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Spécification et conception de systémes sur puce avec SystemC
Etudedecas: leturbo-codage

Résumé

Actuellement, les systémes deviennent de plus en plus complexes et la tendance est a I’intégration des parties
logicielle et matérielle sur une méme puce (System On Chip : SoC). Afin defaciliter la conception d’ un systéme,
I’ utilisation d’un langage dit «systéme» pour la conception de haut niveau est nécessaire. Dans cet article, nous
traitons d'une approche de spécification permettant le raffinement progressif avec un langage unifié : SystemC.
L'objectif est d’ évaluer la capacité de ce langage a modéliser différents niveaux d’ abstraction. Cette approche est
expertisée atravers une étude de cas du domaine des télécommunications : |a conception d’un Turbo-Codeur. La
spécification est progressivement raffinée depuis le niveau fonctionnel vers une spécification au cycle prés. Nous
présentons la démarche de spécification, de raffinement et de validation avec SystemC ainsi que les
performances de simulation. Ce travail a permis d'analyser le potentiel de SystemC dans le cadre de la
conception matérielle des systémes intégrés.

Mots-clés: Conception de systémes, SoC, langage de haut niveau, SystemC, turbo-codes.

1) Introduction

La complexité croissante des applications entraine une augmentation considérable de la durée de développement
avec les méthodes de conception conventionnelles. Une des contraintes majeures est le délais de mise sur le
marché (time_to_Market). La conception des SoCs est un nouveau concept qui exige typiquement la
modélisation et I intégration simultanée du logiciel et du matériel.

La conception de haut niveau représente I’ un des points clés de la conception des SoCs. Cependant, I'utilisation
de langages de conception différents (C++, HDLS, etc.), d' outils de CAO plus ou moins compatibles et |’ usage
de flots de conception séparés pour le matériel et le logiciel handicapent fortement |a conception des SoCs [1].
Plusieurs travaux de recherches concernant I’ exploration de nouveaux langages ou de nouvelles méthodologies
de conception pour arriver a modéliser les parties logicielles et matérielles et supporter les interfaces entre les
deux ont démarré ces derniéres années [2,3,4,5]. Une des questions soulevées est de savoir comment modéliser
et décrire lafonctionnalité d’ un systéme a un niveau de détail suffisant permettant de prévoir son comportement
intégral, sans ambiguité et/ou a un niveau d’ abstraction qui ne fait pas d'hypothése sur les cibles d'implantation.
Dans un contexte de concurrence entre langages systéme, les approches basées sur des langages de type C/C++
tel SystemC sont particulierement intéressantes. Dans cet article, la capacité de SystemC [6] a modéliser
différents niveaux d’ abstraction est évaluée atraverslaconception et I'implémentation d’ une fonction de codage
canal utilisée en télécommunication, le turbo-codage.

L'article est construit comme suit : la section 2 analyse le besoin de la spécification systéme dans le flot de
conception et résume différentes approches pour la mise en cauvre d’un langage de modélisation systéme. La
troisiéme section s'intéresse a |'approche associée au langage SystemC (principales caractéristiques,
raffinements élémentaires) dans le flot de conception matériel. La section 4 décrit les différents étapes de
modélisation en SystemC d’ unturbo-codeur. L es résultats et |es performances obtenues sont présentés en section
5.



2) Langage Systémes : initiatives et approches associées

Les systémes devenant de plus en plus complexes, de nouvelles méthodes de conception sont nécessaires, dont
entre autre la réutilisation (utilisation de composants virtuels) ou |I’abstraction des spécifications. Dans ce
contexte, disposer d'un langage de haut niveau permettant de traiter de maniére unifiée plusieurs étapes de
conception devient une nécessité. Comme le logiciel tend a devenir la partie la plus importante des systemes
électroniques, les efforts sont focalisés vers un langage autorisant des descriptions conjointes logicielle et
matérielle. De plus, travailler au niveau systéme permet d'obtenir des modéles qui autorisent une meilleure
gestion de la complexité des systémes [7].

