THESE

Présentée a
Université de Bretagne Sud
En vue de 'obtention du

DOCTORAT

Spécialité
Sciences de I'Ingénie@N Electronique et Informatique Industrie([&BS)
Ingénierie des Systémes InformatiquEbl(S)

Préparée en cotutelle au
Laboratoire d’Electronique des Systémes Temps RE&ITER)
De Université de Bretagne Sud (France)
&
L'unité de recherche Computer and Electronics Sys{@gS)
De I'Ecole Nationale d’'Ingénieurs de Sfax (Tunisie)

Fatma ABBES BEN AMOR

ENCAPSULATION DES COMPOSANTS VIRTUELS DANS UN
SYSTEME SUR PUCE

Soutenue le 11 mai 2007

Composition du jury

M. .Dominique HOUZET Rapporteur
M. Habib YOUSSEF Rapporteur
M. Jean Luc PHILIPPE Examinateu
M. Eric MARTIN Examinateur/Président
M. Emmanuel CASSEAU Directeur
M. Mohamed ABID Directeur
M. Philippe COUSSY Invité



Dédicace

DEDIACE
A mon pere « .q.LI », A mamere 5 Z:KK% »

Auxquels
Je dois ce que je suis
Que dieu vous protége Et vous préte une bonne santé

Et une longue vie

A mon cher mari « NADER »

Pour la tendre affection

Pour les sacrifices endurés et les encouragements

A ma petite ¢ BALKIS »

A ma seur « DORRA» et mon frére « MOHAMED »

Pour les encouragements continus

A mes beaux parents « MOHAMED » e « NOURA »

A ma belle soeur
A mes beaux fréres

A ['dgme de mon oncle « ABDEFETTEH », A ['dme de mon oncle « ALIy,

A toute ma famille

A tous mes amis
A tous ceux que j 'aime Et qui m aiment



Remerciements

REMERCIEMENTS

C’est avec un immense plaisir que je réserveligass en signe de gratitude et de
reconnaissance a tous ceux qui ont contribué dequréle loin a I'élaboration de ce travail.

Je tiens a remercier en premier lieu Monsiglahamed ABID, Professeur a
I'ENIS, Directeur du groupe de recherche « SystemesPuces » du laboratoire CES pour
m’avoir accepté dans son groupe de recherche.eds & remercier également Mr Eric
MARTIN Professeur des Universités et Président’deiversité de Bretagne Sud (ancien
directeur du laboratoire LESTER) pour m’avoir adéegans le laboratoire LESTER. Je tiens
a exprimer ma vive gratitude a mon directeur desehélonsieur Emmanuel CASSEAU,
Professeur des Universités a I'Université de Rernkannion pour son accompagnement et

ses conseils.

Mes remerciements s’'adressent aussi a Messizominique Houzet, Professeur
des Universités au laboratoire LIS a Grenoble enditur Habib Youssef, Professeur a
I'Institut Supérieur d'Informatique et des Techmiés de Communication a Hammem Sousse
pour avoir accepté de rapporter mon travail. Jesti& remercier également Messieurs Jean
Luc Philippe Professeur des universités a I'Unitérsle Bretagne Sud— LESTER pour
accepter d’'étre membre au jury et Monsieur Philigpeussy, Maitre de Conférences a
I'Université de Bretagne Sud — LESTER, pour accepére invité au jury.

Je tiens a remercier mes enseignants a $EMInsi que tout son personnel
administratif et technique.

Je tiens également a remercier tous mes @enl$ENIS. Je remercie également
tous ceux qui ont contribué aux travaux préseraés de mémoire.

Je remercie également le personnel du LESIdR sa disponibilité.



Résumé

RESUME

Avec l'augmentation du taux d’intégration qui démmsactuellement plusieurs
centaines de millions de transistors, de nouvegsteésies sont apparus appelés « systeme sur
puce » ou SoCs. Ces systémes sont assujettisartde €ontraintes de conception : délai de
mise sur le marché court, support d’applicationsnglexes, colt réduit, etc. Une des
solutions a ce défi est 'utilisation de composanéts appelés IPs ou composants virtuels qui
permettent de réduire le temps de développemete¢ @tinimiser les erreurs de conception.
Ces IPs pouvant étre par essence de provenanéeedi#, leur structure de communication
n'est pas forcément adaptée au reste du systemde&problemes de conception des SoCs
est alors d'intégrer facilement et rapidement &ssdans le systeme.

Ce travail de thése porte sur la conception aufgomtde 'interconnexion entre les
composants IPs d’'un SoC. Ces travaux ont été nmmgsintement dans I'équipe « systéeme
sur puce » du laboratoire CES de I'ENIS et le geodp recherche IP Design du laboratoire
L.E.S.T.E.R de 'UBS.

Cette thése propose une approche d'intégratiorddjesulation d’IPs applicable pour
un contexte de simulation et un contexte de syethelle est basée sur l'instanciation d’'une
interface de communication générique a l'aide d’'aoefiguration a travers des graphes. Ces
graphes modélisent les transferts de données kntsgsteme et I'lP. Cette interface de
communication cible les applications orientées ftg données pour un contexte de
réutilisation SoC/MPSoC. La réalisation de I'intaxé de communication consiste alors pour
la partie matérielle a instancier le ou les modul@sterface nécessaires, et pour la partie
logicielle & générer le pilote de I'interface.

Afin d’automatiser cette approche, un outil a égedoppé. Il permet dans un premier
temps de veérifier la compatibilité entre I'IP etrleste du systéme. Dans un second temps, il
permet de générer le code SystemC de l'interface lgocontexte de la simulation, et le code
VHDL synthétisable pour la synthése (avec les gdat les fichiers de test nécessaires).

Pour I'expertise de cette approche, I'applicatisynthése d'image 3D » a été choisie.
L'IP considérée est « le produit matriciel ». L'éipgtion de notre méthode démontre que
I'interface adoptée est indépendante du contextilidation et que I'approche peut étre

utilisée pour I'intégration automatique d’IPs.

Mots clés: Systeme sur puce, communication, interface,l alitide a la conception,
intégration d’IPs, synthése de haut niveau.



Abstract

ABSTRACT

In order to manage the system-on-a-chip (SoC) asing complexity, a promising
way consists of the reuse concept of preconceiaedware or software blocks. An important
aspect of a core’s marketability is its abilitylie easily integrated into a SoC since IP must
be usable in many different application contextstedgrating Intellectual Property (IP)
components into SoC design requires the use ofdwaae/software interface.

This PhD thesis deals with interconnection desigtwben IP cores (Intellectual
Property) in a System on Chip. This work was uradem jointly in the team “IP Design” of
laboratory L.E.S.T.E.R of the UBS and the C.E.Suprof ENIS.

To increase reuse efficiently, quality and produtti of SoC design, we propose a
design approach for packaging the cycle accuratk anhaccurate (CABA) interface of
hardware IPs in SOC/MPSoC design context aiminga dadw emerged systems. This
approach gives an interface modelling consideringmrmunication adaptation
concepts/context. Graph formalism has been estalito specify data traffic considering the
cycle accurate behaviour at the IP interface asteay requirements. Moreover, the approach
is built around two main steps: checking compatibénd interface architecture generation.
To realize communication adaptation, both the safénpart (“driver”) and the hardware part
(the interface) are generated.

A communication interface architecture generats baen implemented as a CAD
tool called GIC. This tool is able to choose andcémfigure generic interface parameters
according to applications constraints and systeadsi¢hrough graphs models. Moreover, it
generates the synthesisable VHDL code for synttaagisSystemC code for simulation of the
specified interface generated.

This work has been validated on multimedia apglbcata “pipeline 3D” application.
The application of our method shows that the adbptterface is independent of use context

and that the approach can be used for automatmmtegration.

Keys words System on Chip, communication, interface, compatded design, IP

integration and high level synthesis.



Table des matieres

Table des matieres

Table des matiéres 1
Liste des Figures 1
Liste des Tableaux 1
Chapitre 1. Introduction GENErale............mmeeeeeeeeiiiiiiieeeeeeeiiiiee e e e eeeeesinnn 1
Motivation & Problématique 1
Objectifs 4
Contributions 4
Organisation du document 5

Chapitre 2. Méthodologies d’intégration des comptsairtuels dans un flot de
conception de SYSIEME SUI PUCE ......uuuuuriceeeeeeeeeeeeeiniieeeeseeessnnnnseeesssessssnnnneel

1. Introduction 7
2. Conception des systemes sur puce 8
2.1. Conception conjointe logicielle matérielle 9
2.2. Flot typique de la conception conjointe 9
2.2.1. Spécification systéeme 11
2.2.2. Partitionnement logiciel / matériel 11
2.2.3. Synthese matérielle et synthese logicisijathése mixte ou co-synthése) 11
2.2.4. Prototypage 12
2.3. Flot de conception des SoCs 12
2.4. Intégration d'IP dans un SoC 15
3. Méthodologies de réutilisation de composants 16
3.1. Approche de conception basée sur les IPsadBddesign) 16
3.2. Approche de conception basée sur une platef@iateform based design) 17
3.3. Approche de conception basée sur un bus @aedapproach) 17
3.4. Approche de conception basée sur des ceergabie/component based approach)
18
3.5. Approche de conception basée sur des réseacnnaimunication 19
3.6. Intégration des composants logiciels 19
3.7. Bilan : méthodologies de réutilisation de cosgnts 21
3.7. Synthese de communication 21
4. Synthese d’interface de communication : SIC 21
4.1. SIC dans les outils de « co-design » 22
4.2. Bilan : SIC dans les outils de co-design 25
5. Génération automatique d’interfaces de commtinita exemples 26
5.1. Architecture d’'un module d’interface générique 26
5.2. Adaptation d’IP fonctionnel dans un SoC baséis NoC 28
5.3. Encapsulation automatique d’IP dans I'enviemant ROSES 28
5.4. Génération d’interface pour un systeme mutipsseur 29
5.5. Intégration d'IP dans Celoxica DK Suite 31
5.6. Approche proposée 32
6. Conclusion 33
Chapitre 3. Approche d’intégration de composartteirdans un SoC............. 34
1. Introduction 34
2. Flot d’intégration d’IP dans un SoC 34
2.1. Modélisation de I'ordonnancement du translerdonnées 36

2.2. Génération de l'interface 36




Table des matieres

2.3. Architectures cibles 37
3. Modélisation du transfert des données 41
3.1. Hypothéses sur 'ordonnancement des données 42
3.2. Ordonnancements des données aux entrées statieP 44
3.3. Interface de communication 46
3.4. Modélisation en graphes des contraintes suen&ées/sorties de I'lP 48
3.4.1. Graphe d’Ordonnancement des Entrées/SoE&ES 48
3.4.2. Graphe d’Ordonnancement aux Entrées/SquéieStructure : GOESS 49
3.4.3. Graphe d’Ordonnancement aux entrées/salti&y/steme (GOS) 49
3.5. Vérification de la compatibilité 50
4. Modele Générique de I'architecture de l'inte€faatérielle 52
4.1. Modules de l'interface 53
4.1.1. Module FIFO 54
4.1.2. Module Contrbleur a I'entrée de I'lP (CTRN)I 55
4.1.3. Module FIFO_Enable 56
4.1.4. Module « Enable » 56
4.2. Architecture de l'interface de communication 57
4.2.1. Premiere conception (dédiée pour le cas processeur) 57
4.2.2. Deuxiéme conception (dédiée pour le casipnattesseur) 58
4.2.3. Comparaison des deux conceptions 58
4.3. Contrdle de la gestion des cellules FIFO_IN 59
4.3.1. Fonctionnement du Module FIFO 60
4.3.3. Fonctionnement du Module contrdleur 61
5. Interface logicielle : Pilote de I'interface 64
6. Etape de génération de l'interface 68
7. Conclusion 71
Chapitre 4. Expérimentation de I'approche d’ingigm : Outil GIC .............. 72
1. Introduction 72
2. Contexte d’application de la méthodologie d'gradion 72
2.1. Flot de conception basé sur des outils SHN 73
2.2. Outil GAUT 75
2.2.1. Architecture de I'lP synthétisée par GAUT 75
2.2.2. Phases de synthese avec GAUT 77
2.3. Conclusion 79
3. L’Outil de CAO « GIC » 79
3.1. Implémentation du GIC 80
3.1.1. Modéle d’intégrité entre les outils 80
3.1.2. Etapes du Flot d’intégration dans I'outilGGl 83
3.1.3. Entrée de l'outil 85
3.1.4. Sortie de I'outil 85
3.1.5. Modélisation en graphes 86
3.2. Outils internes au GIC 86
3.2.1. GIC checker 86
3.2.2. GICinterface_generator 88
3.2.3. Bibliotheque de l'outil : Structures et tedas utilisées 89
3.2.4. GICdriver_generator 92
3.3. Modélisation du GIC 94
3.4. Conclusion 96

Chapitre 5. Expérimentation de I'approche d’ingggm : Exemple et validation

97



Table des matieres

1. Introduction 97
2. Exemple d’application cible : « Pipeline 3D » 97
2.1. Graphes de taches de I'application 3D 99
2.2. Accélérateur matériel 101
2.3. Synthese sous GAUT de I'lP « produit matrieiel 102
2.3. Scénario d’'intégration 103
3. Génération d'interface pour la Simulation 105
3.1. Plateforme de simulation SoCLiB 106
3.1.1. Protocole VCI 106
3.1.2. Modélisation des composants sous SoCLiB 106
3.2. Expérimentation de I'outil GIC pour la simudat 107
3.2.1. Bibliotheque de composants 108
3.2.2. Adaptateurs (VCI-FIFO, FIFO-VCI) 109
3.2.3. Spécification SystemC des modules de |fater 109
3.3. Fonctionnalités principales du GIC pour laidation 110
3.4. Simulation et Résultats 111
3.5. Conclusion 113
4. Génération d’'interface pour la Synthese 114
4.1. Environnement de validation : Plateforme Adter 115
4.2. Modules VHDL de l'interface 115
4.3. Adaptateurs (Avalon-FIFO, FIFO-Avalon) 117
4.4. Fonctionnalités principales du GIC pour latbgse 118
4.4.1. Modification des paramétres génériques detuias VHDL 118
4.4.2. Généricité du code dans un module 119
4.4.3. Instanciation des modules constituantsdifiaice 120
4.4.4. Assemblage des modules 122
4.4.4. Génération du « Driver » 122
4.5. Synthése et Résultats 123
4.5.1. Influence des parametres de l'interfacdestemps d’exécution 124
4.5.2. Comparaison de la surface de I'lP par rapgpson interface 125
4.6. Optimisation de la taille des FIFOs 126
5. Conclusions 131
Chapitre 6. Conclusions & PerspectiVeS .....ccccceeiiieeeiiiiiiiiiiieeeeeecie e, 133
1. Synthése des travaux de these 133
2. Perspectives 135
2.1. Extension de I'approche 135
2.2. Extension de I'environnement 136
Références BibliographiqUes.............uuuicemcc i 137
Publications Personnelles............oi i 145

Acronymes & ADIEVIAtIONS...........ccoviiiiiiieeeeee e 146



Liste des Fi

gures

Liste des Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40:
Figure 41 :
Figure 42:
Figure 43.
Figure 44.

Figure 45
Figure 46
Figure 47

Prévisions d’évolutions des technologisium.

2

Structure du mémoire

6

Prévisions des besoins de productivité

7

Flot de conception « co-design »

10

Flot typique de la conception des SoEs d prise en compte des IPs
Communication entre IPs dans un SoC

13
15

Architecture interne du module d’intedac

27

Couches entre des interfaces hétérogenes

28

Architecture de l'interface matérielle

29

Structure de I'interface d’adaptation’tea une architecture SoC
Flot d’'intégration d'IP

30
35

Architecture d’un systéme mono puce

38

Différents scénarios de la conceptioSa€

39

Modeles d’architecture Monoprocesseur

39

Modéles d’architecture Multiprocesseur

40

Communication a travers des mémoire®§IF

40

Familles d’'IP et caractéristiques agsexi

41

Chemin de communication

Configuration d’ordonnancement 1

43
45

Configuration d’ordonnancement 2

45

Configuration d’ordonnancement 3

46

Structure FIFO

46

Structure du modele d’intégration d’IP

a7

Modeles de graphes

49

Vérification de la compatibilité

50

Interfacage d’IP

52

Conception du module de I'interface

54

MEF de la FIFO

MEF du CTRL_IN

Diagramme bloc de la MEF du module FIE@able

55
55
56

Automate Enable

Sens d’empilement dans la FIFO_IN (tdayt

57
61

Sens d’empilement dans la FIFO_IN

61

Architecture cible proposée

62

Rangement des données dans la mémolive RA

Fonctionnement du module CTRL_IN (cotioep?2)

Comportement du « driver »

62
63
68

Etape de génération d’architecturegefiace

69

Flot de conception avec des outils ddlSH

Interaction entre les sous modulesiditface et les modéles de graphes

70
74

Structure du circuit synthétisé par GAU

76

Phase de synthése de I'outil GAUT

77

Modéele d'intégration d’outils autour d’tormat intermédiaire

81

Flot du GIC

: Entrées/ sorties de I'outil GIC

84
85

. Architecture du GIC_Checker

86

: Relations de dépendance entre sou m®eétilservices

90




Liste des Figures

Figure 48 : Arbre d'implémentation d’'un sous mod8iestemC compatible monoprocesseur
91
Figure 49 : Architecture du Gldriver_generator 92
Figure 50. Diagramme de classes du GIC 94
Figure 51. Snapshots de I'outil GIC 95
Figure 52. Synthése d’images 3D 98
Figure 53. Objets transformés en un ensemble aleglies 98
Figure 54. Graphe de taches de 'application sya&3D 100
Figure 55. Exemple d’architecture d’'IP GAUT (pradumiatriciel cas 3) 103
Figure 56. Ordonnancement des données a I'entrédPdeas 3) 105
Figure 57. Application de I'approche pour la sintidia de I'interface 108
Figure 58. Représentation des adaptateurs VCI-FIFO 109
Figure 59. Instanciation des modules et configaraties parameétres génériques 110
Figure 60. Représentation de I'architecture dpéarnce 111
Figure 61. Mode d'utilisation de I'interface dansC3.iB 113
Figure 62. Application de I'approche d’intégratipour la synthese d’interface 114
Figure 63. Interface « produit de deux matrices ¢zl 3 » 117
Figure 64. Parameétres génériques 119
Figure 65. Généricité du code 119
Figure 66. Extrait de code JAVA 120
Figure 67. Instanciation des FIFOs 121
Figure 68. Instanciation des sous modules 121
Figure 69. « Testbench » ou fichier d’assemblage 122
Figure 70. Procédure pour I'étude de I'effet dadalification du nombre de triangles_ 123
Figure 71. Structure de I'Architecture cible 124
Figure 72. Détermination du temps d’exécution (Tgxe 124
Figure 73. Occupations sur FPGA 126
Figure 74. Classification des FIFOs dans l'integfac 127
Figure 75. Algorithme de calcul de la profondeUf®lI 128
Figure 76. Algorithme de la recherche dichotomique 129
Figure 77. Algorithme de calcul de la profondeUf®lconsidérant une recherche
dichotomique 129




Liste des Tableaux

Liste des Tableaux

Tableau 1. Description des taches de I'applicadgiyomthese 3D

100

Tableau 2. Exemples d’architectures GAUT de I'lpreduit de 2 matrices 4x4 »
Tableau 3. Performances de la simulation complet8oC

102

112

Tableau 4. Mesures de Texec

Tableau 5. Influence du Nb_bus utiles sur I'occigmaEPGA

Tableau 6. Influence du nombre de données suofamileur minimale des FIFOs
Tableau 7. Application de I'algorithme de re-dimenhement de FIFO

125
125
130
130

Tableau 8. Influence de la profondeur des FIFO$sccupation FPGA

131



Chapitre 1 : Introduction Générale

CHAPITRE 1. INTRODUCTION GENERALE

Motivation & Problématique

La technologie permettant I'intégration sur silitiwles circuits numériques n’'a cessé
d’évoluer suivant la loi de Moor¢Tur03]. Avec ce développement technologique des
composants submicroniques, nous assistons a undatégration supérieur a plusieurs
centaines de millions de transistors ce qui a oo et renforcé la nouvelle aire
d’'implémentation des systemes sur une seule puCe«System on Chip ou « systémes sur
puce ». Cette nouvelle génération de systemes imumeéra ouvert la voie pour I'apparition et
la large diffusion de produits performants non enlants, efficaces, flexibles et capables de
s’adapter aux changements des normes des appiicaties systemes sont de plus en plus
utilisés dans plusieurs domaines notamment dadsrfe@ine de multimédia et le domaine de
traitement de l'information (exemple : Traitemerg Signal et d’'Images : TDSI) caractérisés
par des applications variées et complexes deveme&ecutées sur des systemes performants,
ergonomiques et de faible codt.

Par ailleurs, les applications supportées par ¢ssemmes sont de plus en plus
complexes. Toutefois, leur temps de mise sur lechdarest de plus en plus court. Les
concepteurs doivent donc concevoir ces systemeglesgs en un temps minimal tout en
respectant des contraintes temporelles et spatitdieses. Afin de réduire ce temps, il est
nécessaire de disposer d'outils de CAO (ConcephAsgistée par Ordinateur) capables
d’accélérer les différentes phases de conceptigordaditer ainsi du potentiel d’'intégration
permis par I'évolution de la technologie. En effat/’horizon 2010, les technologies de
fabrication de circuits intégrés sur silicium petirant d’'intégrer des milliards de transistors
sur une seule puce. La figure 1 donne les caratitpres technologiques de la prochaine
génération de systemes. De tels systémes sont ufe ol plus construits a partir de
composants développés en interne ou achetés deeriiex dits « IPs » Irftellectual
Propertieg ou composant virtueMC : Virtual Componeny.

Ces IPs sont des fonctiogsli permettent de réaliser un traitement donné F&X.,
DCT, décodeur MPEG, transformée en ondelette, astm de mouvement etc.) et leur
complexité peut atteindre celle d'un processeus. €x@mposants sont congus puis veérifiés. lls

sont souvent flexibles vis a vis des technologie$ees, lorsquils sont décrits en langage
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HDL (High Description Language langage de haut niveau) au niveau RRedister

Transfer Level niveau transfert de registre).

s ey >

Figure 1. Prévisions d’évolutions des technologiedisium™.

Dans la conception de cette nouvelle génératioSale, la partie fonctionnalité n’est
plus la partie la plus difficile & concevoir, maiest plutét la partie communication entre les
différents composants. Afin de permettre aux cotemes des systemes sur puce
d'interconnecter facilement des composants de pemaes diverses, ces composants doivent
pouvoir communiquer et s’interfacer facilement endtux. Pour une réutilisation contrainte
dans un systéme complet, il est donc souvent na@icesbadapter un composant a la structure
de communication existante du systéme grace a udulmomatériel de translation. La
conception de ce module de translation est a legehdu concepteur intégrateur. Le probléme
d’interfagcage d'IP dans ces conditions est tragéors plusieurs facettes en considérant
plusieurs niveaux d’abstraction. Il existe :

— Difféerentes méthodologies de conception

— Différentes technologies d’implémentation (ASIC (Apation Specific Integrated

Circuit), FPGA (Field Programmable Gate Array) ....)

— Différents protocoles de communication

— Différentes fréquences de fonctionnement

1 . . . .
Source : The transistors international technologylnaap for semiconductors
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Les solutions de ce probléme apportées par la releheacadémique ou industrielle
peuvent étre regroupées en trois familles :

— la synthese a partir d'une spécification systemetfonnelle,

— la conception s'appuyant sur l'utilisation de gtatee.

— la conception basée sur la réutilisation de commussa

Une des solutions consiste a utiliser des proescale bus existants comme par
exemple le bus AMBA ou le coreconnect (CoreConneCgtte tendance a évolué pour
favoriser la démarche de conception basée sur latefgome qui impose I'emploi de bus
particuliers [Reg04]. Malgré ses avantages, I'sdfiion de bus standard peut ne pas satisfaire
les exigences du systeme en terme de débits deesmuisque le gap entre la fréquence du
bus et la fréquence du systeme ne cesse d’augm&der garantir plus de performances
notamment dans les applications multimédia comgleyar exemple la synthése 3D, la
compression MPEG4), il est nécessaire d’amélicaevilesse de transfert des données en
adoptant de nouvelles structures de communicaliear protocole de communication doit
étre suffisamment générique pour pouvoir étre fatér facilement avec n’importe quel autre
protocole ce qui permet de réduire la complexitéladédche d’adaptation du composant.
Cependant, malgré l'effort de standardisation eméede protocole de communication VCI
[VCI] (Virtual Component Protocpl ou OCP [OCP] ©n Chip Protocdl), diverses
applications nécessitent l'intégration de fonctialités particulieres non supportées par ces
standards. Par exemple, l'utilisation de tels s n'exempte pas le « wrapper »
(adaptateur matériel entre composants utilisant ptesocoles différents) de la tache de
temporisation des données. Par ailleurs, I'apparitie nouvelles structures d’interconnexion
(comme les Networks on Chip : NoC) pose de nouseltentraintes dans la conception des
interfaces [Ben02].

Pour toutes ces solutions, il est nécessaire diobties structures de communication
adaptées aux exigences des applications ciblesblespal’interconnecter des IPs de
provenances diverses. Ainsi, lgénération automatique d'interfacesdoit étre considérée
pour favoriser l'interfacage automatique des IPssdan flot de conception SoC [SPIRITO05].
Cette pratique permet de gérer les contraintesodeeption de plus en plus pressantes et de
relever les nouveaux défis apparus avec les nasvettuctures de communication mises en
place telle que la communication multiprocesseurs.

De plus, a présent, si un systeme est simulé demant au niveau fonctionnel, un
passage automatique au niveau RTL ne peut pagétamti spécialement au niveau de la
synthése de communication [CyrO4] ou le conceptesir souvent appelé a faire des
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ajustements manuels souvent délicats et fastidieest donc important de disposer d’outils
pour automatiser la génération des structures ghentmication sous contraintes d’application
et de prototypage pour la simulation et la synthdstuellement, la technologie du logiciel
dans la conception des SoCs fournit des outilsfa&ants permettant la synthése logique a
partir d’'une spécification RTL. Ces outils resteependant incomplets et ne permettent pas
une génération automatique d’architectures a pditine description de haut niveau. C’est
pourquoi les tendances actuelles menent versligtament de méthodologies pour rehausser

le niveau de la conception en utilisant de nouvdangages et de nouvelles approches.

Objectifs

Notre objectif est de développer une approche aotefe pour lintégration ou
I'encapsulation des IPs accélérateurs matériels dansysteme mixte logiciel/matériel en
ciblant les applications orientées flot de donn€xte approche suppose que le systéme est
déja partitionné en taches logicielles et mat@#elElle suppose également I'existence d'une
architecture cible constituée par une plateformenapoocesseur ou multiprocesseur.
L’'approche d’intégration proposée cible les méthogies de conception des SoCs a base de
plateforme <«platform based desigm ou a base de composantsomponent based design
Elle permet de générer une interface de communpitatour la simulation et/ou la synthése.
Les primitives d’intégration permettent la génémtides schémas de communication pour
I'lP & intégrer.

L'objectif a long terme est d’enrichir la bibliothée du générateur afin de généraliser

son utilisation a d’autres types d’IPs.

Contributions

Afin de faciliter la réutilisation des IPs, nousoag défini dans cette thése une
méthode pour I'automatisation d’intégration de cemposants dans un systeme sur puce.
Cette méthodologie utilise un modéle d’interfacenggéue pour assurer l'intégration
automatique d’un bloc IP. La prise en compte dedbmnancement des données pour la
synchronisation des entités communicantes estesqar une formalisation sous formes de
graphes. Le modéle de Tlarchitecture de linterfagi@si que la formalisation de
'ordonnancement du transfert des données sonnidéfiour mettre en place un ouitil

informatique permettant de généraliser I'applicatie I'approche d’intégration pour des
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contextes différents. Les fonctionnalités assupgasle modeéle d’interface sont proposées
pour un contexte de simulation et de synthése.

Par ailleurs, les outils de synthese architecturalde synthese de haut niveau (SHN)
accomplissent un réle primordial pour réduire impe de conception et les erreurs dues aux
manipulations manuelles des conceptions. En rewnith ne permettent pas de définir
clairement les communications externes du cirtas. performances d’un circuit a l'intérieur
d’un systeme intégré sont difficilement évalualdagement que par la simulation du systeme.
Pour garantir plus d’efficacité de leur utilisatidans un flot de conception de SoC a base
d’IPs réutilisables, nous devons faire face awblg@mes d’intégration de leurs IPs dans des
environnements de simulation et de synthese.

Pour promouvoir l'utilisation de ces outils et porgmédier essentiellement aux
problémes liés a I'intégration automatique d’IPaglan contexte contraint par I'architecture
cible, un outil «générateur d'interface de commation » implémentant I'approche
d’intégration proposée a été mis en place. |l pedaas sa premiere version l'interfacage des
IPs accélérateurs générées par un outil SHN dévélap sein du laboratoire LESTER appelé
GAUT.

Le role de l'interface est l'intégration/lI'encapatibn de I'lP (adaptation a l'interface
de linterconnecte du systéeme) et I'acheminemerg dennées ordonnées vers les ports
d’entrée ou de sortie correspondants. Pour nofpeoape d’encapsulation, nous avons traité
le probléme de la consommation de données aléatdirec6té de I'lP avec des données de
tailles différentes pour une architecture d’IP $ywoaisée par les données.

Les points clés dans notre approche d’intégratifhsbnt :

1. Permettre la reutilisation systématique de compssamatériels existants. La

méthode doit favoriser cette réutilisation pour éegironnements spécifiques.

2. Considérer une structure d’architecture d’interfgéaérique pour des applications
opérant sur des flux de données importants (fludaleées ordinairement dans le
traitement de signal ou les images dans le multimed

3. La méthodologie d’encapsulation ou d’intégrationrdcomposant matériel cible
un contexte de simulation et de synthese. Danadeecla plateforme SoCLIB a
été adoptée pour la simulation et la cible FPGAeratpour la synthese.

Organisation du document

Ce rapport est organisé en cing chapitres struetogme le montre la figure 2.
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Figure 2. Structure du mémoire

Le chapitre 2 présente le flot de conception dgstéemes sur puce mono/
multiprocesseurs basé sur la réutilisation des osanus virtuels. Cette partie présente
I'intégration d’IP dans un SoC, nous y présentastamment quelques approches et quelques
outils automatisant la génération d’interface dememnication dont 'approche proposée dans
le cadre de cette thése.

Le chapitre 3 présente I'approche d’intégrationpps®e pour la mise en place de
I'outil « générateur d’interfaces ». Nous consiaéradans cette partie les détails et les
hypothéses de I'application de cette approche ajos la formalisation des contraintes
d’intégration. Cette spécification favorise l'autatisation de I'approche qui repose sur une
architecture générique dinterface de communicatiQette architecture générique est
constituée a l'aide de modules décrits sous forenmdchines d’états finis.

Le chapitre 4 présente I'expérimentation de I'appea travers la conception et la
réalisation d’un outil de CAO automatisant les étage I'approche d’intégration.

Le chapitre 5 met en évidence les fonctionnalied'autil. Ces fonctionnalités sont
illustrées pour la génération d’interfaces de comigation pour des IPs accélérateurs dans un
contexte de simulation, dans une premiéere particaehapitre, et de synthese, dans la
seconde partie, permettant ainsi de valider I'apipeo

Le chapitre 6 présente les conclusions et les petises des travaux menés dans le
cadre de cette these. Les aspects qui sont dedéauisalité et qui n'ont pas été évoqués ou

traités dans cette thése seront évoqués dans pireha
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CHAPITRE 2. METHODOLOGIES D' INTEGRATION DES
COMPOSANTS VIRTUELS DANS UN FLOT DE
CONCEPTION DE SYSTEME SUR PUCE

1. Introduction

Actuellement, un véritable décalage persiste etdrecapacité d'intégration des
transistors et la capacité de conception des sestésur puces. En effet, la progression du
nombre de transistors par puce suit toujours ladéoMoore. Le rythme observé correspond a
une augmentation de 58% par an [Bou05] (Cf. figgkeEn 1998, un microprocesseur était
composé d’environ 10 millions de transistors. E®&0un circuit de référence équivalent
pourra étre composé de pres de milliard de tramsisParallélement 'augmentation de la
productivité des équipes de conception est pldtoddre de 21%.
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Figure 3. Prévisions des besoins de productivité
Afin de pouvoir gérer la complexité croissante des

SoCs, une voie prometteuse consiste a réutiliseblbes matériels ou logiciels précongus et
vérifiés pour certaines fonctions des systemes.chaception des systemes intégrés fait
aujourd’hui largement appel a la réutilisation denposants préexistants. C’est ainsi que nous
parvenons a produire des dispositifs de grande laxitg en maitrisant I'effort de conception

et de validation. Les éléments réutilisables saaténiels (CPU, mémoire,...) ou logiciels (OS,

2 Source : Semiconductor Industry Association
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applicatif,...). Cependant, puisque ces composamishstiérogenes, leur intégration nécessite
des sous-systémes adaptateurs. Dans ce cadreytilzsatton ou l'intégration des blocs
existants constitue une phase clé de la concemes SoCs permettant de faciliter et
d’accélérer le cycle de conception [Kea03].

