
RenPar’18 / SympA’2008 / CFSE’6
Fribourg, 11 au 13 février 2008

Gestion de la cohérence des caches dans les architectures MPSoC
utilisant des NoC complexes
Hajer CHTIOUI†, Rabie BEN ATITALLAH‡, Smail NIAR‡, Mohamed ABID†, Jean-Luc Dekeyser‡
†CES, Ecole Nationale des Ingénieurs de Sfax, Tunisie,
‡INRIA-FUTURS, Projet DART, Lille, France,
chtioui_hajer@yahoo.fr, {rabie.ben-atitallah, smail.niar, jean-luc.dekeyser}@lifl.fr,
mohamed.abid@enis.rnu.tn

Résumé
Les unités mémoires jouent un rôle de première importance dans les architectures embarquées multi-
processeurs (ou Multi-Processor System-on-Chip MPSoC). Dans cet article, nous nous intéressons en
particulier aux MPSoC à mémoires partagées où la gestion de la cohérence de données représente un
point crucial de l’architecture. Notre étude montre que la mise en cache des données partagées permet de
réaliser des gains en performance et en consommation d’énergie électrique. De ce fait, les architectures
multiprocesseurs embarquées n’intégrant pas la gestion de la cohérence des caches ne sont pas efficaces.
Cette étude montre aussi qu’un choix judicieux de l’implémentation de cette gestion est nécessaire pour
offrir aux applications un gain en performances et en consommation d’énergie. Deux méthodes sont ha-
bituellement proposées pour résoudre ce problème, la première applique l’invalidation des données et
la deuxième consiste à les mettre à jour. Ces deux méthodes comportent plusieurs inconvénients. D’un
coté, leur mise en uvre dans le cas des MPSoC utilisant des réseaux d’interconnexion complexes en-
gendre un coût important en consommation d’énergie et de l’autre coté elles ne prennent pas en compte
les motifs des accès mémoires réalisés par les applications. Notre objectif est de proposer des solutions
pour remédier à ces faiblesses et pour tirer profit des deux approches précédentes. Les résultats prélimi-
naires ont montré que des gains intéressants en performance et en consommation d’énergie pourraient
être obtenus grâce à ces solutions .

Mots-clés : MPSoC, mémoire partagée, cohérence, crossbar, énergie

1. Introduction

Du fait de l’évolution des technologies d’intégration sur silicium d’une part et l’apparition de nou-
velles applications gourmandes en puissance de calcul et en capacité mémoire, la tendance dans les
systèmes embarqués hautes performances s’oriente vers l’utilisation des architectures embarquées mul-
tiprocesseurs (ou Multi-Processor System-on-Chip MPSoC). En effet, ces dernières requièrent un temps
de conception plus court que les ASIC, du fait de leurs structures modulaires. Elles offrent aussi un
rapport performance/consommation plus intéressant que les architectures monoprocesseurs utilisant
des fréquences d’horloge élevées. Elles permettent enfin, une meilleure exploitation des ressources du
silicium.
Notre travail se situe dans ce contexte et vise à améliorer les performances de ce type d’architecture
en minimisant les latences et le coût en consommation d’énergie des accès mémoires par une meilleure
exploitation des ressources mémoires. Nous nous intéressons aux architectures MPSoC à mémoire par-
tagée centralisée utilisant des réseaux d’interconnexion complexes, comme le crossbar ou les réseaux
multi-étages. Ces architectures sont très attractives du fait qu’elles facilitent à la fois le développement
des applications parallèles, grâce à leur modèle de programmation et aussi l’intégration d’un nombre
important de processeurs dans la plateforme. En effet, l’architecture à bus partagé, couramment utili-
sée ces dernières années pour interconnecter les processeurs, arrive rapidement à saturation dès que le
nombre de processeurs dépasse la dizaine. L’augmentation de la fréquence d’horloge au niveau du bus