a) Nouveaux langages et méthodologie basées sur HDLs
L’'Initiative SLDL (VHDL International’s System-Level Design Language) [8], financée principalement par le
comité VHDL International, estime qu’il est trop difficile de considérer tous les critéres d’' une spécification de
niveau systéme, pour tous les niveaux d abstraction et dans tous les domaines d applications dans un seul
langage. En 1999, ce groupe proposa Rosetta. || sagit d'un support pour la conception dans différents domaines
employant une sémantique commune et une syntaxe appropriée pour chacun. Il permet de décrire les exigences
selon une variété de points ou facettes. Chaque facette laisse la possibilité d approcher le probléme selon
différents angles (surface, consommation, interface utilisateur, etc.) et permet le développement et |’ utilisation
d’ outils qui sont spécifiques ala nature de chaque facette.
Co-Design Automation, une des compagnies d’ automatisation de conception électronique, propose le langage
Superlog. Les auteurs de Superlog [9], estiment que ce langage est d'une part simple a lire et suffisamment
performant pour résoudre les problémes liés & un SoC. Toutefois, Superlog est centré sur la conception
matériell e et présente quel ques déficits au niveau de la conception de haut niveau.
OVI (Open Verilog Initiative) et IEEE ont travaillé pour améliorer Verilog depuis 1994 [10]. Le but essentiel est
d’ ajouter des constructions a ce langage afin de permettre son utilisation exclusive pour la conception des SoCs.
La base de ces modifications est la capacité de ce langage a étre lié a un code écrit en C/C++ a travers son
interface de programmation de langage ce qui a favorisé I’ aspect Orienté Objet. Toutefois, ces constructions
conduisent a une diminution des performances en temps de simulation.
Des études similaires sur |'extension du langage VHDL ont également eu lieux. Néanmoins, pour |les systéemes
tendant a étre dominés par le logiciel, |’adoption d’une méthodologie basée sur un langage HDL n'est pas
vraiment bien appropriée.

b) Méthodologiesbaséessur C++
La conception de systémes sur puces (SoC) basé sur le langage C a déja donné des résultats intéressants en terme
de gain en temps de développement et de vérification [5]. Ce langage est typiquement choisi pour sa popularité
dans |e développement logiciel.
Les méthodologies utilisant des langages basés sur le C++ tels SystemC, Ocapi, SpecC ont pour objectif de gérer
la complexité et I'hétérogénéité des SoCs. Le principe de I’ Orienté Objet permet de séparer |'interface de
I’implémentation, et favorise laréutilisation a un niveau d’ abstraction élevé.
CynApps propose Cynlib [2]. C’est une source ouverte basée sur C++ pour modéliser le matériel. 1l s'agit d’un
ensemble de classes C++ qui implémentent des concepts existants dans les langages matérielstels que Verilog et
VHDL. La limitation majeure de Cynlib est que la suite de CynApps vise plus spécialement la conception du
matériel.
SpecC est une extension de ANSI-C [11]. L' approche SpecC vise a favoriser une méthodologie de Co-Design
focalisée sur les|Ps (Propriété Intellectuelle ou composants virtuels) pour la spécification, la modélisation et les
systémes embarqués au niveau systéme.
Actuellement, I'initiative SystemC sembl e étre plus avantagée par rapport aux autres approches [12]:
v' SystemC est supporté par les principales sociétés de la CAO et de I’industrie électronique et établi une
plate-forme de modélisation commune qui sert aussi comme base pour I'échange des IPs et des
spécifications exécutabl es.



v" OSCI (Open SystemC Initiative) établit un mécanisme ouvert pour certaines compagnies pour faire des
contributions techniques et les partage.
v" Tout comme SpecC, SystemC répond aux besoins techniques pour le matériel, le software et répond en
ce sens aux attentes des concepteurs systémes.

Nous proposons d'aborder dans la suite de cet article |'approche associée a SystemC.