Par ailleurs, pour intégrer des composants darsystéme global, une adaptation de
leur interface au bus/réseau de communicatiomdspensable. Toutefois, la communication
entre composants est devenue un véritable goudttadiglement. De plus, les performances,
la consommation et les colts de développement sisystemes sont fortement dépendants
des choix de protocoles de communication et deiteplémentation.

Dans ce cadre, le cycle de conception des systbatésogenes embarqués peut étre
décomposé en deux phases : la phase de conceparothposants et la phase d’intégration
de ces composants dans le méme systeme. Notréd t@veerne le deuxiéme processus.

Le but de ce chapitre est de présenter les apmoehdes travaux associés a
I'intégration d’IP dans un SoC. Selon une clasatftm des méthodologies de conception SoC,
nous analysons dans la section 2 de ce chapitreotieitons proposées pour la conception des
systémes sur puce. Cette étude focalise sur I'aspgmmunication dans la procédure
d’intégration des composants préexistants et ssirtéehniques dinterfacage d’IPs. La
communication peut étre prise en charge par unetste de communication complexe, allant
du simple bus jusqu’au réseau de communicationadgigis. L'interfacage d’IPs est traité
soit en vue de simulation et/ou de synthése seldapke de la conception concernée et
I'efficacité des outils utilisés. La section 3 arsa la génération automatique d’interface de
communication matérielle/logicielle a travers l@&gentation de quelgues méthodologies. La
section 4 traite la résolution des problemes djraéon a travers la synthese d’interface de
communication. Enfin, la section 5 analyse des gtesnde travaux qui traitent la génération

automatique d’interface pour I'encapsulation efour l'intégration d’IPs dans un SoC.

2. Conception des systémes sur puce

La complexité croissante des applications entraime augmentation considérable de
la durée de développement avec la méthode de dimtefes circuits. Par conséquent de
nouvelles méthodologies de conception sont appaies les années 90, les chercheurs se
sont concentrés sur la mise en ceuvre d’'une nourethodologie de conception appelée :
« co-design » [Ism94] [Ben95] [Gup95] [Ben97] [AB|9 Cette méthodologie se base sur la
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considération conjointe de la conception du logdfieiet du matérielle et couvre les différents
cycles de développement depuis la spécificationiasla réalisation physique du systéme.

Toutefois, la complexité croissante des applicati@ntraine une augmentation
considérable de la durée de développement avenddsdes de conception conventionnelles
[Her02]. En effet, les systemes sur puce sont de ph plus présents dans la vie courante.
Aussi, une nouvelle gamme de produits embarquémddes) devient de plus en plus
populaire : les téléphones portables, l'agendatréldque, les voitures, les satellites etc.
Souvent, ces systemes enfouis intéegrent des comigokegyiciels et matériels sur un méme
support et leur mise en place nécessitent de nlesveléthodologies de conception. Ces
méthodologies se basent sur le concept de laisatiin d’IPs.

Dans cette section, nous rappelons les étapesfldutypique de la conception des
systémes mixtes pour introduire la conception deSsSavec la prise en considération des
composants précongus (IPs). Nous nous intéressmuifiguement a I'aspect « intégration
d’IP ».

2.1. Conception conjointe logicielle matérielle

Le «co-design » constitue le point de rencontréreetles communautés de la
conception de circuits intégrés, du génie logi@tlde la spécification des systémes. Le
développement des systemes enfouis composés darte pogicielle et d'une partie
matérielle n’est pas un nouveau probleme. La cdiwet la réalisation de tels systemes
nécessitent une compétence technique dans troisidesn: I'électronique analogique,
I’électronique numeérique et l'informatique. La naspécifique du traitement a effectuer et le
couplage du systéme avec son environnement ném@Essdussi des compétences
complémentaires : en traitement de I'informatioigrfal, image, parole etc.), en électronique
de puissance, en réseaux et télécommunications, \&ic I'importante croissance de
complexité que connaissent les SoCs, particulienénsans des domaines tels que le
traitement de signal intensif, il devient de pluspmus nécessaire d'unifier (standardiser) le

flot de conception de ce type de systémes diditotonception logicielle/matérielle.

2.2. Flot typique de la conception conjointe

La conception conjointe matérielle/logicielle («design ») est une approche qui
intéegre, dans un méme environnement, la conceptiamatériel et du logiciel. La conception

commence a partir d'une spécification au niveauésys (le niveau d’abstraction le plus
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élevé) et conduit & un premier prototype d'architex; qui respecte les contraintes de la
conception. Ce type de conception admet differeméshodologies. Les méthodologies
regroupent les aspects techniques et les aspectgadisation de la conception. Elles
coordonnent I'utilisation conjointe de plusieurstitude conception et la coopération de
plusieurs aspects liés a tous les niveaux de dgpeloent d'un systéme électronique. Les
equipes du logiciel et celles du matériel peuveravdiller en parallele, dans un

environnement de coopération et de collaboratiarréqpluit le cycle de développement de la
conception.

La figure 4 illustre les étapes du cycle de corioepd’'un systéme.

Sélectio A 2
Allocation Partitionnement
Ordonnancement

elns
‘boirewiwiosuo?d 'SB"SJOdLUSl Ssalulrelluod

Y

Synthése matérielle/Synthése logicielle

Vérification

Y

Prototypage

Figure 4. Flot de conception « co-design »

Les étapes principales de la conception logicrakeérielle sont :

— la spécification et la modélisation

— le partitionnement (découpage) logiciel/matériel

— la co-synthese (synthése de communication)

— le prototypage

De plus, les taches de vérification et de validatsont appliquées au cours de la
conception pour vérifier le respect des contraintegosées (temporelles, consommation,
surface...) (Cf. figure 4).

Ces étapes définissent différents niveaux d’abstracA chaque niveau est associée
une description abstraite servant de spécificgtiomr la conception au niveau inférieur qui
conduit & une description plus détaillée et pluscoste. L’abstraction est un concept basé sur
le fait d’ignorer ou de supprimer, dans un modédgtains détails du systeme original afin de

simplifier la taille de ce modéle, d’en déduire deaclusions d’ordre général [Abi98].

10
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2.2.1. Spécification systéme

Le processus de « co-design » commence par la rsatiiéh du systeme a concevoir.
Il s’agit de pouvoir décrire I'application commeagt un ensemble de fonctions et de
contraintes, indépendamment de toute considératat@rielle ou logicielle. La modélisation
s’effectue par la décomposition de l'application modules. La spécification de chaque
module peut utiliser un langage différent.
Deux niveaux de spécification peuvent cependaatdstingués :
— La spécification fonctionnelle : elle décrit le cpomtement attendu de
I'application.
— Les spécifications non fonctionnelles : ce sont destraintes externes que le
systéme devra supporter.
Ces spécifications sont généralement écrites ayatps de haut niveau ou parfois en

langage de programmation logiciel pour permettre gpecification systéme de I'application.
2.2.2. Partitionnement logiciel / matériel

Suite a I'étape de modélisation et spécificatiorcfionnelle du systeme, le concepteur
doit déterminer les parties qui seront réaliséesnateriel (de types ASIC, FPGA...) et les
parties qui seront réalisées en logiciel (ProcesseDSPs, etc). Il s'agit de trouver le
"meilleur" compromis entre logiciel et matériel pathaque fonction du systéme.

A l'issue de cette étape, un sous-ensemble matérietous-ensemble logiciel et leur

communication sont spécifiés a un niveau de déaffisant permettant leurs syntheses

respectives.
2.2.3. Synthése matérielle et synthése logicielyithese mixte ou co-synthése)

Une fois l'affectation des taches effectuée etdéai il faut synthétiser les taches
matérielles. Cette synthése se fait généralementirpautil dédié a la conception matérielle.
Les taches logicielles doivent étre compilées peyrocesseur cible et exécutées par lui. Si
plusieurs taches sont affectées a un méme processélces taches peuvent étre fusionnées,
soit elles peuvent étre ordonnées statiguemeritjldaut utiliser un systéme d’exploitation
multitiche. Ensuite, il faut intégrer ces codessddes ROMs « Read-Only Memory » afin
gue le processeur physique du systeme embarquéepyisaccéder. Une fois les parties
matérielles et logicielles générées, il faut garagque les transferts de données et la
synchronisation entre elles s'effectuent correctem€e probléme est appelé synthese
d'interface logiciel/matériel ou synchronisationsyistéme. La synthese des communications

11
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est une étape trés importante dans linterfacageiddmatériel. 1l s'agit de définir pour
chaque transfert les protocoles de communicatide miode de communication (point a point,

via mémoire partagée, etc.).
2.2.4. Prototypage

Le prototypage est divisé en deux étapes : le pqeeovirtuel, qui emploie les
techniques de co-simulation et de co-synthese @rdeotypage physique, qui produit un
premier exemplaire du systeme. La création d’'uradisation pour chague composant est
réalisée par I'intermédiaire des techniques de eptien logicielle/matérielle classiques. Le
prototypage consiste a effectuer la synthese dériebet la génération du code logiciel a
partir des descriptions genérées par les étapeggeptes. La co-simulation intervient apres
la phase de partitionnement. L'objectif consist@dfier que les spécifications matérielles et
logicielles sont valides. Cela implique les tesés ahaque module et de son interface de
communication, I'étude de I'évolution du systemeessence des contraintes (performances,
codts d'implantation etc.).

L’évolution rapide de la complexité des applicaoembarquées, destinées a étre
implantées sur des cibles de type SoC, fait fade #ortes limitations des méthodes et des
outils de conception classiques. Avec I'émergenees les SoCs, un flot de « co-design »

dédié pour la conception d’'un SoC repose sur lalisation de composants virtuels (IPs).

2.3. Flot de conception des SoCs

L’architecture des SoCs est composée de difféereotsposants logiciels/matériels
hétérogénes. Une voie prometteuse consiste emtzpbde réutilisation des blocs matériels
ou logiciels préconcus et vérifiés pour certaireefions des systemes. L'utilisation de blocs
précongus pour les SoCs est devenue une technigyadud en plus indispensable pour
concevoir un systeme complexe dont le temps de sois& marché est tres court (de I'ordre
de quelgues mois).

La figure 5 décrit une approche typique de la cptioa systéme a l'aide de
composants virtuels. Il s’agit d’'un flot complet denception conjointe logiciel/matériel (co-
design) qui vise la mise en ceuvre de systemes So€sune architecture hétérogene
(matérielle/logicielle). Cette méthodologie esteléppée en plusieurs étapes qui sont :

— La définition des besoins et analyse des contrginte

— La spécification du systeme et sa modélisation,

— Le partitionnement Logiciel/Matériel (L/M),

12
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— La synthése des composants matériels et logiciels,
— La synthese de l'interface L/M,
— La simulation (ou la co-simulation) jusqu’a la g&atéon du modele d’architecture

(réalisation du systeme).

S—
Composants LIM

Spécification du systeme
Application + besoins
(services)

Langages ou modéle
de spécificatio

Ouitils d’exploration
d’architectures et dé
simulation

l A Exploration de I'architecture:

«  Partitionnement L/M S——
. Analyse de performancel Composants L/M

Modele abstrait d’architecture
logiciel/ matérie (L/M)

Outils de synthese
d’architectures L/IM et <
de cosimulation

Raffinement de I'architecture:
e Conception des interfacésv
e Cosimulation

¢« Estimation de performance
S——

Figure 5. Flot typigue de la conception des SoCs avkcprise en compte des IPs

Modéle d’architecture au
niveau transfert de registres

Ce flot de conception est basé sur la réutilisaties IPs. Il permet donc d'exploiter
I'adéquation entre I'application et le systeme graa prototypage rapide de ces composants
virtuels au niveau d'abstraction le plus élevé. €amposants sont mis en ceuvre dans le
systéme a I'aide d’une stratégie de réutilisatiangdle but de manier la complexité croissante
des SoCs. Les concepteurs des SoCs sont obligésdtotégrer les composants logiciels et
les composants matériels tout en respectant ldsatmtes de performance décrites au niveau
de l'architecture abstraite (modele abstrait d'@edtures dans la figure 5). Cependant,
I'incorporation d'IP dans un SoC ou dans une achite a base de plateforme sans
considérer les contraintes de synchronisation auixées sorties peut faire échouer la
conception du systeme. Ce qui revient a dire qugéaération de toutes les interfaces
logicielles et matérielles doit se faire au nivede précisionle plus bas: niveau
microarchitectures. Cela n’exclut pas la possiitie la spécification des composants et des
interconnections a différents niveaux d’abstraction

Afin de favoriser la spécification, le concept deséparation du comportement de la
communication connu sous le terme « Interface BaBedign » [Raw97] est utilisé
permettant ainsi I'abstraction de I'interconnexiba.séparation entre le calcul et le traitement

et la communication permet de favoriser l'intégratide processeurs et de protocoles de
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communication hétérogenes en utilisant des interections abstraites. Le comportement et
la communication doivent étre séparés dans la fspeamn systeme de facon que le systeme
de communication puisse étre décrit a un niveaut luraffiné indépendamment du
comportement du systéme.

La procédure de raffinement a partir d’'un modélstrait est adoptée dans ce flot pour
concevoir des systemes complexes. Une classificatidentée vers les concepts de la
communication est présentée dans [Nic02]. Au niviaiéme, quatre niveaux d’abstraction
de la communication peuvent étre distingués. Ppécifier des systémes mixtes, des détails
sont plus ou moins utilisés selon le niveau d’atusion.

— Au niveau servicele systeme est modélisé sous la forme d'un eneemid
modules qui fournissent/requierent des servicespiimitive de communication
typique est une requéte de service, comme par dgemnmprimer (fichier) ». La
notion de temps est complétement abstraite.

— Au niveau transactignles différents modules du systéme communiquesmtuvi
réseau de canaux de communication dits actifs. €ewmux permettent la
synchronisation et peuvent inclure des comportesneminplexes. Mais les détails
de la communication sont englobés par des prinsittlee communication de haut
niveau (par exemple « send/receive ») et aucunethgpe sur la réalisation des
protocoles de communication n'est faite. Le langa8@d. (System Description
Language) [Sar87] peut étre placé a ce niveau.

— Au niveau macro-architecture ou niveau mesdaggmmunication se fait par des
fils abstraits, avec des protocoles de communicgbiour les entrées/sorties. La
modélisation a ce niveau implique par conséquenthigx d’'un protocole de
communication et la topologie des interconnexioBgstemC [Sys02] est un
langage caractérisant le mieux un systeme a cauid@bstraction.

— Au niveau RTL ou micro-architectyrée systeme est décrit sous forme d'un
ensemble de registres, de circuits combinatoiresirtuits de contrdle, de fils et
de bus physiques. La granularité temporelle esydée d’horloge et les primitives
de communication sont du type « set/reset » supdes.

Ces niveaux favorisent I'aspect raffinement pournmiégse en ceuvre du style de

communication dans un SoC. L’intégration d’'un Ifglain SoC peut étre traitée selon ces

différents niveaux d’abstraction.
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Dans ce contexte, la section suivante présenteteesniques utilisées pour les
différentes solutions adoptées ainsi que les mélbgees suivies pour l'intégration d’IP dans
un SoC.

2.4. Intégration d’IP dans un SoC

Avec l'apparition des structures de communicatio@ 8e plus en plus complexes tels
gue les réseaux sur puce (NoC) (Cf. figure 6),dédfcultés dues aux limitations des bus
(bande passante, nombre de composants esclavesrtg@spmpeuvent étre surmontées. En
revanche, linterfacage de [I'IP reste une issue omgnte [Deu02]. Ces interfaces
correspondent a des adaptateurs matériels flexilgesnectant I'lP au réseau de
communication a I'aide de pilotes d'accés adapéatugiciel de I'application aux processeurs
cibles [She04]. La communication entre IPs est degeun véritable goulot d’étranglement
VU que ces composants :

— sont fournis par des sources différentes

— ont des domaines d’application spécifiques.
NAOO0O0NOO0000OO000O0O0000OO000000

L]
O Swi Génération
O automatique
Communication Sw &~ — _
E = p —l
O \ |
A
O 3 . \ |
Réseau de communication (NoC) \

A A T

O \ |
\

F— -
0 Contréleur de Communication I Contréleur de Communication 5
O IP1 IPn M
O |

o000 000 oo oo™
Figure 6. Communication entre IPs dans un SoC

Deux techniques sont utilisées pour l'adaptation Gtaterface d'IP: la
personnalisation et I'encapsulation.

La personnalisation «customisation » d’'un IP estpuocessus de conception qui
change les caractéristiques de I'lP sans modifiefoactionnalité originale. Elle est utilisée
pour pouvoir intégrer un IP dans un SoC. Le «wirgpp est un cas particulier de la
« customisation ». C’est une fonctionnalité sup@sgtaire qui est ajoutée a la fonctionnalité
principale pour I'adaptation de I'IlP aux context#s son utilisation. Le « wrapper » est la
« glue » logique nécessaire pour adapter le priad® communication de I'lP au protocole

de communication de linterconnecte du systémeest basé sur l'utilisation d'un bloc
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matériel qui prend place entre I'lP et linterconte indépendamment du protocole de
communication. L’encapsulation ou le «packetagelP @st le processus de cacher les
fonctionnalités du composant derriere une interfalee haut niveau sans changer la
fonctionnalité ni la structure du composant. Noaayons par ailleurs ajouter un « wrapper »
a un IP pour qu'’il soit prét a étre encapsulé.
Malheureusement, en pratique, 'assemblage d’u@syessur puce en utilisant des IPs
[Rei00] n'est pas évident pour plusieurs raisorrspéesquelles nous pouvons citer :
— La conception de tels systémes exige des résuigitsne peuvent s’obtenir
qu’aprées la conception entiere du systéeme.
— Certes, un IP peut fonctionner correctement toud, sgon intégration dans le
systéme peut engendrer une dégradation des perfoesmat méme des erreurs.
— L’intégration des blocs IPs fait souvent appel & dderventions manuelles du
concepteur qui peuvent conduire a des erreurs adascomplexité des modules
IPs telles que par exemple la «transformée dengsstiscréte » (appliquée
surtout pour des applications de traitement d’insggeu le contréleur de mémoire,

etc., et le nombre important de connexions a maipliautre part.

Pour ces raisons, ces composants doivent étredameectés a l'aide d’'une stratégie
permettant leur réutilisation. Dans la section aote, nous présentons des méthodologies de

réutilisation d’'IP composant virtuel.

3. Méthodologies de réutilisation de composants

Au cours des derniéres années, plusieurs tentatteestandardisation visant la
réutilisation des composants matériels ou logicselst apparues. Ci apres, nous présentons

une classification des méthodologies et des stidesonception utilisant des IPs hétérogénes.

3.1. Approche de conception basée sur les IPs (IRded design)

Cette approche propose I'assemblage de composatéiabs/logiciels réeutilisables.
L'étape d’intégration utilise des composants paoplémenter une architecture abstraite. Le
résultat est une microarchitecture ou les compesanatériels sont décrits au niveau RTL.
Quant aux composants logiciels, ils sont décritautiisant un langage de programmation
approprié qui peut étre compilé directement pdedeprocesseur(s) de l'architecture cible

choisie.
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Les composants sont directement connectés entre ceuxa la structure de

communication. Mais d’'une maniére générale, le epteur est amené a :

— Adapter les différents composants : dérivation@amosant ou « IP derivation »

— Synthétiser des adaptateurs pour les composantgapnmables ; bien que la
dérivation soit faite facilement par une re-progmaion de la fonctionnalité
désirée, le concepteur a besoin de développer slyathétiser des adaptateurs
« wrapper » logiciels (des pilotes de périphérigedeu de bus) pour adapter
I'application logicielle a l'infrastructure de commication et matériels pour

l'interconnexion de ces composants.

3.2. Approche de conception basée sur une platefoemn(plateform based
design)

Cette approche utilise un modele architectural,venu spécifique a un domaine
d’application [Keu00]. Ce modéle inclut une platefie matérielle, qui se compose :

— d’une structure de communication donnée

— de plusieurs composants matériels (processeursopirgambloc matériel)

— d'une plateforme logicielle se trouvant sous formiene API® (Application

Programming Interface) de haut niveau

Dans ces conditions, le systeme est concu par eéngation de ce modeéle : les
composants sont spécifiés pour satisfaire des mepairticuliers de I'application. Par ailleurs,
puisque la communication est figée, les composanésoncus sont spécifiques et leur

intégration est ciblée.

3.3. Approche de conception basée sur un bus (buaded approach)

Cette approche est basée sur une architectursantilun bus. Il existe une multitude
de bus adoptés par les constructeurs, comme panpéxele bus AMBA qui équipe les
processeurs ARM [ARM99]Différents bus peuvent étre utilisés dans un méystese.
L'adaptation entre les différents bus se fait adBade ponts « bridges » de bus (exemple
I’APB et 'AHB du bus AMBA). Comme la spécificatiotu bus est connue, des composants
ayant des interfaces directement compatibles soreldppés par des compagnies comme par

exemple :

% Ensemble de commandes externes publiées par unréglitpermettant de recourir aux fonctions d'urcieg
depuis un autre logiciel (antécédent de I'oriertiget).
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— Peripheral Interconnect Bus ( PiBus) d’OMI [PIBus]

— AMBA d’ARM Inc [ARM99]

— CoreConnect d'IBM [IBM02] ;

— OpenCore de Sonics (SONO02).

La spécification d’adaptateurs est nécessairesscéenposants ne peuvent s’adapter
gu’'avec la spécification du bus [Ber00]. Cependinsucces d'une norme de protocole exige
gue tous les IPs puissent adhérer a ce bus. Bereajte approche tient compte efficacement
du choix d'une structure de bus pour un ensembjeabessus, elle ne permet pas d’assurer la
portabilité des IPs. En raison de la multitude getocoles de bus propriétaires, le
consortium VSIA, qui a dans un premier temps préps définir un bus standard, a trouvé

gue cette solution était trop complexe et a dégidélle ne serait pas retenue [VSIA].

3.4. Approche de conception basée sur des cceursRi’(core/component
based approach)

L'idée de cette approche est de rehausser le nid&gastraction au moment de la
conception des interconnections entre les compes&nicette approche ne favorise pas une
aide a l'automatisation de I'exploration architeata, elle permet néanmoins une réduction
considérable du temps de conception pour le raffere des communications
logicielle/matérielle pour l'intégration de compasaet pour la réutilisation d’IP. Le point clé
d’un flot utilisant cette approche de conceptionl'esilisation d’'une architecture abstraite ou
la communication est séparée du traitement du mati&riel (core) et des taches (tasks) du
c6té logiciel. Cette architecture abstraite esliség par le programmeur du coété logiciel
comme un API. Ce qui assure la séparation entmohamunication et le traitement pour
I'approche « core based design » [Raw97].

Les composants respectent une norme d'interfacépamtlante du bus appelée
protocole de communication. Bien qu’une norme mussgoporter des fonctionnalités variées,
chaque composant peut avoir une interface qui nBerd que les fonctions qui lui sont utiles.
Interconnecter ces composants a travers un busnte&i adapter leurs interfaces au bus de
communication. Divers efforts ont été déployés afinfaciliter cette interconnexion. Nous
citons par exemple les propositions de protocotedigurables et non spécifiques a un bus
tels que VCI, OCP et « IP Interface (IPI)» [MOTarRiilleurs, I'approche orientée objet a été
utilisée pour la modélisation haut niveau et I'ad#ipn des composants réutilisables (Bar99).
VSIA a décidé d’approuver la tendance de transfersa norme d'interface de bus depuis sa
propre interface VCI de VSIA & « OCP-IP » (OpenéCBrotocol International Partnerchip)
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d’OCP. De cette fagon, ce consortium tend a rédaeimombre de standards dans l'industrie
[VSIA]. VSIA exige l'incorporation des caractéiicpies du protocole VCI non figurant dans
OCP-IP dans les futures révisions de celui-ci [V|Sertes, I'adoption au début de I'an 2000
du standard VCI par les grandes « firmes » du sectesout en partie le probleme de la
communication. Cependant, VCI possede des limitatidl ne permet pas, par exemple, de
dire a partir de quel moment le contenu d'une adrgseut étre lu, ou réécrite, ni par qui
[Pet03].

Les approches développées dans les sections 3.8 pérmettent d’'interconnecter des
composants en respectant un standard sans avaiurse@ développer des adaptateurs
complexes. Le probleme est que plusieurs standaroigenant de plusieurs organismes
coexistent. Ceci empéche un vrai échange de Hielipte de composants développés pour des
standards différents. Cependant, ces deux appr@eha®nt étre adaptées pour connecter les

composants au réseau de communication.

3.5. Approche de conception basée sur des réseawxammunication

v

Pour des raisons de flexibilité, les systemes b§&dres peuvent étre congus autour
d’'un réseau de communication embarqué (NoC) [MicA#h de faciliter I'intégration de la
communication, certaines approches favorisentlisation d’'un NoC prét. Ces approches
exigent que les IPs soient compatibles avec lfater du NoC [She04]. Sonics propose
« SOCworks » [SOC], un site « Web » interactif plauconstruction et I'évaluation d’'un SoC
basé sur son micro réseau (LNetwork) sur lequelgrglétre connectés des composants de
plusieurs producteurs.

En utilisant un protocole standard dédié pour lesnmosants comme VCI, le
concepteur peut choisir le protocole OCB (On ChipsBet ensuite, concevoir des
« wrappers » pour les composants et présenter @gisodes de communication pour un
réseau de commutation dans le cas des SoC mukgsears.

Nous avons présenté les approches de conceptis@edbasur l'intégration de
composants matériels. Nous détaillons dans la degeapproches pour l'intégration des

composants logiciels.

3.6. Intégration des composants logiciels

Les composants programmables sont trés importarstes dune plateforme

architecturale réutilisable, puisqu’ils permettedé tailler cette plateforme pour des
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applications différentes. Manuellement, ce progesgprésente un travail tres fastidieux et
une source d’erreurs. Pour faire face a ce prohlame technique automatique pour la
synthese du logiciel s’avére une solution concréete.

Actuellement, des efforts similaires aux efforts déandardisation visant la
réutilisation des composants matériels sont nécesspour la réutilisation des composants
logiciels. Par exemple, ce besoin guide certaieebarches intéressantes dans le domaine de
la conception basée sur les langages pour fairéd®ations significatives pour améliorer les
méthodologies de conception associées a ces lamgageeffet, il existe un grand débat et
méme des confusions concernant la variété des namviangages de conception apparus
récemment : SystemC, SystemVerilog, Verilog-200%/e¥a, PSL/Sugar, UML etc.

SystemC dans sa version 3.0 [SYS] inclut la mod#ts du logiciel ainsi que sa
simulation. Toutefois, il n’est pas un environnetga développement logiciel.

Puisque SystemC n’est pas un langage optimal @odescription du matériel ainsi
gue pour le niveau logique, de nouveaux langages apparus tel que Verilog-2005 et
SystemVerilog mais ils ne sont pas non plus degages pour la modélisation au niveau
systéme avec une haute performance [SYSV].

Quand UML est apparu, il était encore trop tot disager qu'il supporte la
modélisation des systemes embarqués temps réadff@n UML « classique » ne peut pas
représenter une vue architecturale avec les atritals que la ‘hiérarchie, la structure, la
connectivité ou la taille des bus. Les développelwstils de CAO considerent qu'UML a
besoin encore d’extensions pour qu'il puisse suppda modélisation des systémes matériels.
Un modele causal est ajouté a ce langage offrargi && conversion automatique des
exigences en termes de vecteurs de test.

UML 2.0, la plus récente évolution du langage dedétisation UML pour la
modélisation logicielle, promet de grandes capadii#ns la modélisation et la génération de
code spécialement pour les systemes embarqués témlp£eci pourra minimiser le temps
du processus de conception d’un tiers [Yve05]. Dansens, des travaux sont en cours pour

définir une approche avec UML pour le « co-desigles systemes [Yve05].

Cette étude montre qu’il n'existe pas encore urgdge unifié permettant une
description logicielle abstraite et en méme tengrfopmant dans les descriptions du matériel.
Un flot entre langages peut permettre une prodit€tmeilleure et minimise le risque de

conception avec un langage unique pour satisfainges$ les exigences d'une conception
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basée sur la réutilisation d'IPs de provenanceersés. En effet, dans cette guerre de

langages, certains langages coexistent dans uffictedd conception.

3.7. Bilan : méthodologies de réutilisation de congsants

Actuellement la technologie du logiciel fournit destils satisfaisant permettant la
synthese logique a partir d’'une spécification RTMais les tendances menent vers
I'établissement des méthodologies pour rehaussevdau de la conception ou en utilisant de
nouveaux langages tels que SystemC et des nouveiibodologies basées sur la
spécification UML. Beaucoup de conceptions de So@ptent sur les protocoles de bus, par
exemple, le bus AMBA ou « core-connect ». Cettelamce est poussée par la méthodologie
de conception basée sur des plateformes qui imemsploi de bus particuliers sur la puce.

Les efforts de standardisation ne répondent tosjpas aux exigences de I'application
en terme de protocoles de communication. En pkss,interfaces de communication sont
parfois trop générales et utilisent des protoctilgs complexes dépassant les besoins réels de
I'application.

Bien que la réutilisation de composants soit amé&tigar ces approches, l'intégrateur
systeme doit fournir encore plus d’effort de conimaptrés important, et la performance des

composants est plus difficile a prévoir.

3.7. Synthese de communication

Divers travaux traitent I'intégration des composaat travers une synthése de la
communication logiciel/matériel. Cette syntheseaxsforme » les communications a travers
des protocoles abstraits en communications surauci@tecture cible. Elle permet donc de
raffiner les interfaces de sous-systemes commutscan

La section suivante traite de la résolution dedlgroes d’intégration a travers la

synthese d’interface de communication.

4. Synthése d’interface de communication : SIC

Des travaux pour la synthése automatique des adapade communication
connectant les composants matériels ayant de$acésrincompatibles ont été déja proposes.
De nombreux travaux ont été menés dans le cadre ahidesign » dans les années 90 :
Chinook [Cho95], Vulcan [Gup96], Polis [Chi96], Came [Rom96], Cosyma [Ern93] etc.

Certains avaient pour cible des architectures nmocesseurs (Polis, Vulcan, Cosyma) et
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d’autres les architectures distribuées avec pluosiguocesseurs (Spec Syn, Coware etc.)
[HomO1]. Tous ont cherché a automatiser le « cogdes du systeme complet a partir d’'une
spécification de haut niveau. Toutefois pour cedilules interfaces permettant la
communication entre la partie logicielle et la parhatérielle et les interfaces implémentant
des protocoles de communication de bas niveawgteisdes interruptions, des écritures dans
des registres etc. sont concues manuellement awspighétisées [Cho95].

Actuellement, l'intégration automatique des compbsaest un aspect clé dans la
synthese des systéemes. La synthése automatiqueptbdelirs de communication est
proposée par divers outils. Pour toutes ces mé#hddesystéeme subit une décomposition
fonctionnelle, puis un ordonnancement et une setldes interfaces. Cette décomposition est
utilisée pour le traitement du systeme entier. kstesne découpé en fonctionnalités est

partitionné en logiciel et en matériel.

4.1. SIC dans les outils de « co-design »

Nous nous intéressons ici aux outils qui chercleintégrer des composants dans un
flot de « co-design ». Trois types d'outils exigtedes outils qui essayent de couvrir un flot
de conception complet, des outils dédiés a I'exgion d’architectures et d’autres pour la
conception d’architectures.

1. L'outil PIG [Pas98] : linterface des composantsslacet outil est décrite a
I'aide d’expressions régulieres pour générer uneé-MiBachine a états finis)
correspondante.

2. L'outil POLARIS [Smi98]: il génére un adaptateuade sur une MEF
permettant de convertir le protocole du composantie protocole standard
interne avec des tampons d’envoi et des tamponsocagtion.

