proc. of 18th Symposium on
Operating Systems Principles, Banff, Canada, Oct. 2001.

[3] R. Melhem, N. AbouGhazaleh, H. Aydin, and D. Mosse, “Power
management points in power-aware real-time systems,” in Power Aware
Computing, R. Graybill and R. Melhem, eds., Plenum/Kluwer Publisher,
2002.

[4] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” in Proc. of USENIX Symposium on Operating
Systems Design and Implementation, 13-23, Nov. 1994.

[5] A. Bavier and L. Peterson, “The power of virtual time for multimedia
scheduling,” in Proc. of 10th International Workshop for Network and
Operating System Support for Digital Audio and Video (NOSSDAYV),
June 2000.

[6] H. H. Chu and K. Nahrstedt, “CPU service classes for multimedia
applications,” in Proc. of IEEE Int. Conf. On Multimedia Computing
and Systems (ICMCS’99), Florence, Italy, pp. 296-301, June 1999.

[7] S. Banachowski and S. Brandt, “The BEST scheduler for integrated
processing of best-effort and soft real-time processes,” in Proc. of SPIE
Multimedia Computing and Networking Conference, San Jose, CA, Jan.
2002.

[8] M. Mesarina and Y. Turner, “Reduced energy decoding of MPEG
streams,” in Proc. of SPIE Multimedia Computing and Networking
Conference, San Jose, CA, Jan. 2002.

[9]1 A. Vahdat, A. Lebeck, and C. Ellis, “Every joule is precious: A case for
revisiting operating system design for energy efficiency,” in Proc. of 9th
ACM SIGOPS European Workshop, Kolding, Denmark, Sept. 2000.

[10] B. Li and K. Nahrstedt, “A control-based middleware framework for
quality of service adaptations,” IEEE J. Select. Areas Commun., 17(9) ,
pp. 1632-1650, Sept. 1999.

[11] J. Flinn, E. de Lara, M. Satyanarayanan, D. Wallach, and W.
Zwaenepoel, “Reducing the energy usage of office applications,” in
Proc. of Middleware 2001, Heidelberg, Germany, Nov. 2001.

[12] Pham Ngoc, G. Lafruit, J-Y. Mignolet , G. Deconinck, and R.
Lauwereins “QOS aware HW/SW partitioning on run-time
reconfigurable multimedia platforms” Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms,
ERSA'04, June 21-24, 2004, Las Vegas, Nevada, USA. CSREA Press
2004, ISBN 1-932415-42-4

[13] W. Van Raemdonck, G. Lafruit, E.F.M. Steffens, C.M. Otero Pérez, R.J.
Bril “Scalable graphics processing in consumer terminals” Multimedia
and Expo, 2002. ICME '02. Proceedings. 2002 IEEE International
Conference

[14] N. Pham Ngoc, W. van Raemdonck, G. Lafruit, G. Deconinck, and R.
Lauwereins “A QoS framework for interactive 3D applications”
Proceedings of the ninth international conference on 3D Web technology
2004

[15] N. Pham Ngoc, G. Lafrui, G. Deconinck, and R. Lauwereins “Terminal
QOS management on run-time reconfigurable platforms” Third PA3CT-
symposium 22-23 September 2003

[16] Wanghong Yuan, Klara Nahrstedt “A Middleware Framework
Coordinating Processor/Power Resource Management for Multimedia
Applications” Proc of Globecom 2001

[17] M. Corner, B. Noble, and K. Wasserman, “Fugue: time scales of
adaptation in mobile video,” in Proc. of SPIE Multimedia Computing
and Networking Conference, San Jose, CA, Jan. 2001.

[18] J. Flinn and M. Satyanarayanan, “PowerScope: A tool for profiling the
energy usage of mobile applications,” in Proc. of 2nd IEEE Workshop
on Mobile Computing Systems and Applications, Feb. 1999.

[19] S. Brandt and G. J. Nutt, “Flexible soft real-time processing in
middleware,” Real-Time processing in middleware,” Real-Time Systems
22(1-2), 2002.

[20] V. Bharghavan, K. Lee, S. Lu, S. Ha, J. Li, and D. Dwyer, “The
TIMELY adaptive resource management architecture,” IEEE Personal
Communications Magazine, 5(4) , Aug. 1998.

[21] Y.Pan, I.Cheng, A Basu., “Quality Metric for Approximating Subjective
Evaluation of 3-D Objects”, IEEE transactions on multimedia, Vol. 7,
N°. 2, avril 2005 p. 269.

[22] N.Ben Amor, Y. Le Moullec, J-Ph Diguet., J-L Philippe, M.Abid,
«Design of a multimedia processor based on metrics computationy,

Special Issue for "Advances in Engineering Software", volume 36
(2005) p 448-458.