3) Approche SystemC

Le but de SystemC est de définir une plate-forme de modélisation a base de C++ (librairies de classes C++) et
d’un noyau de simulation [13]. Il supporte la spécification de niveau RTL, de niveau comportemental et de
niveau systeme. SystemC introduit de nouveaux concepts afin de supporter la modélisation et la description du
matériel et ses caractéristiques inhérentes comme la concurrence et |’aspect temporel. Pour passer de la
description au niveau systéeme al’implémentation, les différents niveaux d' abstraction doivent étre bien définis et
les méthodes de raffinement bien précises et claires.

a) Niveaux d’abstraction

L’'OSCl propose une méthodologie de raffinement progressive d'une spécification, en débutant avec la
description du systéme a un trés haut niveau, puis, en s approchant progressivement, étape pas étape, du
comportement final du circuit. Le flot complet, présenté dans la figure 1, fait appel au méme langage du début a
la fin. On peut donc, par raffinements successifs, passer d' un niveau donné au niveau suivant sans avoir a
réaliser un changement de langage de modélisation qui pose quel ques problémes (sémantique différente, syntaxe
différentes etc.), sans méme parler du temps inutilement dépensé pour cela. On peut ainsi passer d'un niveau a
un autre en manipulant la méme sémantique, la méme syntaxe, le méme environnement de simulation, les
mémes benchmarks etc. 1l y adonc de réels gains en ce qui concerne la vérification des raffinements réalisés.
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Fig. 1: Flot de raffinement SystemC (source : OSCI)

C'est principalement le niveau de détail du temps qui différencie les niveaux d'abstraction en SystemC. La
conception est progressivement raffinée par |’ ajout du code du matériel ainsi que le chronométrage nécessaire.
Les principaux niveaux d’ abstraction liés au flot matériel sont les suivants:

Niveau fonctionnel non temporisé (FU) : L’ objectif est de réaliser une validation des concepts de base du
systéme, et d exprimer le systéme sous forme de modules fonctionnels. On produit donc une spécification
exécutable ou I’ architecture du systéme n’ est pas encore définie.

Niveau Fonctionnel Temporisé (FT) : A ce niveau, on décompose | e systéme en sous-systémes et on impose des
contraintes temporelles sur les modules identifiés (comportement temporel du systéme) mais la description reste
non « clockée » (non cadencée par une référence temporelle). Une analyse grossiére de performance du systéme
peut ainsi étre faite en vue du partitionnement.




Niveau Bus Cycle Prés (BCA) : A ce niveau, la modélisation des communications entre les différents blocs du
systéme est nécessaire. Normalement, la modélisation des canaux de communication doit étre faite cycle par
cycle. Par contre le comportement des modul es peut rester au niveau FU.

Niveau Cycle Prés (CA) : A ce niveau, tout le fonctionnement du systéme doit étre maintenant spécifié au cycle
pres.

b) Méthodologie deraffinement avec SystemC

Pour pouvoir passer d'un niveau a un autre, il est nécessaire de réaliser un certain nombre de raffinements
élémentaires. Typiquement pour le flot matériel, il S'agit du raffinement d'atomicité, du raffinement
algorithmique, du raffinement des données et du raffinement des communications. L’ordre et le nombre
répétition de chacune de ces étapes ne sont pas figés, cela dépend de la complexité et de la nature du systéme a
traiter.

Raffinement d’atomicité (Rat) : Cette étape consiste a transformer un programme qui se déroule de maniéere
séguentielle en un nouveau programme contenant des processus pouvant s' exécuter en paralléle.

Raffinement algorithmique (Ral): On procéde ici au découpage des taches complexes en une séquence de taches
de complexité inférieure (plus petites et plus simples). On procéde a une division du bloc en sous blocs qui
meénent chacun un fonctionnement interne ne dépendant que d’ une liste de sensibilité.

Raffinement de communication (RC) : On transforme a ce niveau les moyens de communication abstraits ou les
bus « primaires » en bus plus raffinés pour obtenir des modules plus réalistes.

Raffinement de données (RD) : Ce raffinement consiste & remplacer tous les types de données abstraits (C/C++)
par des types de données directement implémentabl es sur une ciblelogicielle ou matérielle.

4) Expérimentation

Afin d évaluer les capacités et les performances de SystemC, nous avons modélisé une fonction de codage de
canal, les Turbo-codes. L'idée associée au concept de codage canal est de protéger I'information émise contre les
imperfections du canal de transmission (bruit, interférences, multi trajets ) en gjoutant au message une certaine
redondance. Les Turbo-Codes introduits en 1993 constituent une des techniques de codage correcteur d'erreurs la
plus performante actuellement [14].

a) Turbo codeur

Leturbo codeur consiste en la concaténation paralléle de deux codesconvolutifs systématiques récursifs (CRSs).
Un entrelaceur introduit une permutation pseudo aléatoire sur I’ ordre de la séquence de données a coder (figure
2).