partagé pourrait être une solution, mais amènerait à une augmentation sensible de l’énergie consom-
mée.
Malheureusement, les MPSoC à réseau d’interconnexion complexe posent le problème de la gestion des
données partagées. La solution habituelle de l’espionnage du bus [2] n’est pas applicable à ce type de
MPSoC. En effet, la diffusion des données n’est pas une solution efficace dans ce cas, en particulier
lorsque le nombre de processeurs devient important et/ou lorsque la quantité de données partagées en
écritures devient importante.
Une deuxième solution, appelée sans cohérence [1], consiste à ne pas mettre dans le cache les données
partagées. Cette solution simplifie l’architecture, puisque celle-ci ne s’occupe plus de la gestion de la
cohérence, mais charge l’utilisateur d’indiquer au système les données pouvant être mises en cache (ou
cachables) et les donnes partagées ou (non-cachables).
En plus de la surcharge qu’elle provoque sur le programmeur, nous montrons dans cet article que cette
solution ne permet pas une utilisation efficace des mémoires caches. Par conséquent, nous obtenons
des temps d’exécution et des consommations d’énergie importants pour les applications contenant une
quantité importante de données partagées en écriture, comme c’est le cas des applications de traite-
ment de signal intensif qui nous intéresse. Pour éviter ces deux inconvénients, la solution adoptée dans
certaines architectures multiprocesseurs hautes performances consiste à intégrer dans l’architecture un
répertoire centralisé [3]. C’est aussi cette technique qui est utilisée dans cet article mais nous l’adaptons
aux cas des MPSoC.
Notre contribution comporte les trois points suivants. Nous proposons d’abord deux protocoles, par in-
validation et par mise à jour des données, pour la gestion de la cohérence adaptée aux architectures MP-
SoC. Sur la base des résultats expérimentaux de ces deux protocoles, nous montrons dans un deuxième
temps, la nécessité de disposer d’un nouveau protocole qui tire profit des avantages des deux premiers
et qui s’adapte à la façon avec la quelle une donnée est utilisée. Enfin, le troisième point concerne la
proposition d’un support matériel simple, mais qui faciliterait la mise en ouvre de ce dernier protocole.
Ce papier est constitué de quatre sections. Dans la première section, nous résumons les principaux tra-
vaux effectués sur la gestion centralisée de la cohérence de cache. Dans la deuxième section, nous pré-
sentons en premier lieu la plateforme MPSoC SoCLib que nous avons utilisée pour réaliser nos tests ex-
périmentaux. Nous montrons aussi la façon avec laquelle la gestion de la cohérence est réalisée à travers
les deux protocoles que nous avons implémentés et comparés. La troisième section présente les résultats
expérimentaux obtenus pour ces deux protocoles. Enfin dans la section 4, nous présentons la structure
générale d’un protocole hybride qui exploite les caractéristiques des applications et qui s’adapte au-
tomatiquement aux motifs d’accès des données. Enfin, nous donnons une conclusion et une liste des
points qui restent à réaliser est dressée.

2. État de l’art : Gestion de la cohérence des données dans les MPSoC

La cohérence des caches dans les MPSoC, utilisant un autre moyen de communication que le bus par-
tagé, reste encore un problème ouvert. À l’opposé, dans le domaine des architectures hautes perfor-
mances, ce problème a donné lieu à un nombre important de travaux [12]. Dans ces travaux, le méca-
nisme du répertoire centralisé a été largement étudié pour assurer la cohérence de données dans les
caches. Ce dernier se présente sous forme d’un tableau dont les colonnes correspondent aux mémoires
caches des processeurs et les lignes aux blocs de données partagés entre les processeurs. Le répertoire
permet de mémoriser l’état actuel des blocs de la mémoire (figure 1) [3].
Les différents mécanismes de cohérence de cache existants qui utilisent le répertoire centralisé diffèrent
les uns des autres par les états du protocole utilisé. MSI [4] et le Standard du IEEE "Scalable Coherent
Interface" (SCI) [5] sont parmi les plus anciens protocoles de cohérence. Ces protocoles ont donné lieu
à un grand nombre d’extensions telles que MESI, MOSI, MOESI et le "GLOW coherence protocol" [6].
L’inconvénient majeur de ces protocoles, est que pour chaque accès au cache il est nécessaire de connaître
à la fois l’état du bloc référencé et les processeurs qui le partagent avant chaque utilisation. Ce passage
fréquent par le répertoire devient coûteux en termes de temps et de communication à travers le réseau
surtout lorsque le nombre de processeurs est important.
Des études récentes [9] ont mis l’accent sur cet aspect. Les auteurs de l’article [9] ont mesuré les quantités
de données transférées à travers le réseau pour réaliser les opérations de lecture et d’écriture dues à :