3. L'outil IPchinook [Cho99]: c’est un outil de syribe pour les systemes
embarqués distribués. 1l est orienté vers la iéatibn de composants.
L'entrée de IPchinook est une description compoetgiade de l'architecture
cible et une fonction d'allocation qui définit leglations entre les deux
descriptions. La description comportementale contiplusieurs modules
concurrents et communicants. La description deHigecture cible décrit les
processeurs, les entrées/sorties, les bus de coigatian et la topologie du
systéme cible. La fonction d’allocation décrit fexdftation des modules aux
processeurs du systeme. Les protocoles de comntionicabstraits sont

synthétisés en des protocoles de bus de bas reed@u une architecture cible.
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Cette description structurée en trois parties perdee changer une partie
indépendamment des deux autres.
Toutefois, ces outils ne s’adressent pas aux coamp®$ogiciels.

4. L'outii TEReCs [Bok00] synthétise la communicatidogicielle. Cette
approche est associée a la synthése automatiqnesgateme d’exploitation
configuré selon I'application a partir d’'un asseagid de composants.

5. L'outil Paradise [PARA] permet la construction d'lRTOS dédié a partir
d’'une bibliothéque de composants de base, et lthéya de communication
basée sur des composants et selon une architéetw@mmunication choisie.

Les solutions les plus récentes traitent uniforménhes interfaces logicielles et les
interfaces matérielles entre les composants.

6. Dans le cadre du projet ESPRIT/OMI-COSY qui résdliene collaboration
entre I'université de Pierre-Marie Curie de Patises laboratoires de Philips,
un processus de raffinement de la communicatioitikdgmatériel est proposé
en partant d'un modele de réseau de processus de Ktendu pour la
spécification des systémes. Le standard d’intesfa¢€l est utilisé pour la
conception d’adaptateurs matériels génériques. D@@sSY [Bru00], le
systeme fonctionne par une séparation expliciteedats blocs fonctionnels et
I'architecture. Ensuite, les blocs fonctionnels tsaffectés aux composants
architecturaux. Les interactions entre les blocgtionnels sont représentées
par des transactions de haut niveau et sont paurite affectés a des schémas
de communication entre les parties logiciellesest parties matérielles. Une
bibliotheque fournit un ensemble fixe d’adaptatedescomposants et contient
des implémentations en logiciel et/ou en matérieurpdes schémas de
communication donnés.

7. Prosilog’s IP creator [PRO] : la partie Magillem det outil vise I'intégration
et la réutilisation d’'IPs non compatible VCI. Unvkapper » est généré pour
adapter les structures d’IPs communicants. Cet patimet la génération de
« wrapper » a partir d'une description VHDL/RTL Hiaterface de I'lP. Le
concepteur doit décrire l'interface de I'lP :

= |l doit lire la documentation technique (datasheet)interface de I'lP
= || doit avoir une expérience pour choisir une mdthale description

(langage et méthode).
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8. Fast prototyping : cet outil [Pog99] utilise un tflde conception systeme
innovateur combinant différentes technologiesmtzdélisation en langage C,
I’émulation, I'outil CowareN2C, le VC hard.

Par ailleurs, les outils de synthése architectusalet différents selon le domaine
d’application, la classe d'architectures cibléedest techniques d’optimisation employées.
Parmi ces outils, certains ont traité le problernetelfacage des modules matériels géneéres.
Nous citons :

9. CoWare Napkin-to-Chip (N2C) : [Ver96] est un eovinement de conception
et de simulation des systemes hétérogénes. La coimation entre les
modules est assurée par des canaux de communicatiant les ports des
modules. L'implémentation de cette architecturdralis consiste a :

= transposer les modules sur un modéle de processel@s modéles de

composants matériels déja existants dans la Higlipte.

= synthétiser la communication entre les différems$

= générer les adaptateurs de communication.
La synthése de communication dans cet outil cansigtaffiner les canaux de
communication abstraits et a choisir un scénariocdmmunication pour
chaque canal. La bibliothéque des protocoles denummitation contient
plusieurs scénarios restreints au protocole « geigie main » (handshake).
CoWare propose une approche basée sur la connde®rcomposants de
I'architecture au réseau de communication a trawidgs adaptateurs de
communication. Ces adaptateurs sont générés autpmaient en
sélectionnant dans une bibliotheque les bons élismen partir des
caractéristigues du réseau et du composant a dennedoutefois,
I'architecture cible de ce flot est fixe. Elle estmposée d’'un seul processeur
connecté a plusieurs composants matériels viasgatéde communication.

10.O'Nils [Nil99] présente une méthodologie de conaapt d’architecture

matérielle a base de processeurs communicantsegaprdtocoles différents.
Ces travaux visent la spécification et la génématidadaptateurs de
communication. Mais cette génération n’est pas ahent automatisée.
Cependant un environnement de co-synthese et detypage est propose.
Dans cet environnement, la génération d’adaptateateériels de composants

est adressée par ProGram (Obe99). ProGram préseataouvelle approche
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pour la spécification d’interface matérielle de coumication basée sur la
modélisation du comportement de I'interface par granmaire réguliere.

11. GAUT [GAUT] : c’est un outil de synthése comportamale. || permet aussi
la génération des interfaces matérielles appelégatd)de Communication
(UCOM). Une nappe de connexions « point a pointebamt un unique
processeur a plusieurs accélérateurs matérielmissten ceuvre. La sortie de
GAUT est un réseau de modules matériels synthéisabonnectés au
microprocesseur via des parties logiques ou deptaigars. Ces adaptateurs
interfacent chaque port de périphérique au portnittrocontréleur. lls sont
sélectionnés a partir d’'une bibliotheque matérigtbet en respectant les
parametres de la spécification d’entrée. Bien qeféecapproche puisse étre
étendue a I'assemblage de plusieurs IPs, ellarstela un seul processeur et
elle suppose que la spécification de I'applicatidentrée ne contienne pas de
taches ou de processus concurrents. Il est basénsuanalyse formelle des
communications de I'application et sur leur affticlaa des protocoles faisant

partie des spécifications.

4.2. Bilan : SIC dans les outils de co-design

Toutes ces approches traitent I'intégration etdjatdtion des protocoles de bas niveau
pour intégrer les composants virtuels. lls proposies modeéles différents et s’appuient sur
des techniques différentes de modélisation. D’apée, un grand nombre d’outils existent.
Cependant, ces outils essayant de couvrir un #otahception complet et des domaines
divers d’applications, utilisent des modéles de $@S simples et trés limités. De plus, ces
outils permettent d’accomplir avec efficacité sewdat des étapes de conception bien
particulieres telles que [I'exploration d’architees, la conception d’architectures, la
simulation, etc.

Par conséquent, outre I'amélioration au niveaulguii est nécessaire de réduire le
gap entre la fréquence du bus de communicatioatfrement lent) d’une part et la fréquence
des éléments de calcul du systéeme. La vitesseuallades données peuvent étre consommées
dans un systéme devient I'atout pour garantir geiperformance. Par conséquent, une bonne
conception doit étre fournie avec un protocole tefiace utilisant la largeur de bus
efficacement. La« génération automatique d'interfaces doit donc étre considérée en

prenant en compte les contraintes de transfertiolesées.
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Dans la section suivante, un ensemble de travaanplies récents qui cherchent a
rehausser le niveau de traitement de la commuaicatist présenté afin de favoriser

I'interfacage automatique des IPs dans un flotaeeption SoC.

5. Génération automatique d’interfaces de communideon :

exemples

La conception a base de composants et la concedpasde sur une plateforme [Wol02]
deviennent obligatoires afin de maitriser les nauxedéfis qui apparaissent dans les SoCs
tels que les NoCs, la communication multiprocessétr

Dans ce contexte, les concepteurs font des cholxngant le flot de conception SoC
ou une étape de ce flot a une classe d'applicatex@snple : les applications de traitement de
données, les applications de communications, lgdicafions de contrble etc.) et/ou en
considérant des hypothéses sur les architectusessciur les protocoles de communications,
etc. Cela permet de proposer des méthodes plea&s qui prennent en compte des besoins
spécifiqgues a ce domaine et par conséquent comi@dsen environnement plus réaliste.

Ci aprés, nous nous limitons a présenter des exsnge travaux ayant la méme
problématique que cette thése : la génération atiqoe d’interface pour I'encapsulation
et/ou pour l'intégration d’IPs dans un SoC. Cesgdt reliés a la synthese de communication
permettent l'intégration de composant virtuel emsidérant trois aspects : (1) la synthese
d'interface, (2) l'optimisation de la communicatioet (3) la conception d'unité de
communication (composée d'une partie contrble eine’ partie de mémorisation) pour
I'intégration de composant virtuel. lls visent capigr les caractéristiques du systéeme de
communication, a savoir, l'aspect protocole et/caspect de synchronisation et
d'ordonnancement, aux exigences du coeur de [H#R. 1€vient a prendre en considération les

conditions d'exécution d'IP et les contraintesateistégration.

5.1. Architecture d’'un module d’interface générique

Une définition d’'une architecture du module d’ifidee générique pour une réalisation
matérielle est présentée, analysée, et validée[tams01].

Le systeme considéré est constitué de modules comese processeurs, des
coprocesseurs, des mémoires, des passerelles 'wbatfdce est précise au bit prés. Ces
composants sont interconnectés par des signauxud@narchitecture a bus partagée. Entre le

bus physique et le module d’interface se trouve<wrapper » permettant 'acces au bus en
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mode esclave ou en mode maitre. Cette interfacérialdet, a interfacage VCI, intégre les
sous-modules suivants comme le montre la figutéoni01] :

— un module concentrateur d’interruption regroupastihterruptions émises par les
modules FIFO (First In First Out) du module d’idtere et des interruptions
externes permettant de n'utiliser qu'une ligne wiruption par module
d’interface.

— Un module de registres de configuration. Ces neggstont écrits par le processeur
via le bus et lus par le coprocesseur sur sonfater

— Un module de registres d’état. Ces registres gsiblds par le processeur. lls ne
sont inscriptibles que par le coprocesseur. Il astiisés pour connaitre I'état du
coprocesseur.

— Un module FIFO maitre d’entrée permettant au casseur de lire des données,

— Un module FIFO maitre de sortie permettant au amsmseur d’'écrire des données,

— Un mécanisme d'autorégulation est utilisé entre xdewodules d’interfaces

communicantes.
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Figure 7. Architecture interne du module d’interface
Il s’agit dans ce travail d’'un module d’interfacéngrique synthétisable et optimisé
selon les besoins d’'un composant coprocesseuedidoe défini par un « protocole vecteur ».
Chaque sous module de linterface n’est instanai€ gi les services utilisés par le
coprocesseur I'exigent. L'interfacage est testé poprotocole de bus Plbus.
Cette approche présente une solution pour l'intémrade coprocesseur a travers la
synthése de communication pour une approche «oRfaBased Design ».
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5.2. Adaptation d’IP fonctionnel dans un SoC baséus un NoC

[Oua04] présente une méthode d’adaptation de ifate d’IP fonctionnel en
considérant un systeme d’intégration ayant un syst@'interconnexion NoC. Cette approche
considere I'existence de « wrappers » adaptantusean protocole VCI (Cf. figure 8). Dans
cette approche, des adaptateurs SystemC conformegra@ocole VCI (basique et
périphérique) sont définis. Ces adaptateurs satiedéour assurer l'intégration automatique
d’IP initiateur ou cible. lls sont valables pous ldifférentes couches d’abstraction définies
dans le modéle OSI adapté au NoC.

Ce travail favorise un flot de conception «top dowavec le langage SystemC.
L'approche utilise la chaine d’outils CoCentric 8gnopsys qui favorise l'utilisation de

SystemC en tant que standard unifié de modélisatiole spécification matérielle et logicielle

multiniveaux.

NoC
\ o — = == — -~
—\ / \ ,7
les : I cs A
IP cible | & = 1| s s |1 =z P n}altre
HW/SW & =, X b n S| HW/ISW
BB A 2 N 3 e B
© 3| |Adaptateut ] | B \—/| D | I |Adaptateur, |E ©
Pl pol
ZJ 1 |
1 I I 4
\ /
e e e o= = -
VCI cible VCI maitre

Figure 8. Couches entre des interfaces hétérogénes

Cette approche a base de bibliothéques d’adapsagxiste dans d’autres approches
de « co-design » telles que I'approche COSY. L'ejagion de cette idée est faite pour gérer
les couches supérieures dans un NoC pour une dbnitégration « Core/Component

Based Design ».

5.3. Encapsulation automatique d’IP dans I'environement ROSES

Dans [Yan04], un environnement de conception de 8siCdéfini ou une attention

particuliere est donnée a la communication entge demposants d'un SoC. L’aspect

communication est traité avant le partitionnement.
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Un adaptateur de processeur aussi appelé MA pModule Adapter » connecté a un
bus interne lui-méme connecté avec des adaptatkirsanaux aussi appelés CA pour
«Channel Adapter». Les adaptateurs de canaux spaétifigues aux services de
communication implémentés. lls implémentent la ipamatérielle du comportement des
services de communication. Le composant « interfaatérielle » généré par cet outil (Cf.
figure 9) est indépendant du processeur utilis@épend par contre fortement du réseau de
communication. Le bus interne est une partie figel'thterface matérielle. Il permet de

connecter n'importe quel « CA » avec n'importe gu®lA ».

PROCESSEUR

Bus adressesBus données Contriile
P [ = = T 1
= - Jd L 1]

| PROCESSOR ADAPTER |M.A

T
Interface < < BUS INTERNE >
C.A.

A

Matérielle

C.A. C.A.

L FE FTE Tt
- - - - -

BLOC MATERIEL

Figure 9. Architecture de l'interface matérielle
Cette architecture favorise une communication p@ipbint et multi points. Toutefois,
I'interface est spécifique a une intégration d’tRes un SoC dont I'architecture (bus interne

et architectures des composants du SoC) est dgfnikoutil « ROSES ».

5.4. Génération d’interface pour un systeme multippcesseur

Le travail présenté dans concerne un outil de gédioér automatique d'interface
matériel/logiciel dans le contexte du SoC multigsseur.
L'IP est considéré comme une entité de trois partie
1. le modele de niveau transactionnel (TL: Transactibevel) décrivant sa
fonctionnalité,
2. un support du mécanisme d'événements qui fournitprotocole portatif pour
I'intégration du cceur de I'lP.
3. une interface de bus agissant en tant que coualdaglation pour connecter le cceur
de I'lP a une architecture a bus spécifique.
Dans le meilleur cas, si une architecture a busifigége change, seule l'interface de
bus devrait changer, alors que les deux autreshesudemeurent inchangées (Cf. figure 10).
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Figure 10. Structure de l'interface d’adaptation del'lP a une architecture SoC

Cette approche est expérimentée sur un systemeshadé bus du processeur NEC
Vv850. Dans [Laj03], la synthése automatique desrfates matériel/logiciel pour ce genre
d'architecture est détaillée. Dans [Reg04], cettthodologie d’intégration est adaptée dans le
contexte des SoCs multiprocesseur.

La solution proposée concerne un environnement aleception basé sur des
plateformes pour établir un systeme flexible aves doeurs d'IPs réutilisables et des unités
centrales de traitement.

Toutes ces approches ciblent explicitement l'irsign des composants virtuels en se
basant sur la synthése des communications. Lescps développées dans les paragraphes
5.1, 5.2 cherchent a rehausser le niveau de traitede 'intégration des composants virtuels
tout en utilisant le standard VCI. Les approch&s 5.4 ciblent I'intégration pour un contexte
multiprocesseur sans étre liés a un protocole de Boutefois I'IP a intégrer posséde une
architecture spécifique.

Par ailleurs, toutes ces solutions sont de typeeusitaires. La sous-section suivante
présente un outil industriel : l'outil PixelStreantde Celoxica et analyse la solution
d’intégration d’'IP qu'il propose.
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5.5. Intégration d'IP dans Celoxica DK Suite

Celoxica [CXA] délivre des solutions industriellpsur la conception des systémes
électroniques. Pour cela, Celoxica fournit des Isuinter-opérables pour favoriser la
conception systeme des systemes électroniquedr@iacSystem Level (ESL) design). Les
outils de Celoxica couvrent la conception basédeslangage C (C based design : L'approche
technologique et méthodologique incorpore le largdgndel-C et le langage SystemC.) et la
synthese comportementale, le développement matauelcarte FPGA ou sur des SoCs
programmables, des librairies d’'IPs et d’APIs aveau systéme pour la modélisation co-
design, la vérification et I'abstraction de platefie. Pour cela Celoxica dispose d’une série
d’outils tels que :

— Agility Compiler: il permet la conception et la synthese comporteatentn
SystemC.

— DK Design Suite [DKDS05]: c’est I'environnement dmnception systeme
complet pour la simulation et la synthese permettmmplémentation de systemes
électroniques. Il favorise un flot de conceptiorCSopartir d’'une description haut
niveau basé sur le langage C (C, C++, ou handel C)

— PixelStreams : c’est l'outil qui permet a DK de pager la conception basée sur
la réutilisation (core/ component based design)liatégration d'IP pour le
développement rapide de systéme de traitementghisnet de vidéo.

L’outil PixelStreams [PixS06] assure :

— L’importation de code de composant IP RTL issuesutites fournisseurs sous
différents  formats  (EDIF/VHDL/Verilog) ;  I'envirorement  permet
limplémentation en ciblant aussi bien les techg@doFPGA (en générant des
fichiers au format EDIF) que les ASICs (en généde fichiers en VHDL RTL).

— La création des IPs en utilisant des bibliothéqggésériques. Les bibliotheques
génériques sont des IPs décrites en Handel-C quiseat pas un format de sortie
particulier. Elles se composent de code compilé pguit étre employé dans un
autre programme. PixelStreams dispose d'une bitgopie de cceurs d'IP
paramétrables (filtres, ..) pour la vidéo completeles systemes a traitement
d'images permettant de recueillir, de manipulategproduire des flux de pixels de
données visuelles.

— L’'emploie de bibliotheques de fonctions de « wragpt (controle de flux,
mémorisation intermédiaire, synchronisation, midtage/démultiplexage,

division en Split etc.), pour simplifier l'interfage de ces IPs (code importés, IP
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BN

générés a partir des bibliotheques génériques delSRieams) pour un
prototypage fonctionnel et cycle pres.
PixelStreams, utilisé conjointement non parallélen@ec Celoxica DK Design Suite
favorise une solution compléte pour le développdntes systéemes de vidéo basé sur la
réutilisation d’IPs.

5.6. Approche proposée

La problématique majeure dans un flot de concemian SoC est la définition et la
mise en place d’'une approche permettant 'impléatent complete d’un systeme avec toutes
ses composantes hétérogenes a partir d'une déscrifg haut niveau.

L’approche proposée cible la génération automatiduee architecture d’interface
pour la simulation et la synthése en tenant comipteomportement des données a l'interface
de I'IP et des contraintes de son intégration aqe de l'architecture cible [AbbO6a].
L'approche est intégrée dans un outil CAO permétsam automatisation. Il s'agit d'ajouter
des blocs de communication pour les entrées et lgsusorties afin de pouvoir simuler le
fonctionnement d’'un composant matériel dans un renmement de communication
intelligent « plug-and-play ». Ce composant petg 8ynthétisé par un outil de synthese de
haut niveau, implémenté manuellement ou délivréupaiournisseur d’IP. Cette interface est
élaborée pour l'intégration d’IPs dans le cas desesnes dont I'activité est dominée par le
transfert et le traitement régulier des donnéedltimédia, traitement de signal, imagerie,
etc.). Ce modeéle est suffisamment générique poungtere une adaptation aux différents
protocoles de communication liés a l'interconnedtas un contexte monoprocesseur ou
multiprocesseur.

Par ailleurs, cette approche repose sur un ensattitypothéses pour son application.
Une modélisation en graphes est considérée pospdaification haut niveau de l'interface
physique a adapter. L’adoption d'une modélisation’aide de graphes d'une part et
I'utilisation d’'une structure générique de I'intace d’autre part favorisent I'automatisation du
flot d’'intégration associé a cette approche. Cesftwa présenté dans le chapitre suivant.

Dans cette thése, le probléeme de la générationmatigue d’interfaces dans la
conception des SoCs est étudié sans étre lié aatocple spécifique ou a un interconnecte
spécial ni & une architecture dédiée. L'idée esédeudre des problemes de synchronisation
et d’'ordonnancement liés a l'intégration d’'IP calésant les exigences des applications
orientées traitement de données. L'approche cilidefais la simulation et la synthése. Dans

ces conditions, cette approche peut étre considéaés le contexte des méthodologies
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d’intégration dites « Component Based Design »Pitéorm Based Design» se basant sur la

génération automatique d’interface dans un flot@®eption systeme.

6. Conclusion

L'intégration d'IP, considérée I'une des étapeplies importantes dans la conception
des SoCs, exige de tenir compte des contraintesodenunication (des caractéristiques
d'architecture de communication etc.) et de symikation. Ce chapitre a décrit plusieurs
méthodologies proposées pour lintégration des dBss le cadre de co-design et de la
conception des SoCs.

Une solution importante pour l'intégration [Cou@@s IPs matériels se base sur la
synthése de communication, qui se rapporte a laepiion de l'interconnexion entre les
composants d'un systeme et qui couvre un ensenwléahes. En fait, la synthese de
communication dépend non seulement du flot de quiwreauquel elle est impliquée, mais
du niveau d'abstraction, et peut se rapporter aingihoix de la topologie de communication
(point a point, « bus based design », etc.), &famition des modes de transfert (avec ou sans
DMA (Direct Memory Access), a la mémoire partaggte,, ou a la minimisation des codts de
transfert (« overhead » etc.). Dans ce contextech@pitre a décrit également plusieurs
solutions adoptées pour l'intégration d’'IPs dans30C. Ces approches, considérant des
hypothéses sur les architectures cibles, sur lesogrles de communications, sur des
domaines particuliers, sur les nouvelles orientstioarchitecturales dans les SoCs
monoprocesseur ou multiprocesseur etc. permeteeptaposer des méthodes orientées mais
efficaces.

Dans ce cadre, cette thése propose une approcattégiation d'IP dédiée constituée
de trois phases principales : (1) la modélisaties cbntraintes d’intégration, (2) I'analyse des
contraintes d'intégration pour la vérification de faisabilité, et (3) la génération d’'une
architecture d’interface de communication dédiéer @ simulation et la synthese.

Dans le chapitre suivant, nous présentons les aatds liées a I'approche
d’intégration proposée. Nous considérons les achites SoC que peut cibler cette approche,
les détails et les hypothéses de son applicatinsi gue la formalisation des contraintes
d’intégration favorisant son automatisation pousil@ulation et la synthese. Basée sur une
architecture générique d'interfaces de communicatette approche permet la génération
automatique d'interfaces de communication pour td@mation d'1P.
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CHAPITRE 3. APPROCHE D' INTEGRATION DE
COMPOSANT VIRTUEL DANS UN SoC

1. Introduction

Dans le domaine de la conception a l'aide d’'IPs, $®lutions proposées pour
I'intégration des IPs par la communauté scientdigouffrent de plusieurs inconvénients. Il
reste toujours des applications pour lesquellesgsoches existantes restent inapplicables.
Bien que ces approches permettent de réaliser ieEsconnexions nécessaires, elles
conduisent a une consommation excessive en tengossirface ce qui pénalise le systeme et
le rend incapable d’avoir les performances requised’application. En effet, la majorité des
méthodes existantes ne permettent pas la généaitomatique des structures des schémas
de communication. Dans le cas général, certainehanés nécessitent une intervention
manuelle du concepteur afin d’obtenir des modefeshgtisables par les outils existants que
ce soit pour les méthodologies de conception Sd€s dk component based design » ou
« plateform based design ».

Dans ce chapitre, nous présentons une approchaegtation d’IPs. Le flot
d’intégration associé a cette approche cible laukition et la synthése. Il repose sur deux
étapes : la modélisation de I'ordonnancement dostest des données et la génération de
I'architecture d’interface correspondante a cetbel@tisation. Nous présentons dans la section
2 les architectures SoC que peuvent cibler ceteogpe. Nous avons opté pour ['utilisation
d’architecture flexible que ce soit pour un congede simulation ou de synthese. Une telle
architecture peut étre d'une complexité variabldandl d’'une simple plateforme
correspondante par exemple a une plateforme mocegseur, jusqu'a une plateforme
complexe hétérogene et multiprocesseur. La se@iprésente les hypothéses adoptées par
I'approche proposée. Nous y présentons égalemenintileles de graphe utilisés pour la
modélisation de I'ordonnancement spatio-temporelrdasfert des données. Cette étude a
permis de définir un modeéle architectural générigdéquat pour la génération de la structure
de linterface de communication. Les détails comgels des differents modules de cette

architecture sont décrits dans la section 4.

2. Flot d’intégration d’IP dans un SoC

L’'approche que nous proposons cible la réutilisatie composants matériels existants
pour la simulation et la synthése en s’appuyantusumodele d’architecture générique. Une
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modélisation en graphes est considérée pour laifspdion haut niveau de linterface
physique a adapter. Le but de cette spécificatgin’abstraction de la communication du
systéme a un niveau qui est indépendant du pratatales détails de la technologie, tout en
étant expressif et facile a utiliser pour un cotegede simulation ou de synthése. A ce niveau,
tout ce qui est connu concerne les signaux auéesisorties des modules en interaction ainsi
gue leurs conditions intermodulées du transfert dimsnées et de commande, ce qui est
équivalent au comportement du transfert des données

Les applications orientées flot de données peugtet spécifiées par un graphe de
tdches s’échangeant des données. Le point d’ediéee flot est une application cible
modélisée par un graphe de taches cible partitesiséus forme de tdches matérielles et de
taches logicielles. Les taches matérielles sontcwdgés par des IPs (sous forme
d’accélérateurs matériels). Les taches logiciedlest exécutées par « le reste du systeme »
(Cf. figure 11). La structure interne de ces IRdeplus souvent inconnue et inaccessible au
concepteur systeme. Seul le comportement spatipeeghest connu a I'entrée et a la sortie

de I'lP. Il décrit comment I'lP échange les donnaesc le reste du systeme.

Modele de taches de I'application ci

............

N
T T
! 1
1 1
Modélisation de : Ceceur d'IP :_ITJ Reste du systeme [!
I'ordonnancement du < ! !
transfert des données TToTTTToTmmmm ““l ““““““““

Modélisation des données 3
l'interface

A

Modéles d’arckitectures Veérification de la N
génériques d'interfaces de compatibilité
communication
Librairie de l > Génération de
modules MEE Configuration I'interface

Interface de communication J

Figure 11. Flot d'intégration d’'IP
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Afin de pouvoir faire fonctionner correctement I'B¥ec le reste du systéme, nous
proposons une approche d’intégration s’articulamtdeux étapes principales (Cf. figure 11 :
cube gris) :

1. Modélisation de I'ordonnancement du transfest diennées.

2. Génération de l'interface.

2.1. Modélisation de I'ordonnancement du transfertde données

L’'ordonnancement des données consiste a idenséies ambiguité les données en
entrée (resp. en sortie) a chaque cycle de I'herldg chaque port d’entrée (resp. port de
sortie). Il n’est pas obligatoire que le systenmspeete parfaitement I'ordonnancement imposé
par I'lP. Il suffit de respecter certaines condigo Une interface est ajoutée entre I'lP et le
reste du systeme. Elle assure un échange de doseléeses modeles d’ordonnancement de
I'lP d’'une part et du reste du systéme d’autre.paajout de cette interface n’est possible que
si I'lP et le reste du systeme sont compatiblesteCeerification de compatibilité permet de
réaliser un compromis entre la complexité de liiftee d’'une part et le nombre d’'IP qu'elle
peut intégrer d’autre part. En effet, comme I'lRecteste du systeme respectent déja certaines
conditions pour I'échange de données, l'interfaee sera pas d'une complexité élevée.
D’autre part, vu que le reste du systeme peut Besparre I'ordonnancement des données de

I'IP, l'intégration d’'une large gamme d’IPs est piiie.

2.2. Génération de l'interface

L'intégration d'un IP de l'approche proposée est processus de génération
d’interface assisté. Elle est basée sur la comptdikentre le systeme intégrant et I'lP a
intégrer. L’analyse de la compatibilité est valide les hypothéses considérées par la
méthodologie sont vérifiees. Une fois la compatibide l'intégrité veérifiee, la deuxieme
étape du flot consiste a la génération de I'archire de l'interface. Cette architecture est
définie par des modeéles de MEFs paramétrablessindiins une librairie. Sa génération
consiste alors a :

— sélectionner et configurer les MEFs sélectionnéglsnsla modélisation des

données a l'interface.

— générer le pilote logiciel correspondant qui perdegérer l'interface matérielle.

Ces étapes d'intégration sont détaillées dansdesons suivantes. Dans la sous-

section suivante, nous détaillons les architectquescible I'approche proposée.
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2.3. Architectures cibles

A la différence des systemes classiques, les sgstémonopuces sont congus pour des
applications spécifiques (télévision numérique, GE8.) et sont taillées sur mesure pour
satisfaire les besoins de I'application. Pour assson autonomie, un systéme mono puce, tel
gue nous le définissons, est composé de plusidénseéts logiciels et matériels dont les
fonctionnalités sont tres complexes. Un ou plusiguocesseurs intégrés executent la partie
logicielle. La partie matérielle est constituée, puas des processeurs, de différents blocs
opérationnels qui sont soit développés soit acttetgégjue les IPs. Ces composants exécutent
une partie de I'application beaucoup plus rapidgne¢®n consommant moins d’énergie que
si elle était exécutée par le processeur. Commwetldre la figure 12, ces IPs peuvent étre des
processeurs de natures différentes (des micromeces des processeurs-de traitement de
signal (DSP), des coprocesseurs ou des accélé&ataatériels). Nous distinguons la
définition d’'un accélérateur matériel et d'un capsseur [Aou04] :

1. La notion de coprocesseur consiste a ajouter usteugtion de plus au jeu
d’instruction prédéfini du processeur héte. |l @snecté directement a 'unité
arithmétique et logiqgue (UAL) du microprocesseurvef ces instructions
spécialisées (Custom Instructions), les conceptgesvent réduire une
séquence complexe d’instructions standard a unruati®n simple implantée
en tant que matériel.

2. Les accélérateurs sont considérés comme des Inoites pour le systeme. lls
opérent parallelement avec I'ensemble du systenmenuoliquant a travers
I'interconnecte. Cet interconnecte est le moyerca@munication permettant
de relier le processeur, I'IP, la mémoire et aukemumodules du SoC. Par
conséquent, pour utiliser un accélérateur, le rpiwesseur envoie les
données nécessaires a ce dernier et attend ldatédig calcul est fait en
dehors du microprocesseur ; et ainsi celui-ci peuatinuer d’exécuter le code

tandis que l'accélérateur fonctionne.
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1 1 —|—|
COprocesse+r Mémoire DSP Accélérateur
Micro Globale matériel
processeur i 4]
: 1 I 1 ! 1 : 1
Adaptateur Adaptateur Adaptateur Adaptateur
matériel matériel | matériel i matériel
Interconnect

Figure 12. Architecture dh systéme mono puce

La différence entre I'accélérateur et le coprocassst qu'un accélérateur matériel
peut accéder aux autres accélérateurs ou a la meohis le systeme sans intervention du
microprocesseur. Le coprocesseur communique aveuideoprocesseur en utilisant des
registres spécifiques internes sans passer péaukgxternes du microprocesseur comme le
fait I'accélérateur.

Un SoC comporte également des mémoires, des rédeazoimmunication complexes
et des adaptateurs matériels de communication. drdieplogicielle est composée du
programme d’application et du systeme d’exploitatiemps réel. Ce systeme d’exploitation
est formé d’un ensemble de primitives logicielles facilitent la gestion et le partage des
ressources matérielles. Cette architecture hétdeoggermet d’obtenir des systemes
performants pour les diverses applications cilbeigiités flot de données ou de contréle).

La complexité relative des architectures des Sofisuasé les chercheurs a définir de
nouvelles méthodes de conception en s’inspirarttetles développées pour la conception de
circuit. En fait, les méthodes de conception desuis intégrés ne sont pas adaptées aux
systemes monopuce [Abi00] : elles ne visent, et effue la réalisation de la partie matérielle.
Des méthodes de conception des SoC ont été prapdsee methodes utilisent les techniques
de conception des circuits intégrés pour la pamizdérielle. Elles les précedent, par contre,
par des étapes visant, a partir de I'applicatiodesses contraintes, a déterminer ce qui doit
étre fait en matériel et ce qui doit étre fait egitiel, & concevoir I'architecture de la partie
matérielle et a permettre la réalisation des conications entre la partie matérielle et la
partie logicielle.