Données acoder Codeur CRS

ld #1

Entrel aceur Codeur CRS

Fig. 2: Turbo-Codeur convolutif

Les bits d entrées (données a coder) sont délivrés au premier sous codeur (CRS #1) qui génere un ensemble de
bits systématiques et redondants. La séquence a coder est délivrée au deuxieme sous codeur (CRS #2) dans un
nouvel ordre produit par I'entrelaceur. Le CRS #2 génére a son tour un ensemble de bits systématiques et
redondants. Pour ne pas transmettre inutilement deux redondances de bits systématiques, un masguage est opéré
de fagon a produire uniquement I'information systématique & partir du CRS #1 suivi des bits de redondances
introduits respectivement par le premier et le second CRS. On obtient ainsi un codeur de rendement 1/3.
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Fig. 3: Flot de raffinement matériel du turbo codeur

Lors de cette expérimentation, nous avons réalisé dans un premier temps la spécification en C/C++ de
I'application indépendamment des propriétés de I'application en terme de temps, synchronisation etc. Celanous a
permis d'opérer plus facilement la vérification fonctionnelle. Nous avons ensuite raffiné la spécification du
C/C++ en SystemC. Cela nous a permis d’obtenir une référence fonctionnelle pour les différentes étapes de
raffinement a suivre en gardant les mémes vecteurs de test. Lafigure 3 montre les primitives de raffinement dans
le flot de raffinement du turbo codeur. Les détails qui concernent chaque étape de raffinement sont analysés dans
| es sous sections suivantes.

b) Modélefonctionnel (FU)
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Fig. 4: Structure du modele FU du Turbo-Codeur

A ce stade du processus de raffinement, la version algorithmique C++ du turbo codeur est simplement placée
dans un module conteneur (récipient) de SystemC. A I'intérieur du module, |a fonctionnalité est placée dans le
processus Turbo codeur. Les bits a coder sont fournis par le module stimulus (sc_module stim) et les résultats
sont passés a un module résultat (sc_module res) (figure 4).

L e mécanisme de communication est réalisé entre ces modules al’ aide du canal primitif sc_fifo disponible dans
laversion 2.0 de SystemC. Le sc_module stimcontient un processussc_thread qui peut étre suspendu et réactivé
par les événements ou par les signaux du module. Le module res quant a lui contient un processus de type
sc_method (processus sensible aux entrées).



¢) Modelefonctionnel temporisé (FT)
i) V.FT1
Dans la version algorithmique, un type de données «matrice » est utilisé pour smplifier le traitement des

données. On opére un raffinement de données pour omettre ce type de données et avoir ainsi un code sans
variable globale ni pointeurs pour les allocations dynamiques de mémoire. Le systéme raffiné est validé avec les

mémes séquences test de bits que pour laversion agorithmique.
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Fig. 5: Structure du modéle FT1 du Turbo-Codeur

On gjoute un niveau de hiérarchie au module Turbo_codeur qui instancie deux modules CRSs, un module
entrelaceur et un module multiplexeur (figure 5). Chagque module englobe un processus de type sc_thread
réalisant la fonctionnalité appropriée. On affecte chaque module d'un comportement synchrone en ce qui
concerne sa communication en entrée ou en sortie.

i) V.FT2
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Fig. 6: Structure du modéle FT2 du Turbo-Codeur

Il Ny a aucun intérét a utiliser une organisation hiérarchique pour cet exemple. La hiérarchie de module est
utilisée quand il y aun mécanisme d’ héritage reliant e module récipient aux sous modules. C’est pourquoi, dans
cette version du niveau FT, on assure la séparation des modules ayant des fonctionnalités indépendant comme
I’ exige la primitive « raffinement d’ atomicité ». Cette description est schématisée par lafigure 6. Un mécanisme
d'événements gjuste le lien entre les modules et donc des lignes de code sont ajoutées pour interfacer les sous
modules. Les communications entre les modules de simulation (stim, res) sont modélisées en utilisant la canal
primitif sc_fifo.
iii) V.FT3

On considére a ce stade le module CRS pour le raffiner. Une description statique du module CRS est opérée de
maniére a recevoir un seul bit comme donnée d’ entrée. Une autre couche de hiérarchie est gjoutée suite a un
raffinement d atomicité : un module CRS instancie 3 modules modélisant le fonction logique XOR et deux
autres modules modélisant la fonction mémorisation. Ces modules implémentent des processus de type
sc_method.