2

 C_0 C_1 C_n-1

Bloc_0

Bloc_1

Bloc_m-1

FIG. 1 – Structure du répertoire centralisé dans un MPSoC

1. L’exécution de l’application (les instructions chargement et stockage des données).

2. La gestion de cohérence centralisée.

Il a été constaté que pour des caches de petite taille, le nombre de paquets transférés pour le maintien
de la cohérence des données reste faible par rapport au nombre de paquets utilisés pour lire ou écrire
les données. Néanmoins, la situation devient plus complexe lorsque la taille du cache augmente. En
effet, pour des grandes tailles de cache les opérations de lecture et d’écriture diminuent du fait que le
nombre d’échecs en cache diminue, alors que le nombre de paquets dus aux opérations de cohérence
reste presque constant. Par conséquent, le coût de la gestion du répertoire, en terme de surcharge d’opé-
rations de communication, dépend de la taille du cache.
Afin d’améliorer les performances de la cohérence dans les architectures multiprocesseurs à répertoire
centralisé Eilsley et al. [7] ont proposé l’intégration du protocole de cohérence dans le réseau d’intercon-
nexion. Ainsi, le répertoire n’est plus centralisé mais distribué dans les routeurs du NoC. Bien que les
résultats obtenus montrent une réduction du temps d’accès, cette solution se base sur une conception
matérielle coûteuse des routeurs. Dans ce même cadre, Bolotin et al.[8] ont proposé de réduire l’effet
des paquets de maintient de cohérence sur les performances. Ils proposent pour cela de classer les mes-
sages qui transitent à travers le NoC en deux types : les messages courts, ceux utilisés pour envoyer
une demande de lecture, d’écriture ou d’invalidation d’un bloc, et les messages longs qui correspondent
aux messages nécessaires pour réaliser un transfert de données et qui nécessitent plus de temps de
traitement lors de la réception du paquet par le processeur ou la mémoire. L’idée consiste à donner la
priorité aux messages courts par rapport aux messages longs au niveau du NoC en cas de conflit. Cette
technique permet d’une part de simplifier le trafic de données dans le réseau et de réduire les cycles
d’attente des processeurs d’autre part. Là aussi, il est nécessaire d’ajouter des mécanismes matériels
pour l’implémentation de la priorité.
À la lumière de cette étude, nous pouvons conclure que, malgré sa large utilisation dans les architectures
hautes performances, le répertoire centralisé pose des problèmes de coûts d’implémentation dans les
architectures embarquées. Dans cet article, nous présentons une solution pour permettre l’utilisation
d’une telle gestion centralisée de la cohérence de données, mais qui génère une surcharge réduite en
termes de temps d’accès, de consommation d’énergie et de nombre d’interconnexions supplémentaires.

3. Une gestion de la cohérence des données centralisée pour l’architecture SoCLib

3.1. Présentation de la plateforme SoCLib
La plateforme SoCLib [10] est une librairie des composants réutilisables qui permet de modéliser et
de simuler des architectures MPSoC. Dans la version du simulateur SoCLib à laquelle nous avons eu
accès, un crossbar est utilisé pour connecter les processeurs aux modules mémoires partagées (figure 2).
Pour le partage des données, la solution implémentée ne permet pas de charger les données partagées
dans les caches. Dans la version de SocLib que nous utilisée, il n’y a pas de gestion de la cohérence.
Dans la suite de cet article, cette solution est appelée "sans cohérence". Plus exactement, les programmes
exécutés par le simulateur comportent trois types de données :

3

1. Celles qui sont partagées en lecture et en écriture et qui ne sont pas mises en cache (données non
cachables).

2. Celles qui sont partagées en lectures seulement et qui peuvent être stockées en cache.
3. Celles qui ne sont pas partagées (données privées) et qui peuvent aussi être stockées en cache.

Nous montrons dans ce travail que cette solution ne permet pas une utilisation efficace de la mémoire
cache. L’objectif de ce travail consiste donc à permettre aux caches de stocker les données partagées de
la catégorie 1.