Actuellement les travaux de conception de SoC paudtee classés en trois scénarios
[Zit01] (Cf. figure 13). Le premier consiste a s#lenner tout d'abord une architecture puis a

chercher le partitionnement optimal. Le deuxiémsuees en premier lieu le partitionnement
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puis cherche l'architecture optimale. Le derniesuess le partitionnement et la sélection de

I'architecture d'une maniére interactive.

(@) (b) (€)

Figure 13. Différents scénarios de la conception &oC

Pour couvrir les différents contextes de l'appiimatde I'approche d’intégration
(mono et multiprocesseur), nous supposons que tekmal’architecture cible peut supporter
des applications partitionnées en des taches @ilgisiet des taches matérielles. Il permet
egalement différents mécanismes de communicatitve &s taches (par registre, par bus, par
mémoire partagée). La figure 14 montre un exempbmaprocesseur dans lequel quatre
taches (T1, T2, T3, T4) communiquent entre ellésnsdiverses partitions :

— trois taches logicielles et une tache matérieltpu(e 14 (a)),

— deux taches matérielles et deux taches logicifiiggsre 1’ (b), figure 15 (a, b))).

Application cible Application cible

I»lp. Cont}éjlreur I’iltlrface A v Contr6leur d'interface

. 17
l T Inrer(‘.}\nnem i
< Interconnect ' :><: N l T >

\

\ .
“Controleur d’interface

T 111
elP2

Ram Rom

Ram Rom

(a) (b)

Figure 14. Modeles d'architecture Monoprocesseur

Le contexte multiprocesseur mono puce est considi&® qu'une application
(ensemble de taches communicantes entre elles)sfaldapter a une architecture contenant
au moins deux processeurs. Le contexte multiprecesest traité selon le degré

d’'indépendance des différentes taches de l'appitafen terme de partage de ressources

39



Chapitre 3 : Approche d'intégration de composamtugl dans un SoC

matérielles ou logicielles, entre taches, entre dRgyénéral) (Cf figure 15.a, figure 15.b).
L'efficacité d’'une topologie de multiprocesseur dég du degré de parallélisme dans

I'application (c’est a dire le nombre de tachegpehdantes paralleles).

Application cible Application cible

A IP*
’ T ’
WPl | | afPz [ 111 Pl
Contr6leur d’interface \ Contr6leur d’interface
Il 1 L 1T
< Interconnect >< Interconnect >
LT
Controleur d'interface
Ram Rom k
Ram Rom L
111
o|P2
(a) (b)

Figure 15. Modeles d’architecture Multiprocesseur
Diverses architectures possibles peuvent correspand contexte multiprocesseur. Si
aucun espace d’adressage partagé n’est utilisprdessseurs peuvent communiquer a travers
une FIFO par exemple. Dans le cas de la figureuh6,mémoire FIFO est utilisée entre les
deux microprocesseurs si nous supposons que l®pnimesseur 1 utilise une information
traitée par le microprocesseur 2 (figure 16 (ap.rhéme interprétation est valide pour la

communication entre les deux IPs (figure 16 (b)).

FIFO FIFO
uP1 |~ TTTTT FHP? PL |~ T[T+ P2
(a) (b)

Figure 16. Communication a travers des mémoires FIF®
Vu la diversité des architectures cibles, 'appmdhintégration d’'IPs proposée doit
étre générique pour pouvoir s’adapter au maximumazes possibles. Elle utilise un niveau
d'abstraction intermédiaire entre le haut niveale etiveau transfert de registre ou le niveau
micro architecture dans le flot de conception. pkemet de transposer une spécification de
haut niveau sur une architecture cible. L'interfaddisée par notre approche supporte
I'adaptation au niveau « cycle pres bit prés» ritdiface. L’'ordre d’envoi et de récupération

des données définit la structure générale de lit@acture de l'interface.
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L’'approche proposée fait partie du deuxieme scénéiigure 13 b) (aprés le
partitionnement). En revanche, le fait qu’elle pellier la simulation et la synthése la rend
modulaire et flexible. Elle peut donc supporterveiduelles extensions pour minimiser le
surcodt de communication qui peut étre introdurtipgartitionnement.

L’avantage de cette approche consiste, par aillemrd’ obtention des structures RTL
des schémas de communication afin de permettrgnthése par les outils existants. Malgré
la difficulté de trouver une plateforme a usageversel, nous avons opté pour ['utilisation
d’architecture modulaire et flexible que ce soitipan contexte de simulation ou de synthése
de l'interface de communication. Une telle arcHitee peut correspondre a une simple plate-
forme, comme a une plateforme complexe hétérogenecenfigurable. Chaque plateforme
sert a lintégration du systeme global mixte logjionatériel et peut supporter plusieurs
variétés d'applications complexes.

Nous analysons dans la suite de ce chapitre lex d@apes du flot: I'étape de
modeélisation de I'ordonnancement des donnéestapkéde la génération de I'architecture de

I'interface.

3. Modélisation du transfert des données

L'architecture SoC cible inclut des composants re$équi représentent les unités de
calcul sans logique de commande externe pour étomame.

Il existe trois familles d’IPs matériels suivantile niveaux de flexibilité (adaptation
aux besoins de I'utilisateur) (Cf. figure 17) : [M$

Synthése RTL

Figure 17. Familles d’IP et caractéristiques associge

1. IP logiciel « soft » : composant virtuel formé par code HDL synthétisable ce
qui assure a ces IPs une indépendance totalewssde la technologie (ASIC ou

FPGA). lIs sont tres peu prédictibles, et tresifikos.
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2. IP «firm » : composant virtuel optimisé structigeient et typologiquement mais
non routée. lls reposent sur I'emploi de techne®giénériques et sont donc
indépendants de la taille des transistors et dedanologie du fondeur. lls sont
peu prédictibles, car l'optimisation au niveau dpg n'a pas encore eu lieu, et
supportent un degré de flexibilité qui autorispdéasonnalisation non seulement de
la technologie cible et des contraintes d'optinosatiogique, mais aussi de
parameétres architecturaux.

3. IP matériel « hard » : composant virtuel fournistaiforme d'un réseau de portes
logiques pouvant étre optimisé pour une bibliotletpechnologie générique. lls ne
sont pas flexibles mais trés prédictibles.

Nous ciblons les applications opérant sur desiflyportants de données telles que les
applications TDSI et multimédia. Ces applicationstsgénéralement spécifiées comme un
ensemble de taches avec des contraintes tempog@lesles aux entrées et aux sorties. Les
IPs accélérateurs pour ces applications sont damehsonisées par les données. L’ordre dans
lequel les données sont transférées est alorgripgstant pour piloter le composant virtuel de
maniére efficace.

Comme les IPs sont de provenances diverses, ledosmancements sont variables et
ne correspondent pas forcément a celui du systérdgrant. Afin de pouvoir interfacer un IP
dans un systéme, il est nécessaire donc de respectonnancement spatio-temporel des
données aux entrées/sorties de I'lP et de I'adaptaiui du reste du systeme. Une interface
externe est intercalée entre les deux pour cetédite. Toutefois, pour pouvoir I'appliquer, il
est nécessaire de respecter certaines hypothasésrdannancement des données utilisées
pour la définition de la structure de l'architegtude linterface. Ces hypotheses sont

détaillées dans la sous-section 3.1.

3.1. Hypothéses sur 'ordonnancement des données

L'ordonnancement des données entre I'lP et le rdatesysteme peut étre faite de
diverses manieres. Il dépend de I'lP, du protociad’interconnecte et du reste du systéeme.
Afin de limiter la complexité de l'interface, il esécessaire d'introduire certaines hypothéses.
Ces hypothéses, bien que certaines parmi ellentsaastrictives, ne limitent en rien la
généricité de I'approche comme nous allons I'ex@igCes hypothéses sont les suivantes :

— L’interface posséde un seul port d’entrée défim pa ordre d’envoi et un seul

port de sortie définissant I'ordre de réceptioncdté systeme (Cf. figure 18). Un
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IP peut avoir plusieurs ports d’entrées et/ou deieso Dans la figure 18 par

exemple, le module IP possede deux ports d’enaggées port de sortie.

MIm—aAn<wn

Interconnecte CABA
r—-—————— 1 Ordre de consommation
T ordre d’envoi »']—E—» E >
1 r >
{ Communication ! Module IP
<4Ordre de reception 4—']1!— :<
Ee === ! Ordre de production

Figure 18. Chemin de communication
L’ordre d’envoi et I'ordre de consommation sont he@mes pour un flux transitant
sur un port de données : les données envoyée® asieme pour I'lP doivent
suivre un motif. Dans les applications ciblées, thmnées sont regroupées
généralement par ensemble (ou structure). La casiore vidéo par exemple se
fait sur des macro-blocs 8x8 ou 16x16 pixels, leafje d'image se fait sur des
masques 3x3 ou 5x5 pixels. Pour I'application «dpib matriciel Lx C» (L:
ligne, C : colonne), une structure de donnée estuatrice de donnée (le transfert
de donnée est considéré avec trois structuresmgéds : deux structures d’entrée
et une structure de sortie). Si le systeme peytaserespecter I'ordre exact des
données requis par I'lP, il doit néanmoins respdatedre d’envoi des structures
de données (macro bloc par macro bloc ou matricengrice : ce que nous
appelons motif ou « pattern »). Les données s&éiadi par le systéeme prennent la
répartition spatiale parallele suivant ce motif.eUtération de calcul définit une
exécution pour une séquence de donnée de basdeptraitement de I'lP. Une
itération de calcul commence avec le début de ts@mmation de la premiéere
donnée a traiter et se termine avec la product®radderniére donnée de la
matrice a sortir pour 'exemple produit matriciel.
L'IP & intégrer est esclave tandis que le restesyditeme (formé essentiellement
par le processeur) est le maitre du systéme. @iiedbnc qui envoie les données
et réclame les résultats de I'lP.
Les données ont une largeur de la forthéR n est un entier) qui divise la largeur
de I'interconnecte du reste du systeme.
Les entrées et les sorties sont ininterrompuds nfarréte le traitement que si les
données ne sont plus disponibles. L’échange deséasnentre I'IP et le reste du

systeme suit un comportement asynchrone. Nousdmigons un instant de début
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et un instant de fin virtuels : la différence ds gestants donne le temps nécessaire
a I'lP pour le traitement des données relatif a émtion de calcul. Le temps
d’envoi des données par le systeme dépend de sotidionement (déclenchement
d’interruption, exécution de taches ordonnancées).

Nous définissons une interface spatio-temporelte pa

— une interface spatiale définissant la successiatiadp des données en entrée ou
en sortie.

— une interface temporelle définissant les tempsciésa cette interface spatiale

Le probleme de la modélisation de [linterface sp&mporelle associée a

I'ordonnancement des entrées/sorties peut étre tait€ suivant la cadence du systeme.

3.2. Ordonnancements des données aux entrées s@tike I'lP

L'IP ciblé est a interface CABA (Cycle Accurate Béiccurate). Pour qu'un IP
fonctionne correctement, il est nécessaire dedurrir les données adéquates aux instants
appropriés.

Comme I'lP peut travailler a une fréquence difféeedu reste du systéeme, nous
différencions dans cette étude :

— l'ordre de consommation et I'ordre de productios dennées a l'interface de I'lP.

— l'ordre d’envoi et I'ordre de réception des donnpasle systéme.

Il est possible que ces deux ordres coincidentpdisvent également étre différents
méme si le concepteur du systeme I'exige commeegample dans le cas d’'un systéme
multiprocesseur sans «timer ». Toutefois, danseoeegde systeme I'ordre dans lequel un flux
de données transite sur un port de I'lP doit &rena par le concepteur systeme.

Pour mieux expliqguer comment se fait I'adaptatiotre les ordres, nous considérons
un exemple didactique simple a travers lequel regdiquons notre solution. Le systeme a
considérer possede 4 entrées « a », « b », « ¢ d et les sorties du systéme sont « X », « y »
et « z ». Les traitements effectués par le systsoneé représentés par le systeme d‘équations
suivant :

x=at+b

y=c+d
z= aty

Dans la configuration de la figure 19, l'interfaeenporelle ne pose pas de contraintes

sur la cadence du systeme. En effet, le calcul steies s’effectue avant l'arrivée de
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nouvelles entrées (« a’' », « b’ », « ¢’ » et «)d’ Alors que dans le deuxieme cas de figure
(figure 20), il y a la possibilité d’écraser la @af de « a » avant que la sortie «z » ne puisse
I'utiliser. La solution consiste a utiliser unewtture a base de FIFOs pour la mémorisation de

la succession des variables d’entrée.

ProceSSJuks d’entrée Processus d’entrée
A A
T ;T bfctdt  Processus de sortie KaT bt C'T d'T \
Sorties| : ___________________ X T YT ZT ______ ;__
; ' ' > temps
€ Cadence ;;
Figure 19. Configuration d’ordonnancement 1 |
A
v ofotetat afotctat atotetet
Sorties _________ : ________________ '___)ET yT ZT XT yT Z¢ ________
. |
i N temps
i

Cadence

Figure 20. Configuration d’ordonnancement 2

Dans ces deux configurations (figure 19, figure 80hous voulons unifier la solution,
des FIFOs peuvent étre intercalémdre l'interface de communication de l'intercoriaec
(structure de communication du systéme) et I'Utgd raitement (UT) de I'IP afin de pouvoir
gérer la différence temporelle. Ces FIFOs sontctireent connectées aux ports du
composant virtuel.

Dans un troisieme cas illustré par la figure 2lusiavons besoin de présenter les
entrées selon I'ordre voulu par le traitement. Bnsnpar exemple I'entrée « a ba séquence
qgue I'UT de I'lP a besoin est « a, a’, a”, a, &@".....», le probleme figure dans la maniére
d’accéder aux données dans les FIFOs (figure 2djnment gérer I'acces aux données dans
cette configuration ? Comment gérer l'interface gerelle « donnée fournie par le systéme,

donnée consommée par 'UT » ?
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Figure 21. Configuration d’ordonnancement 3
Par ailleurs, pour les données en entrée ou eie,soous devons définir leur ordre de

rangement dans la FIFO (figure 22).

Atruchire FIFO ertrée
@ a"—a—Pa
@ b'"—>b'—>h

@ "

Figure 22. Structure FIFO
Dans ce cas, pour satisfaire les contraintes sumfermations en consommation ou

en production des données, une machine d'état iéssaclinterface de I'IlP permettra
d'accéder aux données en entrée sauvegardéeed&iE0s selon le besoin de 'UT.

A travers cet exemple, nous allons présenter leactaistiques de l'interface de
communication afin de pouvoir gérer la différeno&re'ordre d’envoi/réception des données

par le systéme d’une part et I'ordre de consommairoduction de I'lP d’autre part.

3.3. Interface de communication

La prise en compte de toutes les possibilités dondncement des donnésgnifie
une complexité trop grande de linterface généf@eci peut générer une architecture
d’interface "trop programmable" difficile & implémter en matériel. Nous avons opté plutdt
pour ['utilisation d’'une interface générique conlfigble selon les besoins applicatifs. Elle
posséde deux cotés : le c6té matériel qui repréd&architecture de l'interface et le cété
logiciel formé par son pilote.

Nous avons montré gu'il est nécessaire pour landi&fin de la structure de l'interface

de communication (cf. figure 23) :
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— d'intercaler entre l'interface du protocole de térconnecte et I'UT de I'IP des
FIFOs afin de gérer la difference temporelle elitnelre de données fournies par
le systeme et l'ordre des données consommées Par Ces FIFOs sont

directement connectées aux ports du composanelirtu
— une unité de contréle permet d'accéder aux dontiéasrée (de sortie) mises en

FIFO.
FIFOs
O —
et ([ E1S™,
J/ Ik »| Protocole de |- ----- N
J ¢ i | Interconnectg  f-------- /s \
/ ack ——
: uT !
‘ — i
I'. <+— Protocole de | _______ .'I
' , | Interconnect¢ ———— E/S+UT !
req ——| ! !
\ utr

IP prét a étre P
S intégré/encapsulé E/S

Figure 23. Structure du modele d'intégration d'IP

En conséquence, l'ordre de lecture des donnéepreualéatoire du coté de I'lP. Les
données sérialisées a I'entrée de I'interface petudee consommeées dans un ordre aléatoire :
c’est l'interface qui ordonne ces données (aiggélae chaque donnée vers le port associ€)
suivant la caractérisation du transfert des donr@dinterface de I'lP. Grace a cette
hypothése, linterface générique peut s’adapter differents types d'IPs ayant des
caractéristiques difféerentes. Les données a traitet de tailles variables : un méme IP peut
étre capable de traiter des données de différ¢atles. Cela permet d'utiliser un seul IP pour
des applications complexes multimédia telle queoapression vidéo ou les données audio
sont sur 8 ou 16 bits, les données représentanixids d'images sont sur 16, 24 ou 32 bits.

Grace a ce module d’interface de communicatioasilpossible de réutiliser des IPs

systématiquement (sans un effort supplémentairelagtation) dans un environnement
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intégrant spécifique dont I'interconnecte est cofmmme par exemple un systéme utilisant
le bus AMBA).

Afin de modéliser les échanges des données enggsteme et le composant virtuel,
nous définissons des modeéles de graphes qui gerésentés dans la sous-section 3.4. Cette
modélisation en graphes est utilisée pour la sigétibn abstraite de l'interface.

3.4. Modélisation en graphes des contraintes surd@ntrées/sorties de I'lP

L'idée principale de l'approche proposée est deélismat les contraintes sur le
transfert des données sous forme de modéles daagabstraits en considérant le systeme
intégrateur et I'exécution d'IP.

La sémantique des modeéles de graphes abstraitséaddpns notre approche est
inspirée des travaux de Ku et De Micheli [Deu9d]e Ee base sur la notion de graphe de
contraintes d'entrées/sorties I0CG (IO ConstrairapB) et sur le modele d'IPERM (IP
Execution Requirement Model) proposé par [CouO8lals modeles permettent, entre autre,
d’exprimer :

— les contraintes temporelles liées au transfertdbemées comme la spécification

des temps et les délais de temps,

— les variations temporelles des dates de transésrtdidnnées,

— du séquencement des données échangées (contspatiedes)

Cette spécification est adoptée pour la formulatbria définition des modeles de
graphes. Ces modeles de graphes sont abstraiteretetent d’exprimer en totalité le
comportement aux entrées/sorties a l'interface 'R pour la configuration de la partie
contrdle de l'architecture de l'interface de commgation et du modéle de transfert des
données du systéme.

Nous détaillons dans la suite les différents maddiegraphes développés.

3.4.1. Graphe d’Ordonnancement des Entrées/SortiesGOES

GOES est un graphe dordonnancement des entréesgsdqCf. figure 25). I
représente le comportement des entrées/sortie$ntrfice de I'lP. Ce modéle de graphe
not¢ par GOES (V,E) est hiérarchique (contenant de=uds hiérarchiques) pondéré
(contenant des transitions) polaire orienté. |l festné par un ensemble de ncediet un

ensemble d’'arcs E reliant ces noceuds.
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a: structure d’entrée

b: structure de sortie

i, ] : numéro du canal de
transit

w0a
W

g

©)

GOES GOESS GOS

Figure 24. Modéles de graphes

V est I'ensemble des nceuds : V = {V0, ..., vn}.epnésente les étapes de transfert de
données. Chaque élément de I'ensemble des donwmé@ssnomées/produites est doté du
numéro de port de transit. vO et vn sont respectéreg le noeud source et le noeud puits et
symbolisent le début et la fin d'une séquenceatestert.

E est I'ensemble des arcs du graphes, E= {(va,Wigprésente le séquencement des
transferts spécifiés par les délais correspondamntsdifférents temps de transfert. A chaque
arc « Eab » est associé un poids « wab ». Il reptéde délai séparant deux états entre deux
transferts de données va et vb. Le délai est eépemunité de temps. Le graphe GOES est

défini en supposant que le systeme traite les demns@ns interruption.
3.4.2. Graphe d’Ordonnancement aux Entrées/Sortigsar Structure : GOESS

A partir du graphe GOES, nous pouvons déduire «gmaphes d’ordonnancement des
entrées/sorties par structure ou «m » désigne habre de structures. En éliminant la
contrainte sur les délais pour chaque structuréotmées du graphe GOES, nous définissons
un deuxiéme type de graphe appelé : GOESS. Cealypgeaphe sert a la configuration de la

partie contrble de I'architecture de I'interfaceatgnmunication.
3.4.3. Graphe d’Ordonnancement aux entrées/sortiehi Systeme (GOS)

Du coté systeme, nous proposons un graphe déduihatiele de graphe GOESS
appelé GOS. Ce type de graphe définit I'ordre sdémuel le systeme doit envoyer ou
consommer les données de chaque structure. Le GOfRduit a partir des graphes GOESS
en éliminant les contraintes sur les délais, snofofmation de I'indexage du canal de transit.
Le nombre de nceuds du GOES et celui du GOS peétrendifférent.
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Ces modéeles de formulation en graphes peuvent diiigégration des architectures a
IPs synchrones ou asynchrones. En effet, la comtrale temps a linterface de I'lP est
exprimée par un délai représentant un temps dsfédmexprimé en unité de temps.

Ces graphes définissent la modélisation générigumettant 'automatisation de la
configuration et le paramétrage des éléments deetfiacage d’'un IP accélérateur dans un
SoC a savoir le « driver » et les sous module&dehitecture de 'interface matérielle décrite
dans la section 5. Cette automatisation sera &alhns les sections qui détaillent I'étape de
vérification de la compatibilité entre graphes'étape de configuration pour la génération de

I'interface.

3.5. Vérification de la compatibilité

Nous notons que les modéles des graphes de typ&ES&CGet GOS sont définis a
partir du méme modele de graphe : GOES (cf. fi@dte lls sont donc compatibles. Cette
compatibilité valide la possibilité d’appliquerdauxiéme étape de I'approche d’intégration.

La vérification de la compatibilité¢ (cf. figure 26)éside simplement dans la
vérification d’'un motif caractérisant I'ordre d’emivet I'ordre de réception des données par le
systeme (GOS). Ce motif doit vérifier un séquenaenii satisfait au moins l'ordre par
structure définissant le comportement des entréies a l'interface de I'lP. Pour cela, deux
cbtés sont considérés : le comportement a l'interfde I'IP (modéle de graphe GOES) et le
transfert des données a partir du systéeme (mocaelgraphe GOS). Pour cela, une base de
graphes de type GOS est générée automatiquemeanmiatéda totalité des possibilités qui

peuvent étre compatible avec le modele de grapheSs0

o
. S
- ) i g
‘. GOES e 3. GOS i—— | =
L e 1 @)
o 1 =z
3
Graphes GOS (—p- Vérification de la compatibilité
possibles
| valide v

e —
Modules MEF ! ConfigurationJ «Driver » |09iCi9|;J

Figure 25. Vérification de la compatibilité
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La vérification de la compatibilité consiste a cargr le GOS du systéme un a un
avec chacun des éléments de la bibliotheque debesa50S possibles qui peuvent garantir
I'intégration de I'lP considéré dans le systemdecib

Exemple:

Nous considérons le motif de pseudo ordre (A,B,B,C.,C,B,C,C,B,C,C) pour une IP
a deux entrées A et B et une sortie C.

Si le motif est fixe pour toutes les itérations adcul, la bibliotheque des graphes
GOS possibles contient un seul graphe : le graptrespondant a ce motif.

Si le motif n'est pas fixe (pseudo ordre considédardre par structure), alors la
bibliotheque des graphes GOS possibles contiergrigshes correspondants au motifs ou A

se répeéte une fois, B se répéte 4 fois, C se r@af@is soient :

Nombre de graphes possible Cf3 X cé X (;11
Dont :

(A,B,B,B,B,C,C,C,C,C,C,C,O),
(A,B,C,B,C,B,C,B,C,C,C,C,0O),
(B,B,B,B,A,C,C,C,C,C,C,C,C),
(B,B,B,B,A,C,C,C,C, C,C, C,C) etc.

Si le GOS proposé par le systeme ne figure paslddrase des motifs possibles alors
la compatibilité entre les graphes n’est pas valRBns ce cas, I'envoi et la récupération des
données par le systéme doivent étre re-étudié uiwdesoin de I'lP. GOS est employé pour
définir I'ordre dans lequel le systeme envoie/relgs données. Selon cet ordre, le « driver »
logiciel est généré (cf. section 5).

Une fois la compatibilité vérifiée, I'étape suivandu flot d’intégration est la
configuration des modules génériques de l'architectde linterface. Pour cela une
bibliotheque de modules est définie en utilisarg shdules décrits par leurs modéles MEF-.
Nous détaillons, dans la section suivante, les éésnde cette bibliotheque permettant de
spécifier la structure d’'une architecture générigige I'interface de communication pour
I'intégration des IPs accélérateurs. L'interactemtre les sous modules de I'architecture de
I'interface et les modéles de graphes définis estlyaée pour introduire I'étape de

configuration dans le flot d’intégration.
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4. Modele Générique de I'architecture de I'interfae matérielle

Le chemin de données de linterface inclut des rfexddle stockage des données
d'entrées/sorties de type FIFO. Ces FIFOs perntettengérer la difference temporelle
relative a l'utilisation des données entre I'IlP mupart et le reste du systeme d’autre part.
Elles permettent en particulier de stocker tempenaént les résultats produits par I'lP et qui
ne sont pas encore exploités par le systeme.

L’interface de communication présente une « unéérensfert de données » formée
par une unité de « tamponnage » instantanée (FHf® dotre approche) et une « unité de
contrdle » permettant le transfert et 'aiguilladges données (sérialisation ou parallélisation)
(Ct. figure 27).

Accélérateur . Accélérateur

Unité de Unité de IP ‘ ‘ IP
transfertde k—J  controle

<: données <:> P

Interface Interface

£ 4>

Interface

Interconnecte

Figure 26. Interfacage d’IP
L'interface matérielle est composée de deux blaesddse. Le premier bloc sert a

contrébler les entrées du systéme vers I'lP (coetndlin). Le second sert a contréler les sorties
(contrbleur_out). lls sont symétriqgues et fonctiemin indépendamment l'un de l'autre.
L'unité de contrdle et I'unité de transfert sont dabsées par un ensemble de machines
d’états communicantes qui sont décrites dans las smction 4.1. La bibliotheque de
communication est formée par ces machines d’étatsdui serviront a la construction de la
structure de l'architecture de l'interface de comination. Dans la section 4.1, les détails
techniques qui sont expligués concernent uniquenaepartie contréle du c6té des entrées
puisque nous utilisons la méme démarche de comeceptiur la partie de contréle de sortie.
Nous présentons par ailleurs deux versions desfiate ; une pour le cas monoprocesseur et

I'autre pour le cas multiprocesseur.
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4.1. Modules de l'interface

L’interface est formée par un ensemble de modulashsones et séquentiels. L'idée
est de spécifier ces différents modules au niveacronarchitecture ou RTL afin de faciliter
leur synthése et leur transposition sur l'architeet cible en utilisant des outils de
synthése/placement routage commerciaux. Ces modRBIEs sont générés par une
configuration a partir d’'une bibliotheque de modelgénériques a l'aide des différents
graphes d’ordonnancement. L’'étape de configuratéra détaillée dans la section 6.

La spécification des éléments de cette bibliothegstebasée sur une modélisation
formelle utilisant des machines a états finis (MERSe qui permet de représenter les
interfaces indépendamment du langage de description

Le modele des MEFs [Har96] est tres connu et biafiri®é. Ceci est dd au fait que
les propriétés de terminaison, de séquencementctems et de déterminisme sont bien
formulées. Une MEF est un automate caractéris@@arétats (dont I'un est I'état initial) et
des liens entre les états qui représentent lesiti@rs possibles. Pour qu’une transition soit
effectuée, trois conditions doivent étre vérifiées

— l'automate doit étre dans I'état de départ,

— il doit y avoir un front actif du signal d’horloge,

— les entrées de commande, autres que I'horlogeedbautoriser la transition

L'utilisation de MEFs pour la modélisation permé&gsimiler le modele général d’'un
systéme a une fonction a trois paramétres : ler@entla fonction, et les données.
Intuitivement, il est possible de dire que les tmrs transforment l'information dans le
systéme, que les données représentent les entiéssserties des fonctions et que le contréle
active les fonctions suivant la séquence voulue.

L’interface de communication est formée par quatoglules :

— un module FIFO

— un module contrdleur a I'entrée a I'entrée de (IMRL_IN dans la figure 28)

— un module FIFO_Enable, et

— un module Enable

La figure 28 illustre le schéma de la partie dentéiface responsable de
I'ordonnancement des données a I'entrée de I'lfesgent. La partie responsable des sorties

est symétrique a celle des entrées.

53



Chapitre 3 : Approche d'intégration de composamtugl dans un SoC

Le fichier de caractérisation d’'un IP est un endendtinformations qui caractérisent
au cycle pres et au bit prés le comportement spatnporel des données a l'interface de cet

IP pour une itération de calcul.

Flux de données

1
I i IP avec son itterface I ' I [‘
== —mmmmmm—mmm e mmmmm e — - L S Oy
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Synchrone
Asynchrone
Systéme[' IP avec interface Systéme ']IP avecinterface
Wrapper Wrapper interconnecte-
FIFO-interconnecte EIFO

Figure 27. Conception du module de l'interface

Les MEFs correspondant a ces modules sont utilipéas la spécification de leurs
systémes de contrdle. Elles permettent une deserippmportementale simple, en exprimant
les états discrets de I'entité et les conditionsltEngement d’état.

Nous détaillons dans la suite les MEFs de chaquiuhadale l'interface.
4.1.1. Module FIFO

Le protocole de base de la FIFO séquentielle gsieimenté selon la machine d’états
finis représentée par la figure 29.

Elle posséde trois états. L'état « Full » indique da FIFO est pleine et ne peut plus
recevoir de données. L'état « Empty » indique gqu€IFO ne peut pas fournir des données.
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L’état « FIFO_DATA » indique que la FIFO peut reogwu délivrer des données selon I'état

dans lequel se trouve la FIFO (lecture (R) ou éif{W)).

R./W

Figure 28. MEF de la FIFO
L'adaptateur entre le protocole de I'interconneetde protocole FIFO constitue la
partie unité de transfert de l'interface matériellette adaptation entre ces deux protocoles

est spécifique a l'architecture cible d’'intégration
4.1.2. Module Contréleur a I'entrée de I'lP (CTRL_IN)

Le contrdleur de l'interface est I'automate quirmpet d’acheminer les données a
traiter aux ports d’entrées de I'lP. Il existe daontrbéleurs : un contrdleur a I'entrée et un
contréleur pour la sortie. Pour le contrbleur errém il permet le démultiplexage des
données a l'entrée de I'IlP alors que pour la soitis’agit du multiplexage de données
résultantes du traitement de I'lP.

Le module CTRL_IN, piloté par le graphe GOESS, fammne suivant la machine
d’états finis représentée par la figure 30.

Comment il est piloté, par le driver

FIFO_in empty
/ FIFO_out full

Fin itération

Figure 29. MEF du CTRL_IN
Cette machine d’états est formée par quatre états :
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— L’état « Init » permet au contrdleur d'initialisses registres de configuration pour
une nouvelle itération de calcul.

— L’état « Wait » permet au contrdleur d’attendredesnées issues des FIFOs.

— L’état « Run » permet de dispatcher les données lavieonne taille des structures
dans les ports d’entrées correspondants de I'lP.

— L'état « End » permet au contréleur de retournétad de reset.
4.1.3. Module FIFO_Enable

Une fois que les données sont rangées dans le lova dans les ports d’entrées
correspondants, le module « FIFO_Enable » se clirdeurnir les données correspondantes
aux cycles correspondants pour I'lP tout en synukemt I'IP et les FIFOs en amont des ports
de I'lP. Le module « FIFO_Enable » est schématiagé lp diagramme bloc de la MEF

représenté par la figure 30.