Horloge

Fig. 7: Schéma du codeur convolutif

CRS est maintenant un module dans un niveau CA (cycle prés). Les transformations de données sont cadencés
par un signal d'horloge. La mise a jour des valeurs de données pendant I’ exécution se fait suivant le front
montant de |’ horloge. Pour simuler tous les modules du Turbo_codeur, les processus (do_entrelaceur, do_stim,
do_res) sont synchronisés via des opérations de conversion des types de données selon la nature des ports de
communication et des signaux de type poignée de main.

5) Réaultats

L es résultats présentés correspondent a un Turbo-codeur dont les CRSs ont comme matrice génératrice G=[1 1
1,1 01] =[g0, g1]=[7,5]octa- LES états des codeurs convol utifs sont initialement tous a zéros.

Pour évaluer les performances de simulation de SystemC, nous avons relevé les temps simulations associés a
chaque étape de raffinement précédemment décrite avec les mémes vecteurs de test. On observe en pratique de
grandes différences en ce qui concerne les temps de simulation selon le niveau d’ abstraction (figure 8) : les
versions a haut niveau d' abstraction prennent trés peu de temps par rapport a celles de niveau plus bas (FT
1,2,3).

V.FT3
V.FT2
V.FT1

Fig. 8 Temps de simulation selon le niveau de raffinement (Pentium 3, 800MHz 128Mo, Linux Mandrake 8.2)

En fait, la mgjorité du temps est passée dans le simulateur de SystemC a gérer |’ activation des processus ainsi
gu'a identifier les processus éligibles. L'ordonnanceur est modélisé pour la simulation comme étant un
« thread » actif; il communique avec un autre processus contenant le code des autres processus de la simulation
[15]. Naturellement, plus on gjoute des détails, plus la ssmulation prend du temps. En particulier, le raffinement
d’ atomicité ralentit les simulations a cause de I’ accroissement du nombre de processus ce qui explique la grande
différence de temps entre les niveaux V.FT2 et V.FT3.

Le noyau de simulation associé a SystemC doit manipuler cette charge de travail complémentaire en plus d'un
nombre accru d'événements. En outre, |e processus du noyau communique avec les autres processus fils selon
des fonctions internes dans le systéme d'exploitation employé: la réalisation de la simulation sous un
environnement UNIX, Linux ou Windows NT conduit & un écart de temps différent selon les caractéristiques de
I’ environnement.

Notons enfin qu'avec les outils disponibles, il est difficile de quantifier de maniére exacte le temps employé par
I’ordonnanceur (scheduler) SystemC.



6) Conclusion

Le marché des systémes matériels enfouis connait une trés forte croissance et le nhombre de SoC produits ne
cesse de croitre. La complexité croissante des applications a intégrer requiert cependant de nouvelles techniques
de conception. Actuellement, une des solutions les plus pertinentes réside en I'élévation du niveau d'abstraction
et en I'utilisation d'un langage unifié. Le langage SystemC a été développé dans ce contexte. Au travers de la
spécification d'une fonction de télécommunication, le turbo-codage, nous avons analysé une approche de
spécification et raffinements progressifs associés au flot de conception matériel avec le langage SystemC. Le
surco(t en temps de simulation selon le niveau de raffinement est également présenté.

La spécification de plus bas niveau du turbo-codeur, dite au cycle prées, peut étre synthétisée par un outil de
synthése du type CoCentric SystemC Compiler de Synopsys afin de générer une structure de type RTL que les
outils de conception "conventionnels' sauront traiter. Cette étape est actuellement en cours de réalisation.
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