FIG. 2 – Architecture de la plateforme SoCLib

3.2. Présentation de deux protocoles simples basés sur le répertoire centralisé
Notons, avant de donner les détails des deux protocoles évalués, que la technique d’écriture dans le
cache que nous avons employée est l’écriture simultanée (write-through). Dans ce mécanisme, tous les
accès avec succès en écriture se font simultanément dans le cache et dans la mémoire partagée. Par consé-
quent, cette technique maintient une cohérence entre les données de la mémoire partagée et celles du
cache. Contrairement à la technique d’écriture différée (ou write-back) qui n’écrit la donnée en mémoire
partagée que lorsque le bloc modifié est éjecté du cache, l’écriture simultanée exige des mécanismes de
cohérence moins complexes mais peut amener à une augmentation du nombre de paquets d’écriture qui
transitent par le NoC.
En adoptant l’écriture simultanée, nous avons défini un protocole de gestion de la cohérence appelé ESI.
Dans la littérature, il existe des protocoles similaires au protocole ESI tel que le protocole MSI [4].
Dans ce protocole, un bloc de données peut avoir trois états possibles dans le répertoire centralisé :
– E(Exclusif) : La valeur actualisée du bloc existe seulement dans le cache correspondant et dans la

mémoire partagée.
– S(Shared) : La valeur actualisée du bloc existe dans le cache correspondant, dans d’autres caches et

dans la mémoire partagée.
– I(Invalid) : Le cache ne contient pas la valeur actualisée du bloc.
Si un processeur modifie un bloc partagé à l’état "E" ou "S", il doit les informer selon deux possibilités :

1. Envoyer la nouvelle valeur du bloc à partir de la mémoire partagée aux caches contenant une copie
de ce bloc.
Ce protocole est appelé par conséquent "protocole avec mise à jour". Les figures 3 et 4 représentent
le fonctionnement de l’automate pour maintenir la cohérence respectivement dans le répertoire et
dans le cache du protocole avec la mise à jour. Les symboles utilisés correspondent à :
– Ro (Read other) : Lecture de la donnée par un autre processeur.
– RL (Read Local) : Lecture de la donnée par le processeur.
– Wo (Write other) : Écriture de la donnée par un autre processeur.

4

– WL (Write Local) : Écriture de la donnée par le processeur.
– V et I représentent respectivement les états valide et invalide que peut avoir un bloc du cache.

S

EI

Wo

WLRo
Wo

RL

WL

WL

Ro

Ro

Wo

FIG. 3 – Automate du répertoire avec mise à
jour

IV

WL
WL

Wo Wo

RL

FIG. 4 – Automate du cache avec mise à jour

Comme nous pouvons le voir, suite à une opération RL ou Ro, le bloc modifié maintient son état
valide. Le bloc peut donc être réutilisé lors d’un futur accès. Ce protocole permet généralement
une diminution du nombre d’échecs du cache et par la suite une réduction du temps d’exécution.
Néanmoins, lorsque les données sont faiblement utilisées par les autres processeurs entre deux
opérations d’écriture, les mises à jour deviennent inutiles. Ce qui entraîne l’augmentation du
temps d’exécution et la consommation d’énergie.

2. Invalider les copies des blocs dans les autres caches.
Avec ce deuxième protocole, appelé "par invalidation", dès qu’une opération d’écriture est réalisée
sur un bloc, le bloc devient invalide dans les autres caches. Par la suite, si de nouveau ce bloc
est demandé par un processeur, il sera chargé depuis la mémoire partagée. Par conséquent, ce
protocol peut donner lieu à un nombre d’échecs en cache relativement plus grand, en particulier
dans le cas où un nombre important de processeurs se partagent une grande quantité de données
en lectures/écritures.
Contrairement au protocole avec mise à jour, le protocole avec invalidation est relativement per-
formant lorsque les données écrites sont faiblement utilisées par les processeurs. Ce deuxième
protocole peut réduire la consommation d’énergie, puisqu’il n’y a pas de transfert de données
pour réaliser les mises à jour. Les figures 5 et 6 représentent respectivement l’automate dans le
répertoire centralisé et dans le cache pour le protocole par invalidation.