Reset e

R[i] — MEF
FIFO_Enable

— s FEnable

clk E—

Figure 30. Diagramme bloc de la MEF du module FIFO_Enadle
Les « R [i] » sont les signaux qui indiquent qu’daeture est possible a partir de la

FIFO numéro « i » en amont du port « i » ; le sign&nable » permet d’éveiller la MEF du
module Enable. Ce module est un simple test « Hjiqle » entre les différents R]i]
correspondant a un point de synchronisation peamiekutoriser le fonctionnement de I'lP.
Le module « FIFO_Enable » peut connecter ou déatenkes « FIFO » (FIFO en amont des
ports d’entrée de I'P) au module de [I'IP selon rleutilisation dans les points de
synchronisation liée au trafic des données. Une fai connexion réalisée, le module

« Enable » se charge de fournir la donnée correspda au cycle correspondant pour I'lP.
4.1.4. Module « Enable »

Le module « Enable » est piloté par le graphe G@E®nctionne selon la MEF
représentée par la figure 32. Cette MEF est coidstie trois états. L'état « INIT » permet
d’initialiser le module pour commencer le traitemndas données. L'état « Wait »permet au
module d’attendre l'arrivée des données adéquaes$tFOs ou du signal a partir du module
« FIFO_Enable ». L'état « Calcul » caractérise dole pendant le traitement des données.
Il fonctionne selon les parametres de configuragjénériques suivants :

— le nombre de ports pour les entrées/sorties.
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— lataille des entrées/sorties.
— le nombre de cycles pour une itération: ce panamest utilisé pour le
fonctionnement du compteur virtuel correspondalih@loge de synchronisation

virtuelle de I'lP pilotant le module « Enable ».

Attendre les conditions nécessaires
pour un point de synchronisation (lecture ou écriture)

FIFOs entrée
non vide :
initialiser le
compteur du
CE

Conditions favorables

Lecture ou écriture
pour un pas de calcul

Avancement dans le temps

Figure 31. Automate Enable

La MEF du module « Enable » est cadencée par uriegeovirtuelle (compteur CE)
pour contrdler I'exécution temporelle a I'interfade I'IP. « CE » est remis a zéro pour une
nouvelle itération de calcul et peut geler le cortgroent de I'lP si les données ne sont pas
encore prétes (par exemple, si le systeme n’a pa@e fourni les données nécessaires pour
le traitement des données).

Les modules précédemment décrits sont utilisés poustruire la chaine en entrée de
la structure de I'architecture de I'interface dencounication d’'un IP a intégrer. Il en est de

méme pour la chaine de communication en sortidrle |

4.2. Architecture de l'interface de communication

Nous envisageons d'étudier deux conceptions amthi@es de linterface de
communication : une pour le cas mono processdiautte pour le cas multiprocesseur en ne
tenant compte que de I'ensemble des informationsaractérisent au cycle prés et au bit prés
le comportement spatio-temporel des données &ifaxte de I'lP pour une itération de calcul.

4.2.1. Premiére conception (dédiée pour le cas ma@rocesseur)

Cette premiere conception est dédiée au cas d’'stérag mono processeur. Dans ce
type de systéeme, le transfert des données erfret’le reste du systéme suit un ordre imposé
par I'lP. Cet ordre est déduit a partir de soniéchile caractérisation. Il est appelé motif ou

« pattern » de cette commuication. Ce motif exprienemodéle de séquencement des données
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pour une itération de calcul. Il est sauvegardérsé forme de spécification du « driver »
logiciel (routines read() et write()). Le systeréegrant doit respecter cet ordre. Dans le cas
de I'application « produit de deux matrices A etd@nt le résultat est C», un motif possible
est : « matrice A, matrice B, matrice C ». Le cOlgur d’entrée de I'interface dissocie suivant
cet ordre les données vers les bons ports et Befdne exigé (motif). Dans ce cas, cet ordre

est le méme que celui de I'envoi des données parskeme.
4.2.2. Deuxieme conception (dédiée pour le cas mpibcesseur)

Cette deuxiéeme conception est dédiée au cas d'steresg multiprocesseur. Les
données sont issus de deux ou de plusieurs prarsssppelés initiateurs), chacun envoie
des données relatives a une structure particutiérelonnées sur laquelle I'lP effectue le
traitement. Par exemple, pour le cas d’'un prodaitddux matrices A et B géré par deux
processeurs distincts, linitiateur n°1 envoie &éments de la matrice A, l'initiateur n°2
envoie ceux de la matrice B. Pour pouvoir difféences données et déterminer le port
associe, chaque donnée est envoyée avec l'adredsrititiateur. Les données en sortie de
I'lP doivent étre également fournies avec I'adresdsd’initiateur correspondant. Le transfert
des données est réalisé en décodant le champ ssadrale la donnée a l'entrée de la FIFO.
L’'adresse considérée est celle de linitiateur al@dmmunication. Elle ne correspond pas a
I'emplacement physique en mémoire des données. Bamrss, I'échange des données peut
étre spécifié selon différents motifs respectaiuement I'ordre exigé par le port de I'lP. Un
motif d’ordre possible est appelé dans ce cas «duseordre ». Le systéme reconnait
I'information qui concerne la succession des dosrdsns chaque port mais il ignore I'ordre

et le temps d’envoi des coefficients d’'une struetem entrée ou en sortie a I'interface de I'lP.
4.2.3. Comparaison des deux conceptions

Les deux conceptions peuvent s'interfacer avec éudiffts protocoles de
communication, ce qui permet une indépendance pgsport au protocole de
communication de l'interconnecte.

Dans la deuxieme conception, I'ordonnancement deséks utilise I'adresse de
I'initiateur ce qui permet plus de flexibilité peapport a la premiere conception en ciblant le
contexte d'intégration dans un SoC multiprocess€ette conception a aussi I'avantage de
générer facilement le pilote logiciel vu la fleditd de I'échange des données que cette
conception permet de faire. En revanche, elleredinvénient d’étre non optimale en terme

d’'unités de mémorisation puisque la cellule FIFO (idsp. FIFO_OUT) en entrée (resp. en
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sortie) contient la donnée et l'adresse du compogaaitre transmettant la donnée. Le
contréleur de linterface est plus complexe quaiiceé la premiere conception puisqu’il doit
démultiplexer les données selon les adressesritéakeur.

D’autre part, la premiére conception a plusieuengages. C’est une solution optimale
qui nécessite moins de cellules FIFOs que la prendénception. Cependant, son « driver »
est difficile a générer : il n'y a pas de flexiblidans sa génération puisque le systeme doit
générer une séquence dans un ordre fixe bien d&fiei ne permet pas aussi de cibler le

contexte multiprocesseur sans arbitre d’'ordonnaeoéfZit01].

Dans cette section, nous avons présenté deux damteplifférentes de I'interface de
communication : une dédiée pour le cas monoprouoessdautre pour le cas multiprocesseur.
Le principe de fonctionnement de l'interface esiniéme dans les deux cas. Elle contient une
unité de contrdle et une unité de transfert desées pour la mémorisation intermédiaire
dans des FIFOs.

Comme diverses IPs connectés sur un méme systamenieonsommer des données
de largeurs différentes (8, 16 ou 32 bits etc.;aghme le systéme peut imposer une taille
maximale des données qui transitent a traversrgéerconnecte, la gestion des cellules FIFOs
devient indispensable pour assurer une communicafticace. Nous détaillons dans la
section 4.3, I'influence de la gestion des cellules files de données en entrées et en sorties
de l'interface (FIFO_IN et FIFO_OUT) sur le fonatitement des MEFs du FIFO_IN,
FIFO_OUT, CTRL_IN et CTRL_OUT.

4.3. Controle de la gestion des cellules FIFO_IN

Les cellules FIFO_IN (resp. FIFO_OUT) doivent éitdisées en intégralité quelle
que soit la taille de la donnée a sauvegardereRample si nous n’adoptons pas la gestion
des FIFOs, une seule FIFO de largeur 32 bits peutair une seule donnée de 8 bits, le reste
de la cellule reste inexploité. Par ailleurs, utericonnecte véhiculant des données de 64 bits
ne peut pas communiquer avec le protocole FIFOidirface de communication si une
cellule FIFO_IN (resp. FIFO_OUT) est définie degkauir 32 bits.

La gestion des cellules de mémorisation revienjoater de lintelligence dans la
chaine de communication d’entrée/sortie de liateef que ce soit pour la premiére
conception ou pour la deuxieme conception de Ffate de communication. Cette
intelligence implique une complexité de la partmttdle des MEFs des modules constituant

I'interface de communication. Cette complexité sadait par l'ajout de fonctionnalités
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pouvant générer deux versions du méme module.cBiétiement, cette gestion touche la
partie contréle du module FIFO_IN (respectivemet®@- OUT) et également du module
CTRL_IN (respectivement CTRL_OUT).

Pour des raisons de symétrie, nous allons détégllEanctionnement de l'interface en
entrée de I'lP (FIFO_IN et CTRL_IN).

4.3.1. Fonctionnement du Module FIFO

Nous envisageons de détailler dans cette sectifontdionnalité permettant de gérer
le stockage des données dans la FIFO_IN en entféatexface. Cette fonctionnalité doit
prendre en considération la taille des donnéesigecet les répartir en conséquence dans les
cellules des FIFO_IN. Par exemple, si la taillel@lelonnée est plus grande que celle des
cellules FIFO_IN, ce module doit répartir la donsé@e deux ou plusieurs cellules FIFOs.

Deux cas se présentent pour chaque conceptiorindierfiace en considérant la taille
des données véhiculées par I'interconnecte :

— la taille de la donnée systéme (tds) est supériaueetaille de la donnée de I'lP

accélérateur (tda).

— tds est inférieure a tda.

La gestion de I'empilement des données au seiredtefiule FIFO_IN est traitée de la
méme maniére pour les deux conceptions de l'interfde communication. La seule
différence est la considération de l'adresse du pomant initiateur pour la deuxieme

conception. Comme nous l'avons précisé, deux casésentent :

i) Cas ou tds <tda

Afin d’optimiser I'utilisation des FIFO_IN, son ctdleur doit inclure :

— Un masque pour chaque structure de données : litdise pour distinguer la
donnée utile dans une requéte véhiculée par linterecte qui contient plusieurs
autres informations. Ce masque permet de sauveganiguement les données
utiles pour I'lP.

— Un mécanisme interne dans la MEF de la FIFO_INpgumet de concaténer dans
une seule cellule les données qui se suivent ¢duolds fort au bit de poids faible).
Dans le cas de la deuxiéme conception (dédié amalgprocesseur), les cellules
concaténées doivent avoir la méme adresse dedtmir comme le montre la

figure 33.
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Sens d’Empilement
Figure 32. Sens d’empilement dans la FIFO_IN (tds>tda
— L’adresse dans une cellule FIFO_IN corresponddré'sse de la premiére donnée
dans une cellule FIFO_IN. Le décodage de I'adresse une cellule FIFO_IN se
fait une seule fois pour 'ensemble des donnéesaténées dans cette cellule.
Nous supposons que les données dans une cellUedfipartiennent a une méme
structure de données. Dans le cas de la figure'@&pilement correspond a
envoyer 4 coefficients (dans le bon ordre) appariera une méme structure

(méme adresse).

i) Cas ou tds >tda

La partie contréle de la MEF du module FIFO_IN qmtmettre :

— L'empilement des données selon chaque argumenie«tiés données » pour
chaque structure. Par exemple, si l'initiateur éawme donnée sur 64 bit et que la
FIFO_IN possede des cases de 32 bits, le contrd@itidiviser cette donnée sur

deux cellules FIFO_IN avec une méme adresse diritr comme le montre la

@1 @l>
| Y%

--------------- > Sens d’Empilement

figure 34.

Figure 33. Sens d’empilement dans la FIFO_IN
— Pour gérer des données de taille plus que 32 hasume, la FIFO_IN permet

d’empiler les données successivement.

4.3.3. Fonctionnement du Module controleur

L’'ajout de la fonctionnalité « gestion intelligerdes cellules FIFO» nécessite des
modifications dans la MEF du module CTRL_IN. Nougposons que linterconnecte du
systeme veéhicule une seule adresse pour une strudtentrée correspondant a I'élément
initiateur d’envoi dans la composition du SoC. Edtypothese fait que le CTRL_IN décode

les adresses et différencie les données selorre$ad de début de la structure».
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Nous prenons par exemple I'accélérateur «produitedx matrices ». Nous supposons
gue le transfert se fait a travers une RAM. Noyspegons que I'application est partitionnée
sur une architecture de facon que (Cf. figure 35) :

— un processeur génere la matrice A,

— un deuxieme processeur géneére la matrice B

— et un troisieme utilise le résultat de la multigtion

IP

UP1A LT

Contrdleur d'interface

v T
< Interconnece >

RAM uP2B uP3C

Figure 34. Architecture cible proposée
Si nous travaillons avec une mémoire partagéeeGeémoire présente un segment
noyau contenant les instructions de « boot » gal@forme et un segment utilisateur pour le
traitement des données. Nous supposons que lege®sont successivement rangées dans la
mémoire dans un segment utilisateur (Cf. figure 36)

Segment noyau

Structure :

Structure 2

> Segment utilisateur

Figure 35. Rangement des données dans la mémoire RAM

Pour cet exemple, la dissociation des données $etostructures de données se fait
selon la conception considérée de l'interface.

Pour la deuxiéme conception (avec adresse), le m@&iLRL_IN dissocie les données
selon les adresses initiatrices suivant le casadiglure ci-dessous (Cf. figure 37). Nous
supposons que le champ « donnée » et le champessads sont sur 32 bits chacun et que les

données a traiter sont sur 16 bits.
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FIFO IN{ 64 bi% @2 @1) @1 @1 @2@1| @]

—_—>
D2 1D1 ID11D2|p2 Ip1 Ip1
—>

()

_)16 blt; Datal |Datal| Datal |[Datal — >

32 bits oA TTR
Dému Masque 1 Data?2 |Datal pata 2 |Datal Masque 2 Vers I'lP

Data2 |Datal Pata2 | Datal

(b) —> 16 blt; Data2 [Data2| P38 2| patap —>

C2B ClB
(c)

Figure 36. Fonctionnement du module CTRL_IN (concepbn 2)
La premiére étape permet la dissociation des densélen le champ adresse avec un

masque de 32 bits (figure 37 (a)) et un décodeanrdsse interne différenciant les données

selon les structures. Le rangement successif daescellule FIFO_IN se fait a condition

d’avoir la méme source (adresse de l'initiateus dennées consécutives.

Nous considérons :

— Data 1 (D1) correspond aux données de la structu(matrice A dans notre
exemple)

— Data 2 (D2) correspond aux données de la struQufmatrice B dans notre
exemple)

— L1A désigne la premiere ligne de la matrice A

— L2A désigne la deuxieme ligne de la matrice A

— C1B désigne la premiére colonne de la matrice B

— C2B désigne la deuxieme colonne de la matrice B.

Le masque 1 (figure 37(b)) permet de dissocierdesnées selon la structure. La

deuxieme étape permet de dissocier les donnéegadin®gs dans une structure selon la

bonne taille et le bon ordre a I'aide du masquigg2ie 37(c)).

La partie donnée dans le module « CTRL_IN » (derlmiére conception et de la

deuxieme conception) est traitée avec l'algorithragant les deux cas suivants :

i) Cas ou tds >tda

— La partie donnée est fragmentée selon la taillmdsque.
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— La taille du masque prend la taille de la donnéécaipérer : nous dissocions les
masques selon les structures.

— Selon l'ordre de succession (pour chaque struaderéonnée) de la réception a
partir de la FIFO_IN, le contrbleur peut dispatches données vers les ports

correspondants.

i) Cas ou tds <tda

— Le masque sur les données dans la cellule FIFOelpenmet pas de récupérer les
coefficients des données. Si nous supposons dRdrbite des données de taille
appartenant successivement a un méme paquet deéaldragmenté dans les
cellules FIFOs, elles sont alors concaténées deldaille réelle des données a
traiter par le CTRL_IN.

L’interface ainsi décrite est générique, paramétrab configurable, ce qui lui permet
de se connecter avec différents types d’intercaeseet différents types d’'IPs accélérateurs.
En effet, I'interface est capable d’assurer ledfart de données entre un interconnecte ayant
une taille de données « m » et un accélérateutt ayentaille de données « n » quelque soit n

et m. Les tailles de données sont ainsi configesabl

Avec la définition des modules constituants l'ifeee de communication, nous
pouvons réaliser la configuration des MEFs. L'étage génération dinterface de
communication (architecture matérielle et « drivéogiciel) respecte ainsi une méthodologie
d’intégration opérant sur 'ensemble des hypothéses

Nous détaillons, dans la suite, la structure dat@ilogiciel qui permet de gérer cette

interface.

5. Interface logicielle : Pilote de l'interface

Comme toute interface de communication, nous asssain pilote logiciel appelé
aussi « driver » a linterface matérielle [CyrO4]. est exécuté par le processeur qui
commande I'accélérateur matériel (I'IP) via lirfeeze matérielle. Cette partie logicielle de
I'interface doit commander la communication des rdms entre I'IlP et la mémoire du

systéme [Cyr04].

64



Chapitre 3 : Approche d'intégration de composamtugl dans un SoC

Pour la réutilisation de linterface, seule la matbgicielle est modifiée ; quant au
contréle matériel, il reste le méme vu le caractgneérique de la conception. En effet, le but
est de fournir une interface générique paramétrqbigeut étre re-appliquée pour d’autres
IPs orientés flot de données sans connaitre le adempent interne de I'lP.

La partie logicielle exécutée par le/ les microgsseur/s se compose de :

— une représentation textuelle de 'activité desémsret des sorties de I'lP.

— un fichier pilote «driver » pour le contrdle deR:lll spécifie I'ordre d’envoi et de

réception des données par le systéeme.

Le pseudo ordre est I'ordre selon lequel le « drivéonctionne. Ce pseudo ordre
spécifie I'ordre a l'interface de I'lP. Ce pseudal@ est traduit par le graphe GOS pour son
abstraction.

Nous considérons dans la suite un exemple de géméde pilote pour un module
matériel simple constitué par trois registres gtarmdent les données en entrées de 3 cycles
d’horloge. Deux types d'instructions sont utilisans le développement de la partie
logicielle :

— la commande (read ()) pour I'envoi des donnéesiaedmoire vers I'accélérateur

— la commande (write()) pour la récupération des desrtraités et I'écrire dans la

mémoire.

Apres un Reset, les N données de «a » sont enyay@esionnée par cycle d’horloge
et les N résultats de b commencent a étre génégrés 3 cycles d’horloges. Ces cycles
d’horloges correspondent aux cycles d’horlogesuglg : ce sont des cycles introduits pour
pouvoir modéliser 'ordonnancement des donnéesatanrespondent pas forcément a une
horloge réelle. A cette description, I'ordonnancatnges entrées et des sorties de I'lP peut
s’exprimer par I'utilisation de boucles. Ces bosdaliécrivent le comportement du « driver » :

For t=1 to N+3, ou t correspond au compteur d’inoréntation temporelle
If (1<=t<=N) read(a)
If (4<=t<=N+3) write(b),

Nous supposons maintenant qu'a chaque port, pammge «a », les données
successives correspondent aux éléments succesasifsvdcteur linéaire. Ce vecteur est
virtuel dans le sens ou il ne correspond pas natessent a un « layout » physique de la
donnée dans la mémoire du SoC intégrant I'lP. Hn @est une représentation qui permet
d’identifier chaque donnée en entrée a un vectfeour cet exemple, les N entrées au port
«a » correspondent a un vecteur a[N] indexé deNL Blous aboutissons a une deuxieme

représentation algorithmique du pilote qui tieninpde de ces nouvelles conditions :
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For t=1 to N+3
If (1<=t<=N) read(a[t-1])
If (4<=t<=N+3) write(b[t-4])

Le comportement est observé de l'intérieur du meddé I'lP, donc les cycles
d’horloges correspondent aux cycles d’horloge eiguEn effet, si nous intégrons cet IP dans
un systéme, et si pour une raison la donnée «ast pas préte dans un cycle d’horloge, alors
I'horloge réelle continue a s’'incrémenter alors dgecompteur de I'horloge virtuelle reste
constant tant que I'horloge virtuelle n'est paseili®e. Pour ces représentations, nous
considérons que le compteur d’horloge (t) corred@onelui de I'horloge virtuelle.

Dans les deux cas précédents, aucune précisiondoesée sur les instants d’échange
des données. Si nous introduisons la notion deesydlhorloges et en faisant abstraction de
I'existence physique du vecteur «a », nous pouvahsutir a la boucle d'implémentation
suivante :

For coef=1to 3
read(a)
wait(1)

For coef=4to N
read(a)
write(b)
wait(1)

For coef=NtoN + 3
write(b)
wait(1)

Cette implémentation correspond a N échantilloreniiée «a » décalés de 3 cycles
d’horloges des N échantillons de la sortie «b »'IBia plus d’une entrée, ses entrées sont
multiplexées dans linterconnecte et démultiplexéess les contrdleurs de l'interface.
Jusqu'a maintenant, I'index de I'échantillon esilague au numéro de I'échantillon traité. Il
est égal dans cet exemple particulier au compteurl’'librloge virtuelle (car chaque
échantillon est traité dans un cycle virtuel). [extion d’une instruction dure 0 cycle du
temps d’exécution (la lecture et I'écriture se fentparalléle). Le « wait(1) » correspond a la
sémantique des routines « wait » dans VHDL : chagxécution du coeur d’'une boucle
consomme au moins un cycle d’horloge. Dans ce leas wait » indiquent combien de
cycles d’horloge virtuels consomment les échamtillo

Avec un ordonnancement plus exigeant qui traite desnées plus variées, le
comportement des données a l'interface d’'un nougeayposant matériel peut nécessiter un

traitement plus compliqué sur chaque échantilloax. &emple, le comportement de I'IP
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nécessite trois cycles d’horloges entre deux édluarst consécutifs pour exécuter ses calculs.

Apres un reset, les N entrées sont envoyées sigaesst, une par cycle d’horloge virtuel et

apres trois cycles d’horloges, la premiére sostgeoduite suivis par les N-1 autres sorties.
Les boucles utilisées pour exprimer ce comportersent les suivantes :

Forcoef=1to 1
read(a)
wait(3)

For coef=2to N
read(a)
write(b)
wait(3)

Forcoef=NtoN + 3
write(b)
wait(3)

Ces boucles sont exactement l'information dontdati@ contréle dans linterface a
besoin pour véhiculer correctement les entréese®tsbrties de I'lP a l'interconnecte du
systéme intégrant. En revanche, l'adresse des denest absente dans la boucle. Cette

adresse dépend des parameétres extérieurs a I'tarflagraphie mémoire ou « data layout »).

Associé a I'information de la nature de I'architeetdu SoC/MPSoC cible, le code du
« driver » est séparé en un ou plusieurs « driveEn effet, nous supposons que la répartition
des taches entre initiateurs maitres dans unetectimie multiprocesseurs pour I'utilisation
d’'un accélérateur matériel se fait suivant le nardes flux de données. Les « drivers » sont
séparés suivant les entrées et les sorties. Uatait maitre peut envoyer un flux d’entrée ou
bien récupérer un flux de sortie comme résultaraieement ; ce qui est souvent le cas. Pour
un IP a deux entrées et une sortie, le « driveitial peut étre divisé au maximum en trois
« drivers » : un « driver » pour la premiere esmtién « driver » pour la deuxieme entrée et un

troisieme « driver » pour la sortie.

En conclusion, le principe retenu est que les desméntrant / sortant successivement
sur un port sont rangées successivement en méraoe autorise d'utiliser le mode «rafale»
pour transmettre les données. Si cette conditiest plus respectée et que nous voulons tout
de méme faire du « rafale», il faut envisager uan&sme de tamponnage plus complexe
gu'une FIFO du cété de I'IP [lan02]. En effet, 'srdre d’envoi et I'ordre de consommation
sont différents lors d’'une communication de typapa point entre le producteur de données

et son consommateur, une FIFO simple dans ce casiffie pas pour une transformation
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d’une structure de donnée a N dimension (par exempé matrice est une structure a deux
dimensions) en une structure de donnée a une diomeisn vecteur de donnée). Il faut
prévoir dans ce cas un mécanisme de tamponnagegiysexe comme celui présenté dans
[lan02].

Reset T=Tend

Itération de calcul

N
s B
/IComportement régulier a chaque
/lcycle d’horloge

For i=1 to longueur itération do

Figure 37. Comportement du « driver »

Outre la description textuelle de I'échange de déesnaux entrées sorties de I'lP, le
pilote contient aussi le programme ou le « scrigtes I'interface logicielle qui permet
d’initialiser les registres de configurations duntéleur de l'interface matérielle. Les
registres de configurations contiennent les infaioma nécessaires pour I'itération en cours
d’exécution (figure 24). Nous supposons que lesstesy sont suffisamment larges pour

supporter les informations de toutes les commuioicsit

6. Etape de génération de l'interface

La génération de l'interface de communication gepfa un processus qui permet de
sélectionner et de configurer la description des snodules de I'interface de communication
a partir d’'une bibliotheque de composants selobdsoin applicatif en suivant un certain
nombre d’étapes (cf. figure 38) :

— FEtape de sélection : elle consiste a sélectionesrnhodules nécessaires pour
construire le schéma de linterface selon le chapplicatif et le contexte
d’intégration (architecture mono ou multiprocesssimulation ou synthése, motif
ou pseudo ordre etc.)

— Etape de configuration : elle consiste a configuweela paramétrer les modules
concernés, a affecter des valeurs aux variablegriggmes (taille des FIFOs,
bandwidth, nombre de ports, tailles des donnéef etc

— Etape de génération d’interface de communication :
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Y

o Etape de génération de larchitecture de lintexfacelle consiste a
assembler les modules sélectionnés en un schémsertiice de
communication configuré interagissant avec les lggapde données pour
assurer le bon déroulement de la véhiculation deenées et de
synchronisation du transfert.

o Etape de Génération du Driver: Le «driver» déftre généré
automatiquement a partir de la spécification descen sorties a I'interface

de I'lP parallelement avec la génération de liifstee matérielle.

Conception 1
/conception 2

Compactibilité
valide

A

Sélection !

., ! 7 """"""""

e —
W Configuration

Figure 38. Etape de génération d’architectures d'irgrface

L'architecture de l'interface de communication estdélisée par I'interconnexion des
machines d'états finis décrites dans la section {Cf. figure 39). Elle respecte la
synchronisation entre les sous modules communicntsequencement des données et les
contraintes sur linformation spatio-temporelle duoansfert des données. D’autres
informations sont également utiles pour lintégratide I'lP. En particulier, la taille des
données véhiculées par l'interconnecte (tds), ilke td'une cellule FIFO et la profondeur de
chaque FIFO. Il y'a autant de FIFOs que de porentiées et de sorties. Le module
CTRL_IN dispatche la donnée selon sa taille réellsa structure correspondante. L'ordre
dans lequel les données sont transférées estmipgtant pour piloter I'architecture d’'une
maniére efficace. L'information de cet ordre estegistrée dans le contrbleur d’entrée et
celui de sortie sous la forme d'un ensemble destexs de configurations. A partir des

modeles de graphes, ces registres sont initicdig@st le fonctionnement de l'interface.
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Modele d’'IP

Fifo_in empty
ou Fifo_out full

Enable

MEF Enable AN /7/=N), —— 3 ———

Ack &wi]
Ack & wok[o]

Fifo_in empty
au Fifg_out full

Figure 39. Interaction entre les sous modules dertierface et les modéles de graphes

L’interaction entre les modules de I'architectuee linterface et la spécification des
graphes est illustrée dans la figure 39. L'intezféagicielle ou le « driver » logiciel s’exécute
par le processeur qui pilote I'lP via I'interfaceatérielle. Pour une réutilisation de l'interface,
seule la partie logicielle est régénérée quantaautrgéle matériel il reste le méme. Le graphe
« GOS » définit 'ordre selon lequel ce « drivemanipule les données. L’ordre des données
dans ce graphe respecte l'ordre par structure (8PHS GOES sert a déterminer I'ordre
d’aiguillage des données a l'interface de I'lP.

Ainsi nous passons d’'une approche de génératiotedface de communication a une
configuration de l'interface de communication. Cadiavantage de permettre au concepteur
d’assurer la communication sans qu'’il doive avoohaque fois une connaissance profonde
des protocoles de communication et du séquencetiesntaches. La génération automatique
de linterface de communication respecte une mdtlogie d'intégration opérant sur
'ensemble des hypothéses favorisant son applitaties modeles de graphes assurent
'automatisation de l'adéquation architecture dnfilce de communication et composant
matériel donné a intégrer. Cette méthodologie repas une architecture générique de
I'interface définie par une librairie de modules Mparamétrables/ configurables.

L'automatisation des étapes de ce flot ainsi quegdémération automatique de
I'interface est confiée a un outil informatiqueirhplémentation et I'expérimentation de cet

outil sont illustrées dans le chapitre suivant.
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7. Conclusion

Le domaine d’application que ciblent les travauxcdde these est celui des systemes
dominés par les données. Dans ce type de systéaegyplications supportées sont de plus
en plus complexes et le temps de mise sur le masthée plus en plus court. Pour satisfaire
ces contraintes de plus en plus pressantes, um#osgbrometteuse consiste a intégrer des IPs
dans le systéeme a concevoir. Pour pouvoir utiliseite solution, deux conditions sont
nécessaires :

— Avoir des structures de communication adaptéesexigences des applications

cibles capables d’interconnecter des IPs de prowendiverses.

— Avoir des outils permettant I'automatisation detégration des IPs a travers ces

structures de communication.

Nous avons présenté dans ce chapitre une approelmefpant la réutilisation
systématique d’'IPs existants dans un environnesggtifique. Elle s’appuie sur un modele
d’interface générique défini selon deux conceptiams pour le cas multiprocesseur et 'autre
pour le cas monoprocesseur. Les modules de cetefaice sont décrits sous forme de
machines a états finis.

Une modélisation en graphes est considérée pour spgeification abstraite de
I'interface physique a adapter. Les modeéles dehgmminsi que la structure générique de
I'interface favorisent I'automatisation du flot dtégration appliqué pour une architecture
cible dans un contexte de simulation et de synthkESeterface peut étre générée si la
compatibilité entre le transfert des données aelfface de I'lP et a l'interface du reste du

systéme est vérifiée.

Le chapitre suivant présente I'expérimentation’aeproche a travers la conception et
la réalisation d’'un outil de CAO « générateur dnfilces de communication » automatisant
les étapes de l'approche d'intégration. Les fometadités de I'outil sont illustrées pour la
génération de l'interface de communication pour dRss accélérateurs dans un contexte de
simulation et de synthese permettant ainsi la aibd de I'approche. Deux environnements
ont été mis en ceuvre : SoCLIiB pour la simulation’@&tvironnement « Quartus » de la
société Altéra pour la synthése. Le domaine d'apfibn est le secteur multimédia ou
I'application « synthése 3D » est considérée.
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CHAPITRE 4. EXPERIMENTATION DE L’'APPROCHE
D’INTEGRATION : OUTIL GIC

1. Introduction

Aujourd'hui, face a la complexité croissante degliagtions a concevoir, aux
contraintes de colt et de temps de développemeptudeen plus séveres, les concepteurs
utilisent de plus en plus d'outils automatiquesemi-automatiques efficaces et basés sur une
ou plusieurs meéthodologies de développement. Leeldppement de ces supports
informatiques nécessite la maitrise de plusieurshnglogies (base de données,
communication inter-outils, interface utilisatewatc.). Le but de ces méthodologies est
d’accélérer les différentes phases de conceptignsgistemes basés de plus en plus sur la
réutilisation des IPs.

Afin de répondre a ces contraintes, un flot poimtdégration d'IPs a été développé
dans cette these. Il permet de vérifier dans umigretemps la compatibilité de I'lP et du
reste du systéme puis dans un deuxieme temps éecgéimterface et son pilote. Ce chapitre
est consacré a la présentation de I'environnenierpérimentation supportant ce flot.

Dans la section 2, nous détaillons le contexte mliegtion de la méthodologie
proposée. Nous y présentons également I'outil dehgge architecturale « GAUT » utilisé
pour la génération des IPs a intégrer. Dans lacse8t nous présentons I'outil informatique
«Générateur d’'Interface de Communication : GIC sutil de CAO GIC permet de générer
I'interface de communication a partir d’'une modaiisn en graphes de I'ordonnancement du

transfert des données a l'interface de I'lP a irdégt du systéeme cible.

2. Contexte d'application de la méthodologie d’intgration

Le processus de conception des systemes hétérogammsqués peut étre vu sous
deux aspects : la conception des composants eini&gration dans le méme systeme. Notre
travail concerne l'aspect d’intégration des comptsaun IP ou un composant virtuel peut
étre spécifié manuellement, acheté ou synthétiséupaoutil de Synthése de Haut Niveau
(SHN). Dans le domaine de la conception assistéergaateur des circuits intégrés, l'intérét
porté a la SHN réside essentiellement dans la tiéhudes temps de conception des SoCs
puisqu’une description comportementale est touj@lus simple a faire qu’'une description
structurelle RTL. Elle facilite également le trdvdé I'exploration architecturale puisqu’elle
accélere la production d’essais successifs pouranobitecture. L'intégration de ces IPs
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générés dans un SoC peut entrainer un codt d’iegénies important. Seule I'automatisation
de la génération d’interface peut amener a undisolen un temps raisonnable dans un flot
de conception SoC basé sur des outils SHN. Poungareoir I'utilisation des outils de SHN,
un outil de génération d’interface de communicastmis en ceuvre pour l'intégration d’IP
généré par GAUT dans un contexte contraint paraudeitecture cible de prototypage. Nous
présentons dans cette section le flot de concepé®é sur les outils SHN. Nous détaillons
également I'outil SHN adopté dans le cadre de tleése : I'outil « GAUT ».