D’après la discussion précédente, nous pouvons conclure que les deux protocoles se complètent puisque
les points forts de l’un correspondent aux points faibles de l’autre. Ceci est d’ailleurs confirmé par les
résultats expérimentaux présentés dans la section suivante.
Afin d’exploiter le fait que la mémoire partagée est actualisée après chaque opération d’écriture dans le
cache par l’un des processeurs (écriture simultanée), nous avons intégré le répertoire centralisé dans le
module mémoire partagée. De cette façon, dès qu’un paquet écriture arrive à ce module, l’opération de
mise à jour du répertoire est déclenchée. Ce mécanisme simplifie le maintient de la cohérence puisqu’il
n’exige pas des paquets dédiés pour la mise à jour du répertoire. En terme de surface, pour les tailles de
caches que nous avons expérimenté (entre 1 et 32KO), le répertoire ne représente que 3% de la surface
de la mémoire partagée au maximum. Pour réaliser les modifications de l’état d’un bloc du cache (mise
à jour ou invalidation), nous proposons l’utilisation d’un bus unidirectionnel, de la mémoire partagée
vers les processeurs. Bien que son rôle consiste simplement à actualiser les caches selon le protocole
(mise à jour ou invalidation) utilisé, ce bus permet de soulager le réseau d’interconnexion et réalise
les opérations de maintien de la cohérence de cache. Cette architecture malgré sa simplicité, exige un
nombre d’interconnexions et une complexité réduite. La figure 7 représente l’architecture du système
globale. Dans cette figure, le signal CMD sert à informer les caches des modifications qui se passent sur

5

S

EI

Wo

WL

Ro
Wo

RL WL

WL

Ro

Ro

Wo

FIG. 5 – Automate du répertoire avec invalida-
tion

IV
WL

WL

Wo
Wo

RL

FIG. 6 – Automate du cache avec invalidation

les blocs. ADR, respectivement DATA, correspond aux bits d’adresse du bloc à modifier, respectivement
à la nouvelle valeur du bloc dans le cas du protocole avec mise à jour. Finalement, NUM sert à identifier
le numéro du processeur qui a causé la modification. Cette dernière information, est nécessaire pour
invalider ou mettre à jour toutes les copies du bloc sauf la copie dans le cache du processeur qui a causé
la modification.

NOC

Processeur 0 Processeur n-1

Mémoire partagée

Répertoire centralisé

 ADR DATA

 CMD

 NUM

 32 32 2 1

FIG. 7 – Architecture générale du système avec le bus de cohérence

4. Résultats expérimentaux

Plusieurs applications ont été parallélisées et portées sur la plateforme SocLib. Dans le programme de
multiplication de matrices 100x100, nous avons utilisé quatre processeurs. Chaque processeur calcule
les éléments des quatre sous-matrices carrées de la matrice résultat. Les résultats obtenus sont illustrés
par la figure 8. Cette figure donne le temps d’exécution mesuré en millions de cycles en fonction de la
taille du cache d’instructions et de données.
Les résultats illustrés par la figure 8 montrent une amélioration des performances du système en temps
d’exécution par l’utilisation du répertoire centralisé avec le protocole de mise à jour. Cette amélioration
augmente avec la taille du cache et atteint 38% avec un cache de 32Ko. En effet, lorsque la taille du cache
augmente, la quantité de données partagées cachées augmente, ce qui amène à une réduction du trafic

6

20

30

40

50

1KO 2KO 4KO 8KO 16KO 32KO

Cache de données (KO)

T
e

m
p

s
 e

x
é

c
u

tio
n

 (
M

c
y
c
le

s
)

Avec REP

Sans REP

FIG. 8 – Temps d’exécution pour la multiplication de matrices sur 4 processeurs avec mise à jour pour
des caches de 1Ko à 32Ko

sur le NoC.
Nous remarquons que la courbe sans cohérence (sans REP) est presque constante. En effet, après une
légère diminution due à une réduction du nombre de défauts en cache d’instructions, le temps d’exécu-
tion au delà de 4KO reste constant. Ceci est dû au fait que la majorité des données traitées sont partagées.
Il y a une légère diminution au niveau de cette courbe lorsque la taille du cache augmente du fait de la
diminution du nombre d’échecs pour les données privées.