2.1. Flot de conception basé sur des outils SHN

L'une des évolutions récentes du flot de concepBof est I'utilisation systématique
des outils de SHN (Cf. figure 40). La SHN (synthdsehaut niveau) consiste a traduire une
description comportementale séquentielle en unuitirintégré sous des contraintes
architecturales [Cou03a]. Durant plusieurs annéss;hercheurs travaillaient sur les outils de
SHN pour réduire le temps de conception et lesuiesrdues aux manipulations manuelles des
conceptions. Malgré ces efforts, beaucoup de pnudsépersistent lors de la SHN [Don04].

Les outils de SHN different selon le domaine d’&adlon, la classe d’architectures
ciblées et les techniques d'optimisation employdés.sont souvent spécifiques a des
applications [Don04]. lls proposent en effet desdetes différents et s’appuient sur des
techniques différentes de modélisation. La synthdeel'lP est spécifigue selon des
contraintes architecturales bien précises ce qoduid a une diversité de l'interface aux
entrées sorties de ces IPs. En effet, linterfacpperte plusieurs configurations de
communication selon les mécanismes de synchromisatitiisés et les modes de
consommation de données spécifiques a une modetisai niveau cycle pres/ bit pres. Par
ailleurs, comme le systéeme impose un ordre pamicule transfert des données, I'étape
d’intégration est en général faite a la main y cospour les IPs synthétisés avec un outil de
synthese comportementale ou SHN. En effet, cedsong permettent pas de définir
clairement les communications externes du circdit l&e génération d’interfaces de
communication spécifigues demeure le goulot d'éeament dans un flot de conception SoC
basé sur I'utilisation d’un outil SHN (CatapultCAGT, SystemC Compiler, Agility compiler
de Celoxica, MMAlIpha, etc...).
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Figure 40: Flot de conception avec des outils de SHN

L’interface externe d'un IP est difficile & détermar et son interprétation par la SHN
est encore moins évidente. Ainsi, ces outils ddivaine face aux problemes d’intégration de
leurs IPs dans des environnements de simulatida synthese pour garantir plus d’efficacité.
Par ailleurs, les performances d’un circuit a éneur d’'un systeme intégré sont difficilement
évaluables autrement que par la simulation du systdl faut donc construire un modeéle au
niveau matériel pour pouvoir évaluer le circuit slaon contexte d’utilisation. Le concepteur
doit tenter plusieurs architectures matérielles s circuit afin de pouvoir choisir
I'architecture offrant le meilleur compromis entes performances et le colt de son circuit.
D’ou l'utilité de lautomatisation de la génératialiinterfaces de communication pour
I'intégration saine et rapide des architecturesgéss par ces outils et pour la valorisation de
I'utilisation d’'un outil SHN dans un flot de condem SoC.

Nous présentons, dans la section 2.2, I'outil SidNstdéré qui est I'outil GAUT. Les
caractéristiques techniques de l'architecture ldkedénérée par cet outil seront détaillées pour
pouvoir analyser le comportement a l'interface degées et des sorties et les hypothéses a

considérer lors de l'intégration de I'lP GAUT.
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2.2. Outil GAUT

Il existe différents types d’outils de syntheseosde domaine d’application, la classe
d’architectures ciblées et les techniques d’opttios employées. Particulierement, GAUT
(Génération Automatique d’'Unités de Traitement) est outil universitaire de synthése
d’architectures pipelines développé depuis 1988LASTI (Université de Rennes) et
poursuivi au LESTER (Université de Bretagne) dedi@94. Il est destiné exclusivement a
des descriptions avec un flot de données régulieepose sur une méthode de conception
dédiée aux applications de traitement de signal’ietage exécutées sous contraintes de
temps réel [Sen95]. Il fonctionne indifféeremment RC (sous Windows ou Linux) et sur
station Sun (sous SunOs ou Solaris). Il est impigénen C et supporte une interface en
JAVA. Il cible principalement la conception sur FR@ais peut aussi produire des ASICs.

GAUT se charge, sans l'intervention de ['utilisatedu :

— Choix des données a mettre dans la mémoire,

— Ordonnancement des entrées/sorties et des acaésérioire et

— Dimensionnement du bus interne

Donc, I'outil assume une part importante des dénsd’'implantation qui peuvent étre
en contradiction avec les contraintes d’intégratida plus, GAUT requiert une bibliotheque
d’opérateurs caractérisés. Ce sont des opérateithenétiques, logiques et séquentiels.
[Jeg99] montre que plus I'architecture du circist eomplexe, plus la surface prévue par
GAUT s’écarte de la surface du circuit réel. Poumiduer les variations, I'outil essaie de
minimiser les connexions (qui sont I'un des priacip facteurs d'imprédictibilité) grace a sa
stratégie de partage des opérateurs [Jeg01]. Raurgj les boucles non bornées ne sont pas
acceptées par GAUT. Cela limite le champ d’appilicatie I'outil.

Toutefois, cet outil présente une forte capaci&ird’ mis a jour selon les besoins du
marché. L'outil essaie de minimiser les connexi@ms sont I'un des principaux facteurs
d’'imprédictibilité) grace a sa stratégie de partags opérateurs [Jeg0l]. Par ailleurs, des
travaux sont en cours au sein du laboratoire Lgster élargir ses capacités au profit des
applications TDSI d’'une part et I'adapter a la &@se des IPs comportementaux d’autre part
[Cou03a]. Le travail dans le cadre de cette thesd & le rendre applicable dans sa version

actuelle a une synthese architecturale réutilisable
2.2.1. Architecture de I'IP synthétisée par GAUT
Le modéle de l'architecture générée par GAUT remogeun modéle générique de

processeur de traitement de signal composé d'uité da contréle (MEF), d’'une unité de
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traitement (UT), d’'une unité de mémorisation (UM)ezne et d’une unité de communication
(UCOM) comme le montre la figure 41. Le circuit §éh est un circuit synchrone de niveau
RTL avec une seule horloge. L'architecture présdegesignaux de controle : reset et horloge.
L’architecture présente également des signaux mestsorties qui sont reliés a des
bus externes au circuit. Les bus n’appartenantapasircuit synthétisé sont présents pour

véhiculer les données entre le circuit et 'unigéndeémoire (UM) externe (figure 41).

COM pour IP GAUT Maitre
clock  reset {On se place ici

Enable

wa
WA —; I
E uc
_.____UCOM ] UM
B
! ! !
§ .

Bus bidirectionnels ou transitent les
variables internes et les E/S

Figure 41 : Structure du circuit synthétisé par GAUT

Pour des raisons temps réel (la nature de lalyodt et le résultat de
'ordonnancement), des entrées d'une architectyrghstisée par GAUT peuvent étre
présentées plusieurs fois sur les bus de I'UT. Wnt de « duplication » (UD) est présentée
pour :

— faire une « copie » si le méme coefficient est gmésur plus d’'un bus au méme

instant.

— stocker dans un registre et le présenter sur lssaby instants convenables si le

méme coefficient est présent a différents instants.

Nous considérons, comme indiqué dans la figureudé,architecture synthétisée sans
la considération de 'TUCOM. Cette unité de commatian que I'outil GAUT peut générer
est spécifique a un contexte d’interfacage spéa@fi@@omo04].

Pour interfacer I'architecture de I'lP RTL génépmse GAUT (figure 41), nous avons
besoin des informations sur les contraintes tentiggret I'ordonnancement des entrées et des
sorties. Par la suite, la phase qui nous intéressda phase de synthése d’'une description
comportementale de I'lP.
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2.2.2. Phases de synthéese avec GAUT

La premiére phase de la synthése est la phaseng@lation. L'étape de compilation
consiste en une vérification syntaxique et lexiaciea description source et une analyse ou
une extraction de dépendance et de parallélisdtiotode. La description est transformée en
un graphe de flot de donnée (SDFG : signal data §oaph) qui est le format intermédiaire
supporté par I'outil GAUT. Ces transformations potr but la parallélisation automatique du
code.

En entrée a cette phase, il est exigé d’avoir ule ae spécification de I'algorithme au
niveau comportemental :

— Le fichier.src contient le code VHDL a synthétidez.comportement est décrit par

un seul processus (une seule entité/architectargHDLGAUT?.

— Le fichier.c contient le code C a synthétiser

En sortie de cette phase, il y a une génératiqfiglure 42) :

— fichier.gc représentant le modele interne (graphdlat de données) que GAUT

considére pour la génération de I'architecture.

— fichier.op contenant un bilan des opérations entstadans le code compilé.

RS

GAUT : compilation

GAUT : matérialisation &
optimisation

| ey
%»@

Figure 42: Phase de synthése de 'outil GAUT

* C’est un_sous ensemble de VHIImité aux instructions séquentielles pour I'affon
d’expressions arithmétiques avec des structureditimmnelles ainsi que les bouclés et
while déroulables « nombres de boucles finies lors dgréhése ».
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La deuxiéme phase consiste a générer une archéexggociée a 'unité de traitement.

Cette derniere est décrite a l'aide de plusieurgsifonctionnelles interconnectées selon le

modele générique de GAUT :

En entrée de cette phase, il est exigé :

d’avoir une caractérisation des opérateurs de Ehntdogie ciblée. Cette
caractérisation est regroupée dans un fichier diesion « .lib ».

de spécifier les options de synthese sur les fislie sortie de la synthése :

pour la génération du fichier.vhd correspondaiat syhthése du fichier.src.

pour la génération du fichier.h correspondantsyfahése du fichier.c.

pour la génération du fichier.mem.

pour la génération du diagramme de Gantt.

de spécifier les paramétres de la synthése :

le critere de colt : choisir la nature de I'optiatien (sur les opérateurs, sur les
registres, sur le bus ou une combinaison d'optiticisa différentes) selon les
contraintes de I'utilisateur afin de pouvoir réduie colt sur la surface.

la latence (celle qui est spécifiée dans la phassydthése libellée cadence est

prioritaire sur celle fixée dans le code du ficlder).

En sortie, et si nous supposons que toutes lesrgpexistantes dans GAUT sont

sollicitées, les fichiers suivants sont générés :

Fichier d’extension «.vhd »: il contient le codeHDL de niveau RTL de
I'algorithme correspondant au fichier.src

Fichier d’extension «.h»: il contient le code ®ysC de niveau RTL de
I'algorithme correspondant au fichier.c

Fichier d’extension «.mem » : il contient les inf@tions sur les contraintes
temporelles (I'ordonnancement) des entrées /satietes bus.

Fichier d’extension «.memoire » : il contient desimations globales du codt de
mémorisation des variables et des constantes.

Fichier d’extension «.gantt » : il contient le diagnme de Gantt de I'architecture.
Fichier d’extension « .descr » : c’est une intezfantre GAUT et les outils de

synthése logiques commerciaux.

Les caractéristiques a considérer sont :

Un IP GAUT est généré pour des applications floldenées : I'architecture est

synchronisée par les données.
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— Les données a entrer ne changent pas au coursngs {gour le cas d’'une seule
itération de calcul)

— Le motif répété cycliguement dure plusieurs cygear GAUT ; I'lP GAUT est
une architecture non réguliere (l'architecture GAaliforise des cycles d’horloge
virtuelle sans lecture).

— L'affectation des variables d'entrées et de sordeg ports de l'architecture
générée par GAUT est effectuée de maniere nonginéi

— Les tailles (en bits) des différents ports sonttdsules mémes pour une
architecture générée par GAUT.

— Un méme bus peut servir pour faire transiter uriederou une sortie : les bus sont

bidirectionnels.

2.3. Conclusion

La présentation du contexte dapplication de l'ajgpe d’intégration favorise
spécifiguement :
— un flot de conception des SoC basé sur des olilé. S
— la génération d’interface de communication au proéis architectures générées
par I'outil SHN GAUT. Ce qui revient a dire queH’lgénéré par « GAUT » est
I'IP cible a intégrer.
Nous détaillons dans la suite I'outil « Génératdinterface de Communication :
GIC», favorisant, dans sa premiére version, I'aatisation du flot d’'intégration proposée au
profit des IPs générés par 'outil de SHN GAUT.

3. L'Outil de CAO « GIC »

Notre approche traite le probleme d’intégrationPd’la interface décrite au niveau
CABA. Elle permet une évaluation haut niveau pasitaulation et la synthese de l'interface
d’adaptation dans un contexte de réutilisation gl'tblant les SoCs et le MPSoCs. Nous
décrivons dans la suite I'outil générateur d’irkedf de communication « GIC ».

L'outil GIC rassemble et met en ceuvre les concépssau flot d’intégration d’IP
proposés dans ce mémoire (chapitre Ill). Il nopsmnis d’automatiser les étapes de ce flot et
de gagner en productivité dans un flot de concef@iaC.

La description de I'environnement se fait d'une igr@nincrémentale par l'utilisation

de plusieurs outils, chacun affecté a un rble $ipé& pour la génération du code de
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I'interface de communication appropriée au contadeaéutilisation cible. Les données sont
mémorisées dans des structures de fichiers XML gamt ainsi une interopérabilité facile
entre ces sous outils. Les commandements qui eggiks développement de I'environnement
sont les suivants :

— réduire le temps réservé a l'intégration d’IP, gomstitue un goulot d'étranglement
dans le processus de conception des SoCs. Cela@umpies méthodes et des
outils pour automatiser les taches principales danflot: vérification de la
compatibilité et génération de code. Vu la compéexiu probleme traité et la
nouveauté de ce type de recherches, il paraitcithffid'obtenir des solutions
completement automatiques dans un avenir procheu Oe deuxieme
commandement :

— offrir une interaction facile entre les concepteetsles outils. Il faut pouvoir
mélanger l'intégration automatique avec des inteieas manuelles pour obtenir
des solutions efficaces.

— assurer une intégration facile dans les environnénge conception existants. Il
s'agit de faciliter la réutilisation de composagxsstants. Ce point est nécessaire
pour avoir des outils flexibles pouvant étre ufislans un contexte assez large.

— permettre une intégration facile dans les méthagetode conception existantes.
Il s'agit d'étre compatible avec les autres outitsde a la conception existants

(spécification, partitionnement, compilation, siatidn, vérification).

3.1. Implémentation du GIC

Afin de produire une application évolutive et maard, le choix a été fait sur la
modélisation orientée objet. L'utilisation d’une papche objet est cruciale car elle est
particulierement adaptée a la modélisation de restvironnement qui doit étre évolutif.

3.1.1. Modele d’intégrité entre les outils

Les outils qui ont été intégrés dans l'environnénmeuvent se classer en deux
catégories : les outils développés en interne eaiptdéd directement a l'approche de
I'intégration d’IP, et les outils externes :

— Les outils externes : outil GAUT, outil de spédifiion de I'architecture SoC (outil

externe qui utilise le résultat de I'outil GIC

— Les outils internes sont les sous outils de I'o@IIC (plus de détails dans la

section 3.2).
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Les outils externes assurent la réalisation desfates qui permettent la visualisation,
I'édition, la résolution des problemes d'adaptatilsnvérifient si les fichiers sont cohérents et
surtout s'ils ne sont pas utilisés par d'autre#spetc. le modéle d’intégration de ces outils se
déroulent autour d’'un modéle intermédiaire et asugé a I'aide d’un traducteur (cf. figure
43).

Outil SHN

Modéles de

représentation des
donnée

I

Traducteur
(Import/ export de données

Utilisateur Architecture SoC

Modéles de
représentation des
données

Modeéles de

représentation des
donnée

~——"1 Format intermédiaire
(vocabulaire
commur : XML)

Figure 43. Modeéle d'intégration d’outils autour d’un format intermédiaire

- Le format intermédiaire : Le format intermédiairdise doit étre neutre, c’'est-a-
dire indépendant des outils, des méthodes et aeessus de conception. Il doit
étre aussi suffisamment flexible pour maintenir $ésnantiques entre les outils,
garantir I'intégrité du systeme, préserver la strire du systéme et les décisions
fondamentales dont dépend sa performance.

— Le processus de traduction : Généralement, undtaduspécifique a chaque outil
est construit pour achever I'étape d’intégratioautils dans un environnement de
conception donné sans l'intervention des concepteur

Le format d’échange (format intermédiaire) intetilsu(externes ou internes) choisi

est XML (eXtensible Markup Language). XML est untaaangage standardisé paBCG il a

un tres grand succeés dans le monde de linformatgpdce a sa souplesse, sa clarté et sa
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facilité a étre analysé. Il facilite I'intégratiates outils et 'échange d’informations entre les
différents environnements.

C’est un format d’échange standard et facile a gengre car humainement lisible. ||
peut étre édité par un simple éditeur ou dans desomnements XML [XMLOO]. XML est
basé sur le concept de balises : toute informasirdélimitée par une balise ouvrante et une
balise fermante. Les balises XML peuvent avoir dgbuts et peuvent étre hiérarchiques.
Pour obtenir un langage dérivé de XML, il faut défides balises particulieres et préciser les
contraintes qui leur sont associées. Ces contgaatrcernent leurs attributs ou la hiérarchie.
Ces informations sont a donner dans un fichier @ pammé "DTD" (Document Type
Definition). Ce langage possede deux caractéristigntéressantes pour le but fixé : c’est un
méta-langage qui, grace au concept de DTD, n‘aibvege d’'un seul analyseur quelque soit
le langage dérivé et c’est un standard recommandé Ip représentation de données. XML
est cependant une notation plus qu’'un langageasditplier il ne dispose pas de sémantique.

Nous avons implémenté les graphes d’ordonnancecherdonnées proposés pour
I'abstraction du transfert des données initialenwmtsidérée dans le flot d'intégration sous
formats XML pour les raisons suivantes :

— XML est un langage de balisage normalisé qui paet@dilisé pour représenter la

structure logique de n'importe quel type de documeontenant du texte libre.

— XML permet linteropérabilité : il est extensiblpprtable et, par opposition a
HTML (qui est également portable, mais non extdakibdéfinit une norme
concernant la structure des documents et non pasdatenu.

— XML est en quelque sorte un méta-format de documirgrésente un grand
nombre d'APIs « Application Programming Interfacedisponibles pour

l'interpréter.

Par ailleurs, I'outil GIC est implémenté avec ledage JAVA. Le langage JAVA a été
choisi pour son caractere a la fois objet et ptetéiulti-plateformes). Par ailleurs, il permet
de manier des fichiers de configuration avec |lgdage XML. En plus, il existe plusieurs API
Java pour XML comme SAX « Simple API for XML » éDOM « Java Document Object
Model » [Vid00] que nous avons utilisés au cour$idglémentation de I'outil GIC. En effet
JDOM :

— permet de construire des documents XML,

— permet de naviguer dans leur structure,
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permet d’ajouter, de manipuler, de modifier et/eusdpprimer leur contenu d’'une
maniere plus simple qu'avec les APIs classiques.
utilise des collections SAX pour « parser » lesieiecs XML. Ce type de parseur

(analyseur) utilise des événements pour pilotéaieement d'un fichier XML.

3.1.2. Etapes du Flot d’intégration dans I'outil GIC

Les principales étapes du flot d’intégration (afufe 44) dans le GIC sont les

suivantes

La

saisie/importation des contraintes d’intégration ;

modélisation en graphes des contraintes sur lefgeirdes données ;

vérification de la compatibilité entre graphes mmdét 'échange des données
entre I'lP et le systeme ;

sélection des modules de l'architecture de linterface appés au choix du
concepteur ;

génération automatique du code (VHDL ou System@ygtilote logiciel ;
configuration des parametres génériques.

figure 44 montre le flot du GIC. L'expérimentati de I'outil GIC (Générateur

d’Interface de Communication) que ce soit pouitifautation ou pour la synthese exige :

du cété du systeme :
o Le partitionnement et I'ordonnancement des tacte$agplication cible
afin :
» d'identifier le comportement des données du cotéydteme,
= et de choisir la conception de I'architecture dedrface.
o L’adaptation entre le protocole de l'interconnedtesystéme et l'interface
générique ; ce qui revient a spécifier les adaptate< interconnecte-
FIFO » et « FIFO-interconnecte ».
o La prise en compte des contraintes du systeme (rdedgansmission,
taille des données etc.)
du co6té de I'lP cible :
o Une caractérisation spatio-temporelle a I'interfake comportement de

transfert des entrées/sorties au cycle pres et auas.
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Saisie/ Importatjgh Choix concepteur

Modélisation en
graphes

/ AN \
/- . N

N |
Test de compa‘tipilit‘\\

y Graphes fompatib)/ 7+

! Sélection /

I
I Génération automatique du code de
'l Tinterface : Instanciation de MEFs

Configuration /
Paramétrisation

« driver » C |

Figure 44. Flot du GIC
A partir de ces fichiers de configuration, l'outjénere les différents graphes
(GOESS, GOES, et GOS) au format XML. Si la compldtbest vérifiée, I'outil permet de
générer le code de I'interface de communication :
— En instanciant et en configurant les modules mel&a partir d’'une librairie. En
effet, I'outil dispose d’'une librairie de modules dinterface (décrits en langage
VHDL ou SystemC : I'outil cible un contexte de dy@ése/simulation) décrivant la
conception en MEF de I'architecture générique uhediface.
— En générant le pilote matériel « driver C » a paiti graphe d’ordonnancement du
systéme.
L’intégration de linterface dans un contexte detit&sation se fait par un simple

copier coller de ces fichiers dans le contextetégration.
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3.1.3. Entrée de I'outil

L'outil de génération GIC prend en entrée les élnesuivants (cf.figure 45) :

— Une architecture qui représente une descriptiorotéenen graphes de taches de
I'architecture matérielle et logicielle cible ; tmtdescription permet de procéder a
une interface pour le cas monoprocesseur ou poaademultiprocesseurs. Elle
identifie également les parameétres liés au systatégrant concernant le mode de
transfert, la taille des données, les types de @emries priorités des taches etc.

— Une description du comportement spatio-tempor&éhteiface de I'lP

— Une bibliotheque de sous module d’interface (oljetsplate, classe MEF) pour la
génération d’adaptateur matérielle.

Comportement spacio-temporel Modele de taches de 'application cible
a l'interface &

Environnement d’exécution
1P I
GAUT

A

Bibliotheaue d’FSN

! :
1
1 | Lecture de la spécification | | Lecture de la spécification | :
1
5 -
1 \
1
1 .
VHDL/ X A 2 1 Rapports des actions et
SystemC Lecture de bibliothéque |—>| Génération de code|—:) des erreurs

__________________ i_______l___'

Pilote logicielle Code de l'interface en
VHDL ou en SystemC

Figure 45 : Entrées/ sorties de I'outil GIC

3.1.4. Sortie de I'outil

La sortie de l'outil (cf. figure 45) de génératiates interfaces est le code de
I'adaptateur matériel de I'IP cible et le pilotegioiel adéquat. Le code de linterface de
communication généré est en SystemC ou en VHDL [poynartie matérielle ; le code de
I'interface logicielle est en C.

Il contient également :

— des entétes permettant d’adapter le code de l@gifmn au systéme d’exploitation

géneéreé et a I'architecture cible : assemblage.

— des rapports fournissant des informations sur E®res effectuées durant la

génération ainsi que les erreurs survenues.
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3.1.5. Modélisation en graphes

Les trois types de graphes sont enregistrés danfsctiéeers XML considérant la méme
organisation sémantique et syntaxique (hiérarchiesotations) définissant GOS, GOES et
GOESS. Ces fichiers fournissent des informatiolssupour le déroulement des étapes du
flot GIC, pour alimenter les outils internes du GIC

3.2. Outils internes au GIC

L’outil GIC repose sur trois sous outils ou encsue trois outils internes :

— GIC_checker. outil de vérification de compatibilité

— GIC interface_generator: outil de génération de code de [linterface de
communication (conception, sélection, configuratiggaramétrage, génération
VHDL ou SystemC)

— GIC _driver_generator. outil de génération de pilote logiciel ou de ofsl

logicielle pour l'interface matérielle I'outil
3.2.1. GIC checker

L’outil GIC-Checker(cf.figure 46) est un composant logiciel qui perm@terpréter
un ensemble de régles, spécifiées en langage Xivle ks appliquer sur un modele d’entrée

iIssu d’'un processus de traduction automatique.

Modéle de taches
de I'application cible

.............

_ - 1

. ~ : K GOES ---—-%-.GOS i
sammms *xq at e *fe T {_ GOES¢ >---- o
g !

Caractéristiqgues sémantiques . -
Caractéristiques syntaxiques

A4
Génération de Bibliothéque de
pseudo ordre

i
Graphes GOS

possibl rﬁ

Y
Lecture de bibliothéque -I—)| Comparaison syntaxiqtie

Y.
Vérification de la
compatibilité

Rapports des actions et
des erreurs

Compatibilité

Figure 46 : Architecture du GIC_Checker
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L’outil GIC-Checker interagit avec une bibliothéqde fichiers XML qu'il crée lui
méme. Cet outil permet de vérifier d’'une faconomtique la bonne formation du modéle
XML. Cette vérification est faite en deux étapes :

— la premiére étape consiste a vérifier la strucsyrgaxique (structure XML).

— La deuxieme étape consiste a vérifier la sémantiopatif, pseudo ordre)

Les régles syntaxique et sémantique sont stocka&es uh fichier XML. L’analyseur
XML (parsel) permet la lecture du fichier XML. Ensuite, il eréne structure en mémoire
(arbre) des différents objets permettant la desoripdes différentes régles et retourne un
objet de typeDocumentdans leDocument Object Modet DOM ConsortiumW3C pour
manipuler les documents XML. L’obj&ocumenteprésente la racine de la structure créée en
mémoire et permet un acces aux différents objetd’albre. Les différentes opérations
(création, suppression, etc.) appliquées sur lgéegésont exécutées directement sur la
structure en mémoire.

Les entrées de I'outil sont :

— le modele de graphes GOS considéré en entréetd (3G sous forme de fichier

XML;

— une base de données contenant un ensemble de spgteiques au modele GOS

généré pour couvrir 'ensemble des pseudo ordrsilglespour le cas cible.
La sortie de I'outil dépend de deux cas :

— si I'ensemble de regles a vérifier par rapport aadele GOS d’entrée est
complétement validé alors le GIChecker affiche un message indiquant la
validation de cet ensemble de régles ;

- dans le cas contraire, c'est-a-dire si I'ensembée rdgles syntaxiques et
sémantiques a Vvérifier n'est pas completement &almlors le GICChecker
géneére un rapport de violation de regles. Ce rappdique les noms (s'il existent)
des objetsDocumentprésentant les origines des violations. Technigrgmle
rapport est un fichier texte simple qui peut étreualisé a l'aide d’'un simple
éditeur de texte.

Les différentes étapes et composants de I'outil-Gheéckersont (cf.figure 46):

— lecture de la description de I'application : modadetaches de I'application

— génération de la bibliothéque de pseudo ordre fewosat XML

— lecture de la bibliothéque
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— comparaison syntaxique GOS et GOS générés : tafie eprésente un processus
qui commence par la récupération d’'une liste deewles regles produites par
I'étape précédente.

— Vérification de la compatibilité : c’est le résultde la comparaison qui servirait a
continuer le processus de génération d'interfacasggr dans le sous outil
GIC interface _generatorpu a retourner a I'étape de saisie et d'impote(fiace

utilisateur).

3.2.2. GIC interface_generator

L’étape de génération de code prend en entréeidess Id’éléments provenant de
I'étape de sélection de code et les parametresujisopar I'étape d’analyse de la description
de l'architecture. Cette étape construit une leetous les parametres associés a chaque
élément précédemment sélectionné. Ceci permetirdeafapel & un processus de paramétrage
et d’optimisation des éléments afin de générer tmde spécialisé respectif. Ensuite, ces
eléments sont assemblés pour concrétiser sous fbencede les relations entre chaque sous
modules requis et/ou fournis.

Le processus de génération de code se composeglétapes élémentaires :

— Jl'étape d'analyse: cette étape permet I'extraction d’'informations tiglss au
systéme a partir de I'architecture. Par exemplsg,itdormations telles que les
types de données et leur taille, les prioritéstéebes, etc. Ceci permet de guider
le processus d'intégration au cours des étapearsigis ;

— I'étape de sélection cette étape localise, compare, et sélectionneolesmodules
qui fournissent les services de l'interface a paftine bibliotheque. Ceci est fait
selon les informations de conception extraites gaémment (graphes). Cette
étape doit étre exécutée récursivement jusqu’auwengensemble convenable
(optimal) de sous modules qui fournissent tousféegtionnalités requises soit
identifiées ;

— [l'étape de spécialisationcette étape permet la personnalisation des souslespd
sélectionnés au cours de l'étape précédente, patisfasre les exigences des
services a fournir (par exemple : les types de éesnla taille du bus, etc.). Elle
permet aussi de vérifier la compatibilité de ceassmodules. Les valeurs des
parametres finaux sont stockées dans des ficheecoufiguration utilisés pour la

génération automatique au cours des étapes susvante
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- I'étape de génération cette étape a besoin de deux types de fichier$ legl
fichiers contenant le macro code des composantiigooables et (2) les fichiers
contenant les paramétres de configuration. Ellenperde générer des fichiers
contenant le code source spécialisé correspondamomportement de chaque
sous modules sélectionné ; en effet au début le g@mhéré correspond a un
modele d'implémentation générique décrit en maarmage. Une implémentation
générique n’est ni simulable ni synthétisable,atkr n’est pas encore configurée.
Le type de données est abstrait, le nombre, I tailla direction des ports sont
encore génériques. Pour une application donné@alesnétres d’allocation (type
de données, taille du port, etc.) sont utilisésrpmnfigurer le code générique
sélectionné a partir de la bibliothéque. Cette egfmm du code génére le code
final de l'interface qui est simulable et synthékike.

— [l'étape d’assemblage au cours de cette étape les composants produittepar
étapes précédentes sont assemblés pour fournirarohdgtecture compléte et
raffinée. L’interface utilisateur pour la spécifica des paramétres de l'interface
se fait a l'aide d'un éditeur XML. L'utilisateur pe rentrer ses spécifications
applicatives, réaliser les transformations qui viamgoser des décisions selon des
parametres, et enfin sauvegarder les résultatesiransformations (configuration,
architecture, tache, pseudo ordre, etc.).

Une étape est nécessaire pour le déroulement apsséprécédente€’est une étape
de lecture de la bibliothéqueElle consiste a charger la bibliotheque architede. Cette
lecture permet de connaitre la disponibilité deswsarces architecturales nécessaires pour la
réalisation de linterface cible. Cette bibliothégweontient différents sous modules de
I'architecture de linterface. La fonctionnalitétesdiquée sous forme d’'un chemin vers

I'implémentation.
3.2.3. Bibliothéque de l'outil : Structures et reldions utilisées

La bibliotheque de sous modules de l'interface demrunication est indispensable
pour le processus d'intégration. Elle contient desdules configurables (paramétrables)
utilisés pour la composition. Ces modules possedestgranularités différentes : ils peuvent
étre des modules d’interface de base ou des sodalesocomplexes. Chaque composant
communique avec I'environnement extérieur (le rafelinterface) via un ensemble de
signaux qui encapsule une liste de services fouegjsis par ce module. Cette bibliotheque

est basée sur trois concepts qui donnent chacunugndifférente :
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— le sous module : représente une partie de l'interfde sorte que la structure de
l'interface complet est modélisée par un ensemélsalis modules liés ;

— le service : représente une fonctionnalité du soosgule, de telle sorte que le
comportement fonctionnel d’'une interface complétraedélisé par un ensemble
de services.

— [limplémentation : représente une réalisation paliére d'une partie du
comportement précis de linterface, de telle saytee le code d'un interface
complet est vu comme un assemblage dimplémentatiparamétrées. Une
implémentation peut étre compatible avec une cdimepe la structure de
l'interface, et incompatibles avec d’autre. C’asx amplémentations que le driver
logiciel générique de l'interface est associé.

Ces trois concepts ne sont pas indépendants, dlgsaelations entre les éléments et

les services, les éléments et les implémentateiries services et les implémentations.