20

30

40

50

1KO 2KO 4KO 8KO 16KO 32KO

Cache de données (KO)

T
e

m
p

s
 e

x
é

c
u

tio
n

 (
M

c
y
c
le

s
)

Avec REP

Sans REP

FIG. 9 – Temps d’exécution pour la multiplication de matrices sur 4 processeurs avec invalidation pour
des caches de 1Ko à 32Ko

Les résultats obtenus avec le protocole d’invalidation prouvent que l’intégration d’un protocole de co-
hérence (avec REP) dans notre plateforme réduit le temps d’exécution. Là aussi, l’amélioration arrive
jusqu’à 38% pour un cache de 32Ko (figure 9).
À partir de ces résultats, nous constatons que bien qu’il y a une réduction du temps d’exécution, les
gains des deux méthodes sont presque similaires. Ceci s’explique du fait que dans cette application le
partage de données est en lecture plus qu’en écriture. Ainsi, nous pouvons dire que cette parallélisation
à favoriser le protocole avec invalidation. Mais ceci ne se voit pas en terme de temps d’exécution, car les
mises à jour inutiles se font par le bus et pas par le crossbar. La deuxième application, que nous avons
testé est le module d’initialisation des matrices dans l’application transformée de Fourier rapide (FFT).
La parallélisation de toute l’application FFT est en cours de réalisation.

7

Le noyau de cette partie d’initialisation de la FFT est présenté ci-après :

for(i=0;i<MAXSIZE;i++) / * loop 2 * /
{

RealIn[i]=0;
for(j=0;j<MAXWAVES;j++) / * loop 1 * /

RealIn[i]+=coeff[j] * cos(amp[j] * i);
}

La constante MAXSIZE vaut 32768 alors que la constante MAXWAVES vaut 8.
Cette application a été parallélisée de deux façons, suivant que c’est la boucle 1 ou la boucle 2 qui est
distribuée sur les 4 processeurs. Dans la première version (loop 1), les éléments du vecteur RealIn sont
lus et écrits par tous les processeurs. En effet, chaque processeur calcule de la valeur finale de RealIn[i]
qu’il va additionner à la valeur actuelle. Dans version 2 (loop 2), à l’opposé, les données en écritures ne
sont pas partagées, du fait chaque processeur se charge de calculer une partie des MAXSIZE éléments
du vecteur RealIn. Nous pouvons donc imaginer que la version 1 favorise la mise à jour alors que la
version 2 favorise l’invalidation.
Les résultats expérimentaux sont donnés dans la figure 10 qui représente le temps d’exécution en mil-
lions de cycles de la version 1 pour les solutions : sans cohérence, avec cohérence et mise à jour et enfin
avec cohérence et invalidation. Cette figure donne aussi le gain en termes de réduction du temps d’exé-
cution avec les deux protocoles. Des tailles de caches de données et d’instructions de 1 Ko jusqu’à 32 Ko
sont considérées.

0

2

4

6

8

10

12

14

16

18

1KO 2KO 4KO 8KO 16KO 32KO

Taille du cache de données

T
e
m

p
s
 d

'e
x
é
c
u

ti
o

n
 e

n

M
c
y
c
le

s

0%

10%

20%

30%

40%

50%

60%

R
e
d

u
c
ti

o
n

 e
n

 %

Maj Inval. sans cohér. Réduc. Maj Réduc. Inval.

FIG. 10 – Temps d’exécution et rapport de réduction en fonction de la taille du cache pour la la FFT sur
4 processeurs et une parallélisation sur loop 1

Les résultats illustrés par cette figure montrent que le temps d’exécution diminue avec l’utilisation des
deux protocoles. Cette réduction est plus importante avec le protocole de mise à jour qu’avec celui
d’invalidation. En effet, la réduction du temps d’exécution dépasse les 55% pour des grandes tailles de
cache. Cette variation, selon la taille du cache, s’explique par le fait qu’en augmentant la taille du cache
le nombre d’échecs diminue, ce qui réduit le temps d’exécution. Avec le protocole de mise à jour le
système est deux fois plus rapide. Le protocole avec invalidation donne des résultats moins intéressants
que ceux obtenus avec la mise à jour.
Nous avons réalisé une estimation de la consommation d’énergie pour cette version de la FFT. En ef-
fet, notre plateforme MPSoC intègre des modèles de consommation pour chaque type de composants
(processeur, mémoire, réseau d’interconnexion, cache, etc.). Ces modèles sont détaillés dans [11]. Ils per-
mettent ainsi d’estimer l’énergie totale consommée par le système pour exécuter l’application. La figure
11 présente la consommation d’énergie en micro-joules en fonction de la taille des caches.

8

200

400

600

800

1000

1200

1400

1KO 2KO 4KO 8KO 16KO 32KO

Taille du cache de données

C
o

n
s

o
m

a
ti

o
n

 d
'e

n
e

rg
ie

 (
u

J
)

Mise à jour

Invalidation

Sans Cohérence

FIG. 11 – Consommation de l’énergie en fonction de la taille de cache de l’application FFT (4 processeurs)
et une parallélisation sur loop 1

À l’aide des résultats présentés par la figure 11, nous pouvons déduire que les deux protocoles que
nous avons implémentés, en plus de leurs performances en termes de temps d’exécution, permettent de
réduire la consommation d’énergie. Là aussi, la réduction est plus significative pour le protocole avec
mise à jour. Puisque le nombre d’échecs de cache diminue avec ce protocole, le nombre d’accès à la
mémoire partagée à travers le réseau se réduit aussi. Ainsi, la consommation d’énergie diminue. Nous
pouvons constater aussi que le bus de cohérence que nous avons ajouté ne dégrade pas la performance
du système en termes de consommation d’énergie. Enfin avec cette version de la FFT nous avons pu
montrer que pour un type de traitement de données, le protocole avec mise à jour est assez performant
en termes de temps d’exécution et de consommation d’énergie.
La figure 12 représente les résultats de la deuxième version parallèle de la FFT (parallélisation sur la
boucle 2). Nous donnons dans cette figure le temps d’exécution en fonction de la taille du cache, exprimé
en millions de cycles pour les solutions : sans cohérence, avec cohérence et mise à jour et avec cohérence
et invalidation. Les réductions du temps d’exécution sont aussi indiquées dans cette figure pour les deux
protocoles.

0

5

10

15

20

25

1KO 2KO 4KO 8KO 16KO 32KO

Taille du cache de données

T
e
m

p
s
 d

'e
x
é
c
u

ti
o

n
 e

n

M
c
y
c
le

s

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

R
e
d

u
c
ti

o
n

 e
n

 %

Maj Inval. Sans cohér. Réduc. maj Réduc. inval.

FIG. 12 – Temps d’exécution et réduction du temps d’exécution en fonction de la taille du cache de
l’application FFT (4 processeurs) et une parallélisation sur loop 2

Nous remarquons qu’avec cette version de la FFT, la réduction du temps d’exécution pour les deux pro-
tocoles est quasi identique et atteint 45% (à partir de 2Ko). En effet, comme dans les deux protocoles le

9

crossbar est utilisé pour réaliser les écritures, les temps d’exécution sont identiques. La figure 13 indique
que la réduction de la consommation d’énergie est meilleure pour le protocole avec invalidation. Ceci est
dû au fait que le coût des mises à jour inutiles sur le bus fait augmenter sensiblement la consommation
d’énergie totale.

100

200

300

400

500

600

700

1KO 2KO 4KO 8KO 16KO 32KO

Taille du Cache de données

C
o

n
s
o

m
a
ti

o
n

 d
'e

n
e
rg

ie
 (

u
J
)

Mise à jour

Invalidation

Sans Cohérence

FIG. 13 – Consommation de l’énergie en fonction de la taille du cache de l’application FFT (4 processeurs)
et une parallélisation sur loop 2

En conclusion, nous pouvons dire que selon la méthode suivie pour paralléliser l’application, tel ou
tel protocole donnera de meilleures performances en termes de temps d’exécution et de consommation
d’énergie.
À travers ces constatations, nous proposons un nouveau protocole qui tire profit des avantages de deux
protocoles précédents.