— Les relations entre les sous modules et les sarvicee sont des relations de
dépendance indirectes entre les sous modules baséds concept de services
requis et de services fournis. Ces relations sggemtées sous forme d’un graphe
orienté (figure 47). Chaque noeud du graphe reptésmit un sous module, soit
un service. Chaque arc orienté relie soit un naaugs module (sm) a un noeud
service (si) pour modéliser le fait que I'élémeequiert le service, soit un noeud
service a un noeud sous module pour modéliseiitlgda le sous module fournit

le service.

sous module smO fournit sO @
requiert s1
sous module sm 1 fournit s1,s2

requiert s3

sous module sm 2 fournit s4 » e
requiert s2

sous module sm 3 fournit s3

requiert s4,s5

sous module sm 4 fournit s5 e @

Figure 47 : Relations de dépendance entre sou modslet services
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Nous distinguons quatre types de services: le rélent mémorisation FIFO,
synchronisation, inhibition. Selon les spécificaiod’entrée, les types de services sont
spécifiés pour exploiter les sous modules de |adbiteque.

— Les relations entre les sous modules et les impiéatiens : chaque sous module
possede un ou plusieurs implémentations. Les imgidations d’'un sous module
sont organisées suivant un arbre hiérarchique r@igd8), les fils d'une
implémentation étant toujours compatibles avec malfarchitectures que leur
pére. Pour décrire complétement un sous modulespatioie avec une
architecture donnée, il faut prendre les sourcescses a chaque implémentation
traversée et parcourir I'arbre en profondeur avemroe critere de choix la
compatibilité avec le composant virtuel. Si aucdesille n’est atteinte, alors
limplémentation est invalide pour [larchitectureisée. Si toutes les
implémentations d’'un sous modules sont invalidéssde sous modules est lui
aussi invalide. La figure 48 montre un exemple lofard’'implémentations d’'un
sous modules compatible avec la conception 1 (&l ihonoprocesseur) SystemC
(s). (les implémentations en gras sont celles ctiblpa avec le multiprocesseur
SystemC). Ce type de structure est archivé dangiatéers XML considérant la

méme organisation sémantique et syntaxique.

S,

Figure 48 : Arbre d’implémentation d'un sous moduleSystemC compatible monoprocesseur

- les relations entre les services et les implémenst permettent d'éviter
l'inclusion du code d’implémentation d’'un serviceufnis par un sous module
mais non requis par d’autres sous modules danterfate de communication

généré.
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3.2.4. GIC driver_generator

Le pilote logiciel associé a l'interface de comnuation permet de commander la
communication des données entre I'IP et son enm@orent d’intégration. Nous avons
considéré une communication avec une mémoire gartag qui conserver le paradigme de
communication « espace d’adressage partagé »aglt pour chaque transfert d'un mode de
communication via mémoire partagée. D’ou la nét@sbun pilote qui orchestre le transfert
d’'une part entre l'initiateur ou le processeur ‘espace mémoire et entre la mémoire et
I'accélérateur d’'un autre part. Pour cela, nousnavoonsidéré particulierement que les
données rentrant / sortant successivement sur uh gomt rangées successivement en
mémoire. Par exigence de base de la méthodolomigégiation proposée, I'ordonnancement
des données (rentrant et sortant sur un portusyiseudo ordre pour une itération de calcul.
Ce pseudo ordre est exactement le graphe d’ordoenant systéme (GOS) spécifié en
entrée a I'outil GIC.

Implémentations
de la bibliothequ

de composants
logiciels

Service requis

. . \ 1
Bibliotheque de 1 Analyse des entrées, extraction, Demandes |
composants logiciels répartition des paramétres oalfocation | Allocation des paramétres
1
| adresse
1
1

Get(), Put(), read(),

write(), wait(), etc Lecture de bibliotheque |——> Implémentation des .
Service requis Parametres

l l¢

| Génération de drivi |

<€

Reskt T=Tend

Itération de calcul

/—/%

/IComportement régulier a chaque
/lcycle d’horloge
For i=1 to longueur itération do

Pilote logiciel

Figure 49 : Architecture du GIC_driver_generator
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Pour chaque architecture cible, nous considérons mnouvelle définition des
instructions de pilotages utilisés dans le dévedopgnt de la partie logicielle (différentes
implémentations de la bibliothéque de composanjisikels)

Considérant I'ordre donné par le graphe GOS etrlassitions temporelles données
par les graphes GOES donné pour chaque structure dinée, le
GIC _driver_generatorconstruit le code du « driver » adéquat (cf.fegd®):

— Il analyse les entrées et les sorties et extrarepartition spatio-temporelle des
parametres : Les informations et les paramétresenas dans cette description
sont de plusieurs types :

o les informations topologiques provenant de la hatri@ des modules de la
description : il s’agit du nombre d'initiateurs, duombre de taches
logicielles, quels processeurs exécutent queltdset

o les informations fournies par les paramétres deduhas : il s'agit des
caractéristiques des ressources locales, etc ;

o les informations fournies par les parametres diallion pour les taches et
les divers éléments du systéme d’exploitation :sdees parameétres se
trouvent les adresses des données en mémoirelléades données, les
types de données, les priorités des taches, etc

— a partir de cette description, le Gifiver_generatorpeut faire I'allocation des
parameétres en demandant des adresses de la mémoire

— suivant le service requis (envoi, réception, syaotsation etc.), une étape de
lecture de bibliothéque de composants logicielslastée pour la sélection des
services. Cette bibliotheque contient tous les amapts logiciels élémentaires et
génériques qui peuvent étre spécialisés et assenguéar obtenir un pilote
complet, ainsi que toutes les informations quirdéfient ces composants et leur
environnement d’utilisation.

— La lecture de bibliotheque permet une implémentaties services requis en
langage évolués (avec des routines générales)readé(), get(), put() etc)

— La génération de driver permet une implémentaties skrvices en considérant la
répartition et l'allocation des parametres, lesapatres, et I'implémentation des

composants logiciels de la bibliotheque en langage
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3.3. Modélisation du GIC

Nous avons utilisé comme langage de modélisatiostdéedard UML « Unified

Modeling Language ». Le diagramme de classes diguae 50 résume la conception des

relations entre les plus importantes classes égisians le GIC. Les classes sont représentées

sans leurs attributs ni leurs méthodes pour plusitdité du diagramme.

générer_graphes

tester

test_compatibilité

[N

.. . généarar_pilote
generer_interface

générer_pilote

biblothégues =]

AR

générer _code

S].ﬂstemtj WHOL J configurer

paramétriser
zelectionner MEF configuation

salaction ' \j& instartiztion
.. SystemC | ' WHDL T

o:LISMEx-'*-,_ ;, ____-'ul.l-'SE:o

assamblags
Systemi wHOL SyternlC WHOL

Figure 50. Diagramme de classes du GIC

La classe « générer_graphes » permet I'extractesndbnnées (a partir du fichier de

caractérisation de I'lP a intégrer ou selon laisade I'utilisateur) et la génération des

graphes d’'ordonnancements tels que :

— GOES : permet de présenter les données dans uerfiotml intitulé GOES,
ordonnées selon les transitions temporelles.

— GOESS : permet de présenter les données danshigr fikml sous forme de deux
catégories : les entrées et les sorties.

— GOS: permet de présenter les données dans uerfiolml « GOS » selon des
structures sans les contraintes sur les délais.

La classe « test_compatibilité» permet de vérifeepossibilité d’intégration de I'lP

dans I'environnement considéré. Les fichiers regméant les graphes servent pour analyser la

compatibilité de 'ordonnancement des donnéesnd¢efiace de I'lP avec celle exigée par le

systéme intégrant.
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La classe « génerér_pilote » permet de généredtéver » logiciel de l'interface de
communication.

La classe « générer_code» représente la classepatian qui fait I'appel de toutes les
autres classes et donc de générer les fichiers cpnstituent [linterface de
communication matérielle. Elle est composée ds tlasses :

— Classe «sélection »: cette classe permet de tigéleer les sous_modules
constituants I'interface de communication matéegial partir de la bibliotheque
adéquate au choix de Il'utilisateur.

— La classe « configuration » : cette classe perraetahfigurer les modules choisis
a partir des fichiers XML.

— La classe « instantiation » : cette classe pernmestdncier autant que nécessaire
les modules chaoisis.

& Ui x]
Rechercher dans: |3 source RN = = |
[Simages I

Corg
|3 Adressedst
%%‘ Copyright 2006, Générateur dinterface de communication
8 FEI = A #h TR ==
EELGBEE B A BB A B RS Bl B &
ichiers texte
o — 1 - Splash. java
= 14 . o C:1PROGRA-1XXINOXS~ 1\JCREAT- 1\GE2001 .exe
E ) iimport javax.swing . ®:

amport Jave.awe x Fichier Tifo_Enable.uhd ouvert en lecture

Fichier Fifo_Enable.uhd ouvert en ecwiture

i public class Splash { lEdl
IR . oc du ¢ ichicr cornince

b or HODULE CIRL2 GUT whd 1

ichier vhd owvert en lecture

O R c i HODULE_CTRLZ OUT whd ouvert en ecriture
showSplash( Il .- ciure du Fichier terninee

. e Il T - i ture du Fichie
Modglsation des a Ahanemn() Fichicr MODULE [T “GANS ADRESSE OUT.uhd ouvert en lecture
I Fichier Test_Bonch avec. adresse.uhd owsert en scrituse
Fcriture du Fichier terminee
DY RPNV | . cure du fichier terminee

Ol DR Lccurc du fichicr terninee
Public Static void Dhik Rl
ggmd?" Rl - ture du Fichier
Nl - .1 du Fichier tormines
Fichier Test Bench_avec_adresse.vhd ouvert en lecture
R IRl - cure du fichier ternminee
R A R N - -iture du fichier terminee
int height - 220; % key to continue.

Vérification de la compatibilits

Modules VHDL Driver logiciel

Figure 51. Snapshots de I'outil GIC
La figure 51 montre l'interface de I'outil GIC. Lehoix (partie encadrée en traits
pointillés) considéere une génération de modulesainterface de communication en VHDL
synthétisable en tenant compte de la premiere ptiocede l'interface de communication
(onglet « version sans adresse » dans la figureo®d) un IP généré par GAUT (fichier de
caractérisation mem.txt).Le flot d'intégration asgoa ce choix (figure 51) comporte

essentiellement 4 menus dont le premier permet a#ehser les données a l'interface sous
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forme de fichiers XML. Ensuite, le générateur pdrae vérifier la compatibilité du transfert
des données avec celles envoyées du coté systemmisieme menu permet de générer les
modules nécessaires pour assurer la bonne comrtianice I'lP avec le systéme entier que
ce soit pour la simulation (SystemC) ou pour latlsgse (VHDL) (dans ce cas de figure,
I'expérience cible le langage VHDL : cf. fenétre BQlans figure 51). L'outil génére
parallelement l'interface logicielle ou le « drivedogiciel qui s’exécute par le processeur de

I'architecture cible. En effet, le processeur @lbtP via l'interface matérielle.

3.4. Conclusion

A travers ce chapitre, nous avons présenté |'emvément GIC qui intégre I'approche
d’intégration proposée dans le chapitre 3. L'emniament développé est de type générateur
de code. Il est facilement extensible pour étréisatiavec d'autres outils de conception
réalisant d’'autres taches de co-design. Ce qui gtedlaugmenter la productivité dans un
milieu industriel.

GIC est capable de modéliser une interface de conwation pour la paramétrer et de
générer son code VHDL synthétisable et son coddeBy5 simulable. Cet outil est
facilement évolutif. Il pourra également étre glicomme support de génération automatique

et d'évaluation des résultats de simulation etréadtats de synthése

L’expérimentation de I'approche d’intégration auedique a travers I'implémentation
et le test de I'outil « GIC » est illustrée d’abgrdur la simulation et puis pour la synthese.
L'approche a été testée pour I'accélération d'upglieation multimédia nommée « pipeline
graphique », « synthese d’'images 3D » ou encorpetipe 3D » qui sera présentée dans

chapitre suivant.
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CHAPITRE 5. EXPERIMENTATION DE L’'APPROCHE
D' INTEGRATION : EXEMPLE ET VALIDATION

1. Introduction

La génération de linterface de communication esttéte pour le contexte de
simulation en utilisant la plateforme SoCLiB. Pdercontexte de synthése, l'interface est
testée en utilisant le processeur NIOS équipé duAWALON. L'application cible est la
« synthese d’images 3D ». Divers tests ont étécteffs avec l'outil GIC pour les deux
contextes : simulation et synthese.

Dans la section 2, nous présentons l'applicatitaeck synthése d’'image 3D » et la
démarche utilisée pour le choix d'un IP accélénmtdlP « produit matriciel ». Dans la
section 3, nous développons la démarche de validdt I'approche pour la simulation. Pour
cela, nous présentons I'environnement de simulati®oCLIB », la bibliothéque de modules
de l'interface, les fonctionnalités du GIC pouslmulation et enfin les résultats de simulation.
Dans la section 4, nous présentons la démarchalaton de I'approche pour la synthése ;
nous présentons les modules VHDL de l'interfacéestfonctionnalités principales du GIC
pour la synthése. Une démarche d’optimisation dE©§ est proposée pou améliorer les
résultats de synthése.

2. Exemple d’application cible : « Pipeline 3D »

La chaine de production d’'une image 3D est apppigeline graphique. Elle est
formée par lI'ensemble des opérations nécessaitgsafficher un objet 3D vu depuis une
position et avec une orientation donnée. En effétran d'un ordinateur est seulement
capable de représenter des coordonnées en deuxsiime Comme les écrans de sortie
tridimensionnelle n’existent pas encore, nous sosnareené a transformer les coordonnées
3D en coordonnées 2D. Pour se faire, nous utilifpsojection par perspective, qui permet
de représenter correctement la « profondeur » dhjet en donnant I'impression de volume.
Le « pipeline 3D » est I'ensemble des étapes raicespour la création et la visualisation
d'une image 3D. Cette chaine est décomposée ensemble d’opérations nécessaires pour
afficher un objet 3D observé a partir d'une positiet avec une orientation donnée. Ces

opérations constituent diverses étapes de I'agpicdlustrées par la figure 52 [Fol95].
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éxtraction ransformations Test de visibilité
coordonnées _
triangles Calcul des lumiéres

Figure 52. Syntheése d'images 3D
— Extraction des coordonnées des triangles : Lesefltsrd’entrée de ce pipeline

sont des triangles qui sont plus pratiques queueslrilateres ou autres polygones
pour les calculs. En effet, ils ne peuvent étreriliés (dont les sommets ne sont
pas coplanaires) ni concaves. La plupart des nmotdD effectuent une
triangulation des différentes faces avant de le®ysr au pipeline graphique. La
figure 53 montre deux exemples de cette transfoomat.es coordonnées des
différents sommets des triangles (dans le repéoprerde I'objet) ainsi que la
définition des arétes des triangles sont sauvegardéns un fichier. Il n'est pas
nécessaire que les triangles soient égaux commendetre la figure 53.
L’extraction des coordonnées permet de chargerdesdonnées des sommets des
triangles a partir de la base de données décrigandbjets pour les appliquer aux

étapes suivantes de rendu 3D.

“;‘7 rd

LYY

4

Figure 53. Objets transformés en un ensemble de amgles
— Transformation géométrique : Les transformationsmeétent de convertir les
coordonnées locales de I'objet 3D dans le repéieatide la scéne (appelé repére
du monde) puis dans le repére de la caméra (olisaryaElles permettent
également d’animer 'objet 3D.
— Test de visibilité : Il permet de déterminer lesefa de I'objet 3D visibles par

I'observateur.

98



Chapitre 5 : Expérimentation de I'approche d’intégon : exemple et validation

— Calcul des lumiéres : Le calcul des lumieres peeedéterminer l'intensité de la
couleur en un point.

— Transformations des textures : La texture est orege plaquée sur la surface de
I'objet 3D. Cette étape permet de transformer dasures avant qu’elles ne soient
appliquées au triangle dans I'étape de « rastemsat Si aucune texture ne doit
étre appliquée au triangle, cette étape est omise.

— Clipping (fenétrage) : Cette étape consiste a akmles triangles qui ne font pas
partie du volume de vue (situés hors du champslervde I'observateur).

— Projection : C’est la transformation de I'objet 38présenté dans le systéme de
coordonnées du monde, en coordonnées de I'écran.

— Rasterisation: La «rasterisation » est ['étapandformant les formes
géométriques 3D en pixels sur I'écran, tout en dohmin aspect réel a I'objet 3D
en question.

Nous considérons le cas de rendu 3D d'objets emtiént visibles sur I'écran sans
texture. Cette application est formée donc paraped (puisque nous éliminons I'étape de
transformations des textures et I'étape de clippihéppplication est codée en langage C.
Nous analysons ce code pour pouvoir identifier theslules matériels spécifiqgues a cette

application.

2.1. Graphes de taches de l'application 3D

L’application de traitement d'images 3D est décosfm en 15 taches réalisant
chacune une fonctionnalité simple comme le momtifeglre 54 [Lou04].

Une étape de la synthese 3D (Cf. la figure 52) peutespondre a une ou plusieurs
taches selon sa complexité. Par exemple ['étapatraction coordonnées triangles »
correspond a la tache « LoadAS ». Par contre,pééta transformation » correspond aux
taches « Changement d’échelle », « TranslationRotation » et « Calc_new_coord ». Le

tableau 1 résume I'ensemble de ces taches.
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: Produit
Changement v matriciel

d’échelle

~o _

- l =~

Cal_new_coodr

7 Produit
. 1
' scalairc -

. . Vers
_- -< Dessine_Objet Ié
. . N - écran
J Produit
‘. vectorie ./ 4

Figure 54. Graphe de taches de 'application syntheés3D

Le « profiling » de cette application nous a perghessélectionner les fonctions qui
sont le plus souvent appelées. Il s’agit des fonetisuivantes : « produit scalaire», « produit
vectoriel », « produit matriciel », « la projecti@b » et la « Calc_new_coord», (Cf. fonctions

en pointillés dans la figure 54).

Tableau 1. Description des taches de I'applicatiosynthése 3D

Ident Mat construit une matrice identité
Precalc Calcule le tableau de sinus/cosinus
LoadAS charge les coordonnées des sommets d'un3ibje
Produit vectoriel Réalise le produit vectoriel de deux vecteurs
Echelle Calcule la matrice de changement d'échelle
Translation Calcule la matrice de translation
Rotation Calcule la matrice de rotation
Calcul_Nor calcule les normales de face pour chaque polygone
Normalise Permet de normaliser un vecteur
Produit matriciel Calcule le Produit matriciel
Calc_new_ coord Calcule les nouvelles coordonnées aprés transfammgéomeétrique
Dessine_Objet Dessine I'objet sur I'écran.
Projection Permet la transformation des coordonnées 3D stnalfé2D
Produit scalaire Calcule le Produit scalaire
Tri_face Permet de trier les faces pour n’afficher que salisibles
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L’'accélération de l'application synthese 3D passamcdpar l'accélération de ces

fonctions. Nous détaillons dans la suite brievencestfonctions.

2.2. Accélérateur matériel

L'objet 3D est décrit en utilisant les coordonnéesnogenes et qui sont utilisées afin
d'unifier le traitement des transformations géomeas d'une scéne et de les exprimer sous
forme matricielle dans une seule matrice. Pour,cefe quatriéeme coordonnée « w » est
ajoutée aux coordonnées cartésiennes (x,y,z) durt M de I'objet 3D.

La fonction « transformation géométrique » permeippliquer a un objet 3D les

transformations suivantes :

— La Translation
La translation de vecteuf (tx, ty, tz) appliquée au point M donne un point

M'(x,y’,z',\w’) selon I'équation :

w1 [1 00t
Y| o1 0 t]Y
ZI"lo o 1t]2
Wl lo oo 1|W

— Le changement d’échelle
Le changement d'échelle de vected{Sx, Sy, Sz) appliquée au point M donne un point

M'(X’, y',z', W) selon I'équation :

1 IS, 0 0 0]ry
Y| |o s, 0 ofV
Z|'|lo 0 s, 0]z
Wilo o o0 1w

— Rotation
La rotation d’angle €x » appliqguée au point M donne un point M’'(x’,y’ ") selon

I'équation :
X' _1 0 0 d X
y'| |0 cosfy) —sing,) Q|y
Z'| 10 sin@) cosf,) d|Z
Wl lo o o 1w
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Le produit scalaire peut étre considéré comme odyt matriciel d’'un vecteur ligne
par un vecteur colonne.

La projection est la transformation qui permet dareer la position du point image sur
le plan a partir d'un point dans l'espace cara@dyar ses coordonnées (X,y,z).

Nous remarquons que quatre des cing fonctiongjees peuvent s’exprimer par un
produit matriciel sous divers formats (matrice*wat vecteur*vecteur ou matrice*matrice).
C’est pourquoi nous avons développé un IP dédig fmeas général de produit de deux
matrices 4*4. Il pourra étre facilement modifialgeur traiter les autres types de produit
matriciel (matrice*vecteur ou vecteur *vecteur).aQhe fois qu’une fonction a besoin d’'un
calcul matriciel, elle fait appel a cet IP ce qarmpet d’accélérer le rendu d’'un objet 3D.

GAUT est utilisé pour générer l'architecture matkei correspondante de I'IP

accélérateur et ainsi de déterminer le comporteau@nentrées/sorties des données.

2.3. Synthese sous GAUT de I'lP « produit matricieb

Dans cette section, nous présentons plusieurgectlvies de I'lP « produit matriciel »
obtenues en modifiant les parameétres de syntheéseGAUT. Ces architectures serviront a
tester notre interface. Pour cela, nous avons dérésies contraintes de synthese suivantes :

— Latence : c’est le temps d’exécution de l'algorithmproduit matriciel » (chemin

critigue) (voir Tableau 2). Elle correspond a lag# temporelle définie dans le
fichier source (ficher.src ou fichier.c) et perndet limiter le temps sur lequel se
manifeste I'algorithme architectural. En effet, GAUW'accepte pas les boucles
infinies.

— Cadence : elle correspond a la plage temporelle laguelle I'ensemble des

données nécessaires a une itération (répétitionljatiprithme arrive (le taux
d'arrivée des ensembles d'entrée des données)dditléétre un multiple de la

période de I'horloge du circuit synthétisé.

Tableau 2. Exemples d’architectures GAUT de I'IP «roduit de 2 matrices 4x4 »

Casl Cas 2 Cas 3 Cas 4 Cas b Casp
Latence (ns) 3000 2000 1000 800 500 200
cadence (ns) 3000 2000 1000 800 500 200

Cible technologique | EPXA1F4 | EPXA1F4 | EPXALF4 | EPXALF4 | EPXALF4 | EPXALF4
(compatible Altera) | 84C3-16b | 84C3-16b| 84C3-16b | 84C3-16b | 84C3-16b | 84C3-16b

Nb_bus* 5 5 14 24 32 46

Nb_bus utiles** 4 4 9 15 28 37

*: nombre de bus total & I'interface de l'unitétd@tement de I'lP
** - nombre de bus servant pour le transfert demées aux entrées/sorties de I'lP
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La figure 55 présente un exemple d’architecturedgém par GAUT. Si la latence est
supérieure a la cadence, une architecture de nraite pipeline doitétre établie. GAUT
génere un « fichier.mem » qui regroupe ces infaonatainsi que les contraintes spatio-

temporelles sur les données a l'interface de ligecture de I'lP.

Rsth BUS_DONNEES_1_prodmat[D..15] b ©
ik BUS_DONNEES_2_prodmat[0..15]
| enable  BUS_DONNEES_3 _prodmat[D..15]
BUS_DONNEES_4_prodmat[D..15]
BUS_DONNEES_&_prodmat[D..15]

BUS_DONNEES_6_prodmat[0..15] 1
BUS_DONMEES 7 _prodmat[0..15] (S [
BUS_DONNEES_8_prodmat[D..15]
BUS_DONNEES_0_prodmat[D..15] I
BUS_DONNEES_10_prodmat[0.. 1] —
BUS_DONNEES_11_prodmat[0..15]
BUS_DONNEES_12_prodmat[0..15] [S——
BUS_DONNEES_13_prodmat[0..15] :
BUS_DONNEES_14_prodmat[0..15] —

read_ok

Figure 55. Exemple d'architecture’tP GAUT (produit matriciel cas 3)
Il suffit pour cela de sélectionner le fichier deactérisation de I'architecture IP cible

pour générer I'interface correspondante a 'aidéalgil GIC.

Le fichier « mem.txt », image du « fichier.mem éndré a la suite de la synthése haut
niveau avec l'outii GAUT de I'lP accélérateur petm#de gagner le temps. En effet,
I'importation des contraintes d’ordonnancementiatdiface de I'lP se fait a partir de ce
fichier.

Nous présentons dans la section suivante un soédamiégration de I'lP « produit

matriciel » dans un systéme sur lequel tourne lieggion « rendu 3D ».

2.3. Scénario d'intégration

Nous disposons d’'un code C permettant le rendu’8D abjet sans texture. Ce code
permet de charger un fichier décrivant les sommeeéties triangles de l'objet 3D et de le
visualiser sur I'écran [Dor05].

L'application « rendu 3D » (représentée par le heage tache de la figure 54) est
partitionnée en deux parties :

— Partie logicielle exécutée par le processeur NI@Be: comprend les difféerentes

fonctions non exécutées par I'lP « produit mattisie

— Partie matérielle : formée par I'lP « produit meigl ». A chaque fois qu'il y a

dans la partie logicielle un calcul matriciel, ¢’88° qui est appelée pour effectuer
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cette tache. Comme nous l'avons détaillé avant]Retera utilisé par les taches
« Translation », « changement d’échelle », « rotasi et « produit scalaire ».
Pour les deux contextes d’intégration (simulatibey@these), nous avons recours aux

étapes suivantes :

— 1°.étape Reéaliser la boucle suivante :

For (i=1; i<nbre de triangles, i++)

{

Extraire les triangles a partir de fichier.ASC

Mapper dans la mémoire de la plateforme

}

— 2°.¢étape Envoyer les triangles de la sphére avec les stoamations

correspondantes a l'aide du driver a I'accélérateur

— envoi des données a FIFO_IN

— 3°. Etape: Envoyer des données sérialisées a partir dé-l@ FOUT a la mémoire

— mapper la sphére résultante dans la mémoire

— récupérer le résultat a I'aide du driver pour awnir I'application

Par ailleurs, I'lP « produit matriciel » nécesgltextraire les données :

— ligne par ligne de la matrice correspondant a laiceasommet

— colonne par colonne a partir de la matrice corredpot a la matrice de

transformation.

La sérialisation des données lors de I'envoi desidon le modele suivant :

[lignel(sommetl), colonnel(transformationl), ligfls@2nmetl),
colonne2(transformationl), ligne3(sommetl), col@ftransformatiol), ligne4(sommetl),
colonne4(transformationl), lignel(sommet2), coldrftransformation2), ligne2(sommet2),
colonne2(transformation2), ligne3(sommet2), col@{transformation2), ligne4(sommet2),
colonne4(transformation2) , lignel(sommet3), cok&dtransformation3), ligne2(sommet3),
colonne2(transformation3), ligne3(sommet3), col@{transformation3), ligne4(sommet3),
colonne4(transformation3)]

Ce motif est a répéter pour I'envoi de chaque ¢lame la sphere. Cette description
textuelle décrit le pseudo ordre a vérifier pasysteme.

En revanche, l'ordre de consommation et de prodncé l'interface de I'IP est
aléatoire. Un exemple de répartition spatiale dewire est décrit par la figure 56 pour le cas

3. Le cas 3 dans le tableau 2 présente une arithiged’IP produit matricielle généré par
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GAUT possédant 9 bus a son interface d’entréeesdusdi figure 56 montre le comportement a
I'interface de I'lP, des coefficients des matricksntrée et de la matrice de sortie sur les bus

ainsi que les délais de temps qui séparent cefigenfs les unes des autres.

G G
G G G G
GG G G
GG G 0 G
G (i (i
G G GGG GCGCE G G G
G GG C GCGCC G C
GCGGOC G GGL GCGCLG G GG G
G GCC CQCCGCCGQGGEE G & G

Figure 56. Ordonnancement des données a I'entrée té (cas 3)

L’'application de I'approche d’intégration avec cesnsidérations est validée tout

d’abord pour un contexte de simulation, puis paucaontexte de synthese.

3. Génération d’interface pour la Simulation

Lors des phases de spécification et d’explorati@nctitecture, un certain nombre
d’hypothéses sont retenues pour I'assemblage depasants virtuels. Ces derniers sont
évalués par simulations puis affinés jusqu'a cermgr'solution satisfaisante soit retenue. Il est
donc important de disposer d'une plateforme de Isitimn ayant les caractéristiques
suivantes :

— qu’elle dispose d'une bibliotheque de modeles daukition de composants
virtuels (IPs) afin d’évaluer un grand nombre déusons au prix d'efforts de
développement réduits et que l'interfacage deséwdffts composants de la
bibliothéque soit simplifié.

— que les modéles de simulation utilisés soient preour garantir la fiabilité des
mesures de performances. Afin de faciliter le déweément du systeme complet,
I'utilisation de plateforme de simulation cycle ptgit pres devient indispensable.

— que les modeles de simulation soient rapides pogoloeer le maximum
d’hypothéses différentes sur un grand nombre deasités d’utilisation du produit
visé.

Pour illustrer la génération de l'interface poursiaulation, nous avons adopté la

plateforme SoCLiB [SoCL]. SoCLiB propose une platefe de simulation pour la
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conception des SoCs conformément au protocole MOus présentons dans la suite cette

plateforme de simulation.

3.1. Plateforme de simulation SoCLiB

SoCLIB est une plateforme de prototypage de SoCadai particularité de posséder
une bibliotheque de composants décrits en Systeom®rnément au protocole VCI. Cette
particularité permet de simuler des systemes aréifits niveaux d’abstraction, d’implémenter
et d'intégrer facilement de nouveaux IPs. Nous gmtss dans la suite le protocole VCI

adopté dans cette plateforme.
3.1.1. Protocole VCI

La plateforme SoCLiB utilise le protocole d’interéa VCI, normalisé par le
consortium VSIA, afin de garantir I'interopérabdlitentre les différents composants du
systéme. L’objectif de ce protocole est de sépal@rement -au niveau du matériel - la
fonction de calcul de la fonction de communicatibpermet de :

— Reéutiliser des composants matériels

— Supporter les architectures multi-processeurs

— Conserver le paradigme de communication « espaamdrasage partagé » : un

maitre désigne sa cible par les bits de poidsdertadresse et une case mémoire
particuliére par les bits de poids faible.

— Réutiliser des composants logiciels

— Fournir a chague maitre I'illusion qu’il disposaud’canal de communication point

a point avec chaque cible.
— Simplifier le protocole d’acces a l'interconnechaig, réseaux de communication,
NoC, etc).

VCI est construit autour d’'un espace adressabl@agar Les initiateurs émettent des
requétes de lecture ou d’écriture. Une requéte pentenir une seule adresse (transaction
simple) ou plusieurs adresses (transaction raf&eur SoCLiB, le protocole VCI est
implémenté dans sa version PVCI (VCI périphériqgteBVCI (VCI Basique). Afin d’utiliser

un IP dans cette plateforme, il est nécessair&adapter a ce protocole.
3.1.2. Modélisation des composants sous SoCLiB

Dans la logique SoCLiB, une écriture spécifique dexlules d’'une architecture est

nécessaire. Conceptuellement, un module est aéerime un unique automate : il comprend
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un nombre quelconque de registres, et peut étrstitgd de plusieurs petits automates
communiquant entre eux, a lintérieur du méme n@ddhaque module doit étre décrit
comme un automate d'état synchrone (de type MoaréMealy) en utilisant le langage
SystemC au niveau CABA. Ce niveau d’abstractiomgtide décrire une interface matérielle
sans décrire I'architecture matérielle du compasant

Cette spécification permet de simuler un systére @pidement que le modéle RTL
et favorise aussi bien la simulation et la synthisgerface. D'ailleurs, elle garantit plus de
shreté dans la conception d'architecture d'interfagur les SoCs. En fait, tous les sous
modules de linterface sont spécifiés au niveau BABeci peut étre assez difficile en
utilisant ce modele de codage. Cependant, les meddt simulation générés au niveau
CABA sont sémantiquement proches de la descriptéadoituelle de RTL

L’architecture d’'implantation peut étre alors masguau profit d’une simulation
rapide avec des interfaces réelles.

3.2. Expérimentation de I'outil GIC pour la simulation

L’expérimentation de I'outil GIC pour la simulati@xige :

— du coté de I'architecture cible :

— le partitionnement et I'ordonnancement des tached'application cible pour
identifier le comportement des données du cotéydieme.

— du coté de I'lP cible :

— Caractérisation a l'interface du comportement sptimporel des données aux
entrées/sorties au cycle prét et au bit prét.