5. Un protocole hybride et dynamique pour la gestion de la cohérence

En se basant sur l’étude que nous venons de réaliser sur les deux protocoles avec mise à jour et avec
invalidation, nous avons entamé la conception d’un nouveau protocole qui exploite les avantages des
deux protocoles précédents. L’idée que nous tentons d’exploiter consiste à déterminer dynamiquement
le protocole de gestion de cohérence le plus adéquat pour un bloc donné. Cette détermination est réalisée
en utilisant un tableau d’historique des opérations réalisées sur le bloc. Ainsi dés qu’un nombre seuil
de mise à jour à été réalisé sans qu’aucun processeur n’a réalisé de lecture de la donnée mise à jour, il
y un changement dans le protocole et passage vers une cohérence par invalidation. A l’opposé, lorsque
plusieurs défauts sont constatés sur le même bloc dans un laps de temps, c’est le protocole par mise à
jour qui est choisi.

6. Conclusion

Dans ce papier, nous avons implémenté une gestion centralisée de la cohérence de cache pour une plate-
forme MPSoC. Dans la littérature très peu de travaux ont été dédiés à ce type d’architectures. Pour cela
nous avons implémenté deux protocoles simples en utilisant le répertoire centralisé. Le premier proto-
cole utilise la mise à jour des données alors que le deuxième utilise l’invalidation des blocs modifiés. Les
simulations réalisées avec la plateforme SoCLib ont montré que la solution du répertoire centralisé est
assez performante et donne des réductions intéressantes du temps d’exécution et de la consommation
d’énergie. Sur la base de ces résultats expérimentaux, nous avons proposé un nouveau protocole qui tire
profit des avantages de ces deux protocoles. Nous envisageons la réalisation de ce nouveau protocole
dans la prochaine étape du projet. Ce protocole permettrait d’obtenir des gains en temps d’exécution et
en consommation d’énergie.

10

Bibliographie

1. Susan Owicki and Anant Agarwal, "Evaluating the Performance of Software Cache Coherence", 3rd interna-
tional Conference on architectural Support for programming languages and operating systems, 1989.

2. Loghi, M., Poncino, M., "Exploring energy/performance tradeoffs in shared memory MPSoCs : snoop-based
cache coherence vs. software solutions", Design, Automation and Test in Europe, 2005.

3. Lucien M. Censier and Paul Feautrier. "A New Solution to Coherence Problems in Multicache Systems", IEEE
Transactions on Computers, c-27(12) :1112-1118, December 1978.

4. Resit Sendag, Ayse Yilmazer, Joshua J. Yi, and Augustus K. Uht, " Quantifying and Reducing the Effects
of Wrong-Path Memory References in Cache-Coherent Multiprocessor Systems ", Parallel and Distributed
Processing Symposium, April 2006.

5. IEEE. "IEEE Standard for Scalable Coherent Interface", IEEE, 1993.

6. Stefanos Kaxiras and James R. Goodma, " The GLOW Cache Coherence Protocol Extensions for Widely Sha-
red Data ", Proceedings International Conference on Supercomputing ; May 1996.

7. Noel Eisley, Li-Shiuan Peh, Li Shang, " In-Network Cache Coherence ", International Symposium on Microar-
chitecture (MICRO’06), 2006.

8. Evgeny Bolotin, Zvika Guz, Israel Cidon, Ran Ginosar and Avinoam Kolodny, "The Power of Priority : NoC
based Distributed Cache Coherency", Networks-on-Chip (NOCS), May 2007.

9. Gustavo Girao, Bruno Cruz de Oliveira, Rodrigo Soares, Ivan Saraiva Silva ; "Cache Coherency Communica-
tion Cost in a NoC-based MPSoC Platform", SBCCI’07, Rio de Janeiro, Brazil, 2007.

10. http ://soclib.lip6.fr.

11. Rabie Ben Atitallah, Smail Niar, Alain Greiner, Samy Meftali, and Jean Luc Dekeyser. Estimating energy
consumption for an MPSoC architectural exploration. In Architecture of Computing Systems (ARCS’06),
Frankfurt, Germany, March 2006.

12. David E. Culler, Jaswinder Pal Singh and Anoop Gupta, Parallel Computer Architecture : A HARDWARE/
SOFTWARE APPROACH, Morgan Kaufmann Publishers, August 1998.

11