— L’'adaptation entre le protocole VCI et I'interfagénérique revient a spécifier les
adaptateurs « VCI-FIFO » et « FIFO-VCI » (adapteteVWClk-FIFO dans la
figure 57).

La génération de l'interface repose sur une bibéquie de modules SystemC décrits

pour une intégration dans la plateforme SoCLIiB.
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IP GAUT Plateforme SoCLiB

Graphes I
XML
Génération d’'interface

v

Interface décrite en SystemC pour la
simulation

Adaptateurs
VCIl<FIFO

Modules
SystemC de
I'Interface

Figure 57. Application de I'approche pour la simulaton de I'interface
Nous décrivons dans la suite les différents moddé&loppés pour la génération de

I'interface de communication pour la simulation.
3.2.1. Bibliothéque de composants

Les éléments de la bibliotheque ont été implémeatéaide de SystemCSfs0q.
Nous allons introduire brievement quelques concedetbase du langage SystemC. En fait, le
systeme est modélisé comme étant une collectionatkiles qui contiennent des processus,
et qui communiquent en utilisant des ports, desawanet des interfaces. Les processus
définissent le comportement des modules. Une sxterdéfinit un ensemble de méthodes,
mais ne les implémente pas. Un canal implémenteuuplusieurs méthodes d’une interface
[Sys01. Un port permet a un module, et désormais sesegsus, d'accéder a un canal. Le
port est aussi définit en terme d’interface, caeslire qu’il ne peut étre utilisé gu'avec les
canaux qui implémentent cette interface. Le conaBjptterface permet ['utilisation d’un
schéma de communication appelé en anglaterface Method Call — IMY; qui s’applique a
un processus appelant une méthode de l'interfapEmentée au niveau d’un canal.

Par ailleurs, I'aspect conception matérielle espact méta-programmation sont pris
en compte avec SystemC [SYS]: une conception haweau utilise des modéles
« templates » pour la conception générique. En,dée méthodologies basées sur C++, tels
SystemC, gerent la complexité et la diversité deeption des SoCs en introduisant I'Orienté
Objet [Gaj00]. Ce principe permet de séparer liistee de I'implémentation, et favorise la
réutilisation & un niveau d’abstraction élevé.

Nous distinguons ici les adaptateurs au protocdl® ¥t les modules constituants

I'interface de communication générique.
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3.2.2. Adaptateurs (VCI-FIFO, FIFO-VCI)

Les modules définis dans SoCLIiB communiquent a@é&adu protocole VCI. Afin de
relier un composant aux autres composants de le-fieme, nous avons créé deux
adaptateurs de protocoles a savoir un adaptateurghagque sens de communication : VCI
vers FIFO (VCI_TO_FIFO dans la figure 52), FIFOs/&Cl (FIFO_TO_VCI dans la figure

58).
- VCI _to FIFO .
— FIFO to VCI ‘
Figure 58. Représentation des adaptateurs VCI-FIFO
Les deux adaptateurs considérent le composanggrartcomme un IP cible (Target
VCI).

3.2.3. Spécification SystemC des modules de I'inface

Dans le chapitre 3, nous avons décrit deux cormepiile 'interface, une dédiée pour
le cas multiprocesseur et l'autre pour le cas moyegsseur. Pour chacune de ces versions,
nous avons implémenté différents modules au niveABA SystemC. Chaque module
correspond a une fonctionnalité bien détermimés. modules seront distingués suivant leur
appartenance, soit a la chaine d’entrée soit ah&ine de sortie, par leurs parametres
« template ».

La chaine de communication d’entrée présente lekihas suivants :

— FIFO_IN_H

o template < unsigned int SIZE, unsigned int BITWIDTN, unsigned int
BITWIDTH_OUT >
— INPUT_CONTROLER_H
o template <int BUSWIDTH , int NBVAR_INPUT>
— FIFO_ENABLE_H
o template < int BITWIDTH_OUT, int BITWIDTH_IN, int
NBVAR_INPUT, int NBVAR_OUTPUT >
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La chaine de communication de sortie présente ¢tekilas suivants :

— OUTPUT_CONTROLER_H
o template <int BUSWIDTH , int NBVAR_OUTPUT>
— FIFO_OUT_H
o template < unsigned int SIZE, unsigned int BITWIDTN, unsigned int
BITWIDTH_OUT >
Nous définissons :

— BUSWIDTH=32 bits : taille des données véhiculéeslimterconnecte VCI dans
SoCLiB.

— NBVAR implémente le nb_Bus_utiles pour les IPs bgtisés avec GAUT.

Des signaux de synchronisation sont considérésassurer le bon fonctionnement de

I'’ensemble des sous modules constituants I'interfdes communication.

3.3. Fonctionnalités principales du GIC pour la simlation

Nous distinguons deux principales fonctionnalitésaslle GIC pour I'automatisation
de la génération d’interface de communication pawimulation sous SoCLiB :
— La génération du driver.
— La génération du fichier d’interconnexion qui agsur
o La parametrisation des variables génériques (Tde)pka partir des
informations extraites des graphes.
o L'’instanciation des modules a partir de la bibléxbe

L’interconnexion des modules de linterface esuais par exemple selon la figure 59.

3636 3636 36 3636 36 3636 36 363636 I I I I I I I I I I I I I I I I K

#finclude "soclib fifo. k"

finclude "fifo_in. h" ..
#include "fifo _out.h" Instanciation des modules de
#include "input_controler h” I'interface de communication

#include "output_controler h”
#include "fifo_enable L'

#define YCI_FIFO STIZE_IN 5000

fdefine VCI_FIFO_SIZE_OUT 5000 L . .
tdef ine HWORD 10000 Paramétrisation des variables ’

template
Figure 59. Instanciation des modules et configuratiodes paramétres génériques
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3.4. Simulation et Résultats

Afin de tester I'approche d’intégration de I'lP aéterateur dans un contexte de

simulation, I'architecture de la plateforme SoCldBnsidérée (Cf. figure 60 pour le cas du

test de la conception 1) est composée de :

1 MIPS R3000 et 1 cache associé (architecture RIES) : a ce processeur est
associé le compilateur GCC-MIPS, pour le test dmteception 1.

une mémoire cache associée au processeur : Cetteiraéest paramétrable de
512 octets a 8ko, elle est associative par ensemble

une mémoire ROM : contenant le programme a exéetites constantes

une mémoire RAM : contenant les données,

un systéme d’interconnexions VCI (crossbar : geneetwork qui est une sorte de
routeur) : Ce n’est pas un bus au sens bus de dsnbés d’adresse, mais un
réseau qui permet la connexion de tous les comgodarsysteme qui répondent a
la norme VCI,

une table de segmentation : La table de segmemtasible cceur de l'architecture.

C’est une table de correspondance entre les adrdssedifférents composants de
I'architecture ainsi que les zones ou les espa@maaines physiques réservés aux
données ou aux instructions. Il permet donc deispete « mapping » mémoire

des différents composants du systeme.

=
T
%
T
>
<

Clock du systeme

: :
i i
| %CUB Crossbar .

I < % % I
! — T Clock virtuelle I
: i| Interface | Inferface i :

[ AcceLeraTEUR | LI I

Figure 60. Représentation de l'architecture de I'exgrience

Pour le cas du test de la conception 2, 2 MIPS B3iht considérés et un
« timer » est utilisé pour la synchronisation desnd processeurs. Le premier
processeur génere la matrice de la transformalgodeuxieme génere la matrice

de la sphere et récupére la sphere transformée.
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Les résultats de simulation obtenus pour I'accélémade I'étape de transformation
géomeétrique sont donnés dans ce qui suit. Les atrank ont été effectuées et validées avec
un Pentium M Centrino (1.5 GHz, 512Mo de RAM) sdesivironnement Linux comme
systéme d’exploitation, le simulateur SystemC-2.@&fl le compilateur GCC 3.3.1.
L’architecture SoCLiB est au niveau macro architeztet I'interface de I'lP est traitée au
niveau microarchitecture CABA. La partie logicielkedriver » et la partie matérielle
« wrapper » ou adaptateur de l'interface de comoatinin sont générées a partir de la méme
description du comportement du transfert des dasnéesysteme entier est co-simulé.

Comme nous l'avons déja dit, nous faisons varieml@bre de triangles constituant la
sphére. Le nombre de triangles influe sur la giialé la sphére visualisée en 3D sur un écran
2D. L’expérience consiste a effectuer une séqudiaremation de 100 rotations d’une sphéere
autour des trois axes.

Pour comparer l'influence des conceptions propodédidnterface, nous considérons
les temps de simulation pour différentes sphereg{a’entrée du pipeline 3D). La taille d'un
objet « sphéere » est exprimée en nombre de trianga triangle possede trois sommets.

Chaque sommet est caractérisé par 4 coordonnées.

Tableau 3. Performances de la simulation compléteudSoC

Taille de la sphére (Nb Temps de simulation (premiere Temps de simulation (deuxieme
triangles) conception) (secondes) conception) (secondes)
62 2,108 2,2
146 4,21 5,11
191 6 6,53
266 10,16 10,94
366 13,4 14,5

Nous rappelons que la premiere conception est ealiécas monoprocesseur. Dans
cette conception, le transfert des données emret’'le reste du systeme suit un ordre imposé
par I'lP et déduit a partir de son fichier de céédsation issu de GAUT. La deuxieme
conception est dédiée au cas multiprocesseur. beségs peuvent provenir de deux ou
plusieurs processeurs, elles sont véhiculées atare$sse du processeur expéditeur
(initiateur).

Le tableau 3 donne les temps de simulation pourdesx conceptions. Nous
remarquons que les temps de simulation relatifs deluxieme conception sont plus élevés
gue ceux de la premiere conception. En effet, dansas de la deuxieme conception, un
décodage d’adresse (afin de reconnaitre I'initiatdel chaque donnée) et un contrdle plus
complexe au niveau des modules de contrdle en ecrdgtéen sortie de l'interface de

communication et au niveau des modules FIFO_INIEOFOUT sont necessaires. C’est ce
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qui explique pourquoi dans le cas de la deuxiénme@uation, les temps de simulation sont
plus lents. La premiére conception réduit le teagpsimulation. Cependant, elle ne peut pas
viser le contexte MPSoC sans un arbitre d’ordoneament [Zit01].

Dans cette approche, la communication a été opdiréetement par le processeur
(architecture monoprocesseur) (figure 61). C'esh&hode la plus simple, mais elle génére
des redondances de communication (de la mémoingraaesseur et du processeur a I'lP).
Cette redondance inclut des surcolts temporelsadliacces mémoire et a la latence de
I'interconnecte pour chaque mot transféré par lecgsseur vers l'accélérateur ou de

I'accélérateur retourné a la mémoire.

RAM

KA

A 4

e
0
0
.
i
"~
.,

Controleur
interface

P

Figure 61. Mode d'utilisation de I'interface dans SELIB
Pour utiliser plus efficacement le bus, un DMA pdite utilisé favorisant des
transferts en mode continu entre mémoire et aatélér matériel. Ce DMA doit pouvoir
gérer plusieurs transactions successives ou desngnitations en « burst » peuvent étre

exécutées.

3.5. Conclusion

Cette partie a servi pour la simulation et la wéaition des fonctionnalités de
I'architecture générique de linterface. La génératde I'interface et la vérification de son
bon fonctionnement a été testée en considérantephssarchitectures d’'IPs : le méme IP
accelérateur peut étre synthétisé en considérffatatites contraintes pour la génération de
son architecture RTL. En effet le propre d’un o8N, plus particulierement I'outil GAUT,
est la génération de plusieurs architectures delae description d’entrée en considérant des
contraintes d’optimisation convenables pour le ewt® d'application ou d’intégration
(cadence, taille des données, parallélisme). lrfiagage automatique obtenu grace a notre
outil permet donc le prototypage rapide de systemes

La spécification au niveau CABA tend a simuler plapidement que le modele RTL
et favorise la synthése systématique de l'interfBeeplus, elle garantit plus de slreté dans la
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génération de l'architecture de l'interface dansamexte de SoC/MPSoC. En fait, les sous
modules constituants linterface sont générés daeceprésentation CABA. Ce modele
d'exécution génere des modules de simulation séuament comparables a une exécution
RTL.

4. Génération d’interface pour la Synthése

L’interface posséde la méme architecture pourraukition ou pour la synthese. La
seule différence est le langage de programmati@nsOe premier cas, c'est le langage
SystemC qui est retenu. Dans ce second cas, ladangHDL est retenu.

Afin d'illustrer la génération de l'interface polat syntheése, nous avons adopté la
plateforme Altera [ALT].

L’expérimentation de I'outil GIC pour la synthéseage :

— du co6té de I'architecture cible :

— Le partitionnement et I'ordonnancement des tached’application cible pour

identifier le comportement des données du cotéydieme.

— du coté de I'lP cible :

— La caractérisation a l'interface du comportemerst eetrées/sorties au cycle prés

et au bit prés.

IP GAUT Plateforme-Altera

Graphes II
XML
Génération d’interface

'

Implémentation RTL
synthétisable (VHDL)

Adaptateurs
PIO—FIFO

Modules de
I'Interface en
VHDL
synthétisabl

Figure 62. Application de I'approche d'intégration pour la synthése d'interface
La figure 62 montre l'application de lintégratiopour la synthése en utilisant
I'environnement Altera. L’interface est décrite’aide d’'un ensemble de sous modules qui
modélisent son fonctionnement pour le chemin dé&ntinsi que pour le chemin de sortie.

Une librairie de classes paramétrables est a if@igle la construction de la structure de
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I'interface. Dans ce cas, l'instanciation des medultiles pour l'intégration d’'un IP dans un
SoC a partir de la librairie est faite a travers leonfiguration. Pour modéliser les données a
I'interface, un fichier de configuration de I'lPtegenéré a partir de I'outil GAUT. A partir de
ce fichier, I'outil GIC produit des fichiers de daguration sous format XML enregistrés dans
un dossier appelé « Graphes ». Ces fichiers soligéat par la suite pour instancier les
modules VHDL nécessaires spécifiques a l'interfagag I'lP considéré (Cf. figure 62).

Vu le caractere non objet (langage procéduralelicagr) du langage VHDL
d’'implémentation, la construction générique des umesl constituants l'interface (en VHDL
synthétisable) repose sur une premiere manipulatibfant un exemple d'étude ou les
parametres et les modules sont fixés.

La bibliotheque adoptée est constituée par des swooslules implémentant
I'architecture de [linterface générique en VHDL #ygtisable en considérant comme
technologie cible les FPGA de la société Altera.

4.1. Environnement de validation : Plateforme Altea

L’environnement de validation choisi est la platefie EXCALIBUR d’ALTERA.
Elle comporte la carte de développement avec legsseur embarqué NIOS [Alt04] et les
logiciels de développement associés QUARTUS, SORIGI& [Alt05] et le compilateur C
Gnu de Cygnus. Cet environnement est caractérisé :
— par sa convivialité et sa relative facilité d'wgdtion.
— par l'architecture personnalisable (customizabéeydn processeur associé NIOS :
il peut étre facilement adapté aux exigences dmplieation grace a la possibilité
d’ajout d'instructions spécifiques (jusqu’a 256tmstions pour le NIOS). Il offre
également les moyens nécessaires pour faciliteutal’accélérateurs via son bus
d’extension.
Nous décrivons dans la suite les difféerents moddied’interface. Nous montrons

ensuite comment notre interface est adaptée ad\mlen.

4.2. Modules VHDL de I'interface

Selon les deux conceptions définissant I'architectgénérique de linterface de
communication, nous avons implémenté différentsutesd Chaque module correspond a une
fonctionnalité bien déterminé&ous les modules, sont implémentés suivant lesygztras du

« produit de deux matrices 4x4 ». Les modules sefigtingués suivant leurs appartenances,
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soit a la chaine d’entrée ou a la chaine de sdfis. modules génériques sont par la suite
instanciés et configurés par le GIC.
La chaine de communication d’entrée contient ledutes suivants :
— FIFO_SANS_ADRESSE_IN (premiere conception)
— FIFO_AVEC_ADRESSE_IN (deuxieme conception)
— CTRL_SANS_ADRESSE_IN (premiere conception)
— CTRL_AVEC_ADRESSE_IN (deuxieme conception)
— FIFO_SANS_ADRESSE_FE (premiere et deuxieme conuepti
— FIFO_ENABLE/ENABLE (premiére et deuxiéme concepjion
La chaine de communication de sortie contient ledutes suivants :
— FIFO_SANS ADRESSE_FE (premiére et deuxiéme conme)pti
— CTRL_SANS_ADRESSE_OUT (premiére conception)
— CTRL_AVEC_ADRESSE_OUT (deuxiéme conception)
— FIFO_SANS_ADRESSE_OUT (premiére conception)
— FIFO_AVEC_ADRESSE_OUT (deuxiéme conception)
— FIFO_ENABLE/ ENABLE (premiére et deuxieme concepsip
Le fait d’avoir ces modules séparés ne garantiaupasnterconnexion automatique et
fiable. Nous avons donc pris en compte les retdais la propagation des données qui sont
dus aux temps de traitements de chaque module gagent de I'un a l'autre. Pour résoudre
ce « probleme de synchronisation », nous avonsurecd I'assemblage des modules pour
garantir une interconnexion automatique des modd&d’interface. L’interconnexion est
générée avec l'outil GIC.
Le probleme de synchronisation est d0 a la difféeesiu temps de traitement entre les
différents modules. La solution est I'ajout de sigrn de contrble. Les principaux signaux de
controle sont :
— Read_E : ce signal de type std_logic, indique aduteosuivant que les données
sont prétes et qu’elles peuvent étre lues. Par plegrdans les FIFOs, le signal
Read_E indique que les FIFOs contiennent des dennée

— Write_E : c’est un signal de type std_logic. Ilionge que le module peut recevoir
les données. Par exemple, dans le cas d'un mod&®, He signal Write E
indique que la FIFO n’est pas pleine.

— Write_ OK: ce type de signal est utilisé pour syodser I'IlP et les

FIFO_SANS_ADRESSE FE. Le r0le de ce signal est tidac les
FIFO_SANS_ADRESSE_FE selon les paramétres de I'lP.
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— Enable : ce signal active I'IlP apres I'activatioesd=IFO_SANS_ ADRESSE_FE
pour que I'IP recoive les données.
— ChipSelect : ce signal est utilisé pour activantedule FIFO_ENABLE.
L'assemblage est fait en considérant la premiénecamtion de I'architecture de
I'interface pour la chaine d’entrée et pour la nbale sortie dans la figure 63. L'architecture
IP synthétisée (cas 3) avec GAUT présente 9 bissutleux ports d’entrées et un port de

sortie.

Cette validation permet d’assurer la synchronisadio niveau de la simulation entre la
chaine de communication d’entrée et celle de soid’interface de communication. Une
telle implémentation est ciblée et sa modificatest en général manuelle. Le GIC permet

d’automatiser la génération du VHDL synthétisable.

FIFO_SANS_ ADRESSE_FE

FIFO_ENABLE

FIFO_SANS_ADRESSE

Les entrées

=t |/

J :____T'__._1 /

A | FIFO_SANS_ADRESSE
CTRL_SANS_ADRESSE

Figure 63. Interface « produit de deux matries 4x4 cas 3 »

4.3. Adaptateurs (Avalon-FIFO, FIFO-Avalon)

L’ensemble {interface générique, IP accélératewt}adapté au bus Avalon a travers
un PIO (Peripheral Input Output) avec le protodelEO. Un PIO est une interface fournie
dans [I'environnement QUARTUS d'ALTERA. Il permet lacommunication

logicielle/matérielle entre le code (partie logilg® tournant sur le processeur NIOS et les
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modules matériels définis par I'utilisateur. Cesdules peuvent étre situés sur le méme chip
gue le processeur ou a I'extérieur de celui-ciQB]t

La procédure de l'interconnexion a travers les B¢Qésume par I'ajout d’'un nombre
nécessaire de PIO pour relier les composants aegseur tout en définissant la taille du bus
de données et les types d’interruptions matérigltag les entrées afin de pouvoir récupérer

le résultat.

4.4. Fonctionnalités principales du GIC pour la sythése

Pour généraliser I'application et la synthése mhediface pour des contextes différents,
I'outil se base sur un ensemble de fichiers deigardtion constitués de modules en VHDL.
Ces modules sont simulables (le logiciel utiliséupda simulation est ModelSim) et
synthétisables. A partir de cette base, l'outil Gg€nere les fichiers de configurations
synthétisables correspondant a I'lP généreé patil’de synthese GAUT.
Nous distinguons l'automatisation de cing étapas @ génération de linterface de
communication pour n’importe quel IP synthétisé GAUT :
1. Nous assurons la généricité des paramétres en edmaindeurs valeurs selon
I'application et I'lP cible.
2. A partir de ces parametres, le code des fichierplémentant les modules
constituants I'interface en question est changée.
Les modules de l'interface sont instanciés seldyeoin de I'lP considéré.
4. Un «testbench » est généré pour l'assemblage des msodules constituant
l'interface.
5. Génération du pilote logiciel

Nous détaillons ces différentes manipulations dassliite.
4.4.1. Modification des parameétres génériques desadules VHDL

Les parametres configurables pour l'utilisation &@que de la bibliotheque sont
implémentés en tant que parametres génériquedatafishiers VHDL (Cf. figure 64).

Le générateur procede a modifier les paramétregriggies de chaque « entity »
module constituant linterface d’'un nouveau IP. Rxemple, les parameétres « depth »,
« width » et « Nb_port » de '« entity » module ATRN ont changé de valeurs pour deux

cas d'IP.
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library ieee: library ieee;
use ieee.std logic 1164.=11: use ieee.std logic 1164.all;

entity MODULE CTRL1 AVEC ADRESSE is entity MODULE CTRL1 AVEC ADRESSE i=s

generic| depth @ integer:=32: generic | depth :integer:=32:

width : integer:= 77 : e L

Mb_port:integer:=§);

Nk port:iinteger:i= 2);

Parameétres générés selon les parameties

Parameétres genériques a changer _ _ Sel
extraits a partir des fichiers XML

selon les caractéristiques de

Figure 64. Parameétres génériques

Nous détaillons dans la section suivante le méoamia travers lequel le GIC peut

modifier les parametres générigues des modulemtkriace.
4.4.2. Généricité du code dans un module

Une autre fonctionnalité du GIC est la modificatidas modules de contrble de
I'interface selon le besoin de I'lP. Nous détaiiarette fonctionnalité a travers un exemple.

La figure 65 montre un extrait de code VHDL pripattir du fichier correspondant au
module CTRL_AVEC_ ADRESSE_OUT permettant de géné&esortie du module vers le

systéme. Il correspond a un IP possédant un seutlpsortie.

N\
if (data in(0)/='Z') then
if (Read E='1'] then IP a un seul port de
data_out (0 to depth-1])<=data ini0 to depth/2-1) £ADRESSE; sortie
Write E«<='1';
end if;
end if:
J
if (data_inl(0)/='Z') then 3\

if (Read E1='1"'] then

data _out (0 to depth-1)<=data_inl {0 to depth/Z-1) cADRESSEL;
Write E<='1"';

end if;

end if;

if (data_in2(0)/='Z'] then

if (Read Ez='1'] then

data _out (0 to depth-1)<=data_inZ (0 to depth/Z-1) cADRESSEZ;
Write E<='1"';

end if;

end if; )

IP & deux ports de sortie

Figure 65. Généricité du code
Si I'lP dispose de deux sorties, le module CTRL_A/RADRESSE_OUT doit

multiplexer ces deux sorties en un seul port déesde linterface. Dans ce cas, le GIC
procede par générer deux routines dans le fichmrltant du générateur. Le second extrait de
code (Cf. figure 65) correspond alors a un IP padessedeux ports de sortie.

119



Chapitre 5 : Expérimentation de I'approche d’intégjion : exemple et validation

Nous donnons dans la figure 66 le code JAVA du GUCrégéneére le code VHDL

selon ces nouveaux parameétres dans un modulentkrféice.

1f{lignelue . trim{) . egual=s({"if{data_in{0)-="Z'}) then"))
for{int i=1;i<{me n-mc:s nh Bu=s)+1;i++)
{
writer println("if(data_in"+i+"{03-="Z"') then"):
writer. println{"i1f{Read E"+1+"="'1") then");
writer . println{"data_outi{l to depth-1)i<=data_in"+i+"{0 to depth-2-1)&ADRESSE"+1i+":")
writer printlnf"Write_E<="1";"7;
writer printlni'end 1if:"):
writer println{"end 1if:"):

T
for{int i=0;1<5;i++)
lignelue=reader readline();

1
Figure 66. Extrait de code JAVA

Nous présentons dans la section suivante une &ntionnalité du GIC qui est

I'instanciation des modules VHDL.
4.4 .3. Instanciation des modules constituants I'ietface

La généricité réside encore dans l'instanciatioa m@dules constituant I'interface.
En effet, selon le nombre de ports et que ce sstpbrts de sorties ou des ports d’entrées,
nous associons des mémoires FIFOs pour le tamperinsigntané. Les modules FIFOs sont
instanciés selon le besoin. Ci-dessous des ligaesode d’instanciation de plusieurs FIFOs
« FIFO_SANS ADRESSE_FE» intercalées entre les nesd0TRL_IN et FIFO_Enable. En
effet, le nombre de FIFOs dépend du nombre de bésiggs par les parameétres de

caractérisation de I'lP généré par GAUT (Cf. extda code de la figure 67).
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bZv_instll0 : fifo_sans_adresse FE

PORT MAP(Clock =» Clock,
Rezet == Reset,
Write_E =» BYNTHEZIIZED WIRE Z,
data_in == JYNTHE3IZED WIRE 3,
Fead E => SYNTHESIZED WIRE ZZ,
data out = JIYNTHESIZED WIRE 27,
WE_OF =»2YNTHEZIIZED WIRE 34);

<:::::::§Eiggggill : fifo sans adresse FE

FORT MAF (Clock == Clock,
Feset => Reset,
Write_E == JYNTHEIIZED WIRE 4,
data_in =» BYNTHESZIIZED WIRE 3,
Read E => S¥YNTHESIZED WIRE 16,
data out =» FYNTHESIZED WIRE Z3,
WE_ OF =>3YNTHE3IZED WIRE 48);

C:::::::gégggggtlz : fifo_sans_adresse_FE

PORT MAP(Clock =» Clock,
Rezet == Reset,
Write_E =» BYNTHEZIIZED WIRE &,
data_in == JYNTHE3IZED WIRE 7,
Fead E => S¥YNTHESIZED WIRE 13,
data out => 3IYNTHESIZED WIRE Z8,
WE_OF =>SYN?HESIZED_WIRE_4?);

Figure 67. Instanciation des FIFOs

Les modules sont instanciés selon le besoin ;s désposons d’un seul port de sortie
pour I'lP, nous n’instancions pas le module CTRLNSAADRESSE _OUT. Les données
sont alors a multiplexer pour un seul port de softious nous contentons donc d’'une chaine
de communication de sortie disposant d’'un seul @drmIFO de sortie.

component module ctrll sans adresse
FORT(Clock : IN 3TD LOGTIC;
RPeset : IN 3TD LOGIC;
Read E : IN STD LOGIC;
data in : IN 37D LOGIC VECTCR{D to depth-1);
Write E1 : OUT 3TD LOGIC;
Write EZ : OUT 3TD LOGIC;
data outl : OUT 3TD LOGIC VECTOR{O to depth-1j;
data outZ : OUT 3TD LOGIC VECTOR(O to depth-1));
end component;

component fifo sans adresse
FORT(Clock : IN 3TD LOGIC;
Reset : IN 3TD LOEIC;
Write E : IN 8TD LOGIC;
data in : IN 37D LOGIC VECTCOR{D to depth-1});
Read E : OUT ZTD LOGIC;
data out : OUT 3TD LOGIC VECTOR(O to depth-1)3;
end component;

Figure 68. Instanciation des sous modules

L’interface est générée par instanciation des nexdgui la constituent (Cf. figure 68).
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Le générateur permet en outre de générer un fickeetest « testbench » associé a
I'interface pour sa simulation sous « ModelSim ». €testbench » permet I'assemblage des
modules constituant I'interface, de gérer leur syanisation a travers les signaux de controle

des composants et les signaux de synchronisation.
4.4.4. Assemblage des modules

Apres la génération de tous les fichiers constitliarterface, le « testbench » permet
d’assembler tous les composants nécessaires pawreasa communication entre I'lP et le
systéme.

La figure 69 montre un exemple dinstanciation du oduole
CTRL_SANS_ADRESSE_IN et deux FIFOs, qui corresponh@ nombre de ports utilisés

dans linterface, avec les signaux nécessaireslpauassemblage.

b2v_instl : module otrll sans adresse

PCORT MAFP(Clock =» Clock,

Reszet => Reset,

Read_E == SYNTHESIZED_WIRE_D,
data_in == SYNTHESIZED_WIRE_l,
Write_El == SYNTHESIZED_WIRE_SZ,
Write_EZ == SYNTHESIZED_WIRE_SQ,
data outl => SYNTHESIZED WIRE 33,
data outd => IYNTHESIZED WIRE 35);

bZv instZ : fifo sans adresse

PCORT MAFP (Clock =» Clock,

Reszet => Reset,

Write_E == SYNTHESIZED_WIRE_32,
data_in == SYNTHESIZED_WIRE_33,
Read_E == SYNTHESIZED_WIRE_lD,
data_out == SYNTHESIZED_WIRE_lZ);

bZv_instd : fifo_sans_adresse
PORT MAP(Clock = Clock,

Feszet => Reset,

Write E => SYNTHESIZED WIRE 34,
data in = SYNTHESIZED WIRE 35,

Read E =» SYNTHESIZED WIRE 11,
data_out => SYNTHESIZED WIRE_13);

Figure 69. « Testbench » ou fichier d’assemblage

4.4 4. Génération du « Driver »

Le GIC permet la génération de linterface pour usienulation au niveau
comportemental et synthétisable de l'interface géaération de l'interface pour la synthése

cible la technologie Altera. Dans la section suteamous présentons quelques résultats de
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synthése et de valorisation de la génération autquead’interfaces de communication avec
I'outil GIC.

4.5. Synthese et Résultats

L’'application utilisée pour I'expérimentation avd@pproche proposée est «la
synthese dimage 3D ». Le code original permet fitlaér un objet sur I'écran, les
coordonnées de cet objet sont sauvegardées ddfishiam « .asc ». Nous avons modifié le
code de cette application pour l'adapter au cotepitadu processeur NIOS 32 bits. En effet,
puisque le compilateur « C » du NIOS ne gére padidtiers, le fichier d'extension .ASC a
été remplacé par un fichier d'entéte d’extensiaapjelé par le programme principal du rendu
3D. Nous avons pour cela créé une procédure deecsion d’'un fichier .ASC vers un fichier
d’entéte .h (.LASC=>.h). Nous avons également ébnim partie du code responsable de
I'affichage sur écran.

A l'aide du logiciel « 3Ds max » [3DS] qui est wgiciel de production d'images de
synthese tridimensionnelles, nous élaborons unerspiiyant un nombre varié de triangles.
3Dmax géneére des fichiers d'extension .3ds qui sonvertis au format .ASC. A l'aide de
I'utilitaire wc2pov27 [Wc297], ces derniers sonliear tour convertis a I'aide de la procédure
de conversion .ASC=>.h. En modifiant le fichier mt&e .h, nous pouvons tester le
programme de rendu d’'un objet (exemple d’'une sphaer différents nombres de triangles

(Cf. figure 70). Chaque point de la sphére a ungecw codée sur 16 bits.

Format .3DS Format .ASC Q
3DMAX ":(> wezpov27 Fichiers. ASC représentant des
objets avec

NbTri_variable

Fichier .C \\_I[/

Programme principal - . .
9 P be Fichier. h * Procédure de
«rendu 3D » adapté au [K—, G \
compilateur de NIOS - . conversion

Figure 70. Procédure pour I'étude de I'effet de la mdification du nombre de triangles
L'IP cible est un IP synthétisé par l'outil de dyase GAUT. Le reste de 'application

de synthése 3D est exécuté en logiciel par le pemtg NIOS équipé du bus Avalon
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disponible sur la plateforme Excalibur d’ALTERA diire 71). Le processeur NIOS est

cadenceé a la fréquence de 50 Mhz.

Coeur
Processeur
NIOS

3

>

Driver

Mémoire
Principale

\ 4

Interface de
communication
Matérielle

[

\ 2
Bus AVALON

A 4

IP dédié au calcul
matriciel
(Accélérateur)

Figure 71. Structure de I'Architecture cible

4.5.1. Influence des paramétres de l'interface sue temps d’exécution

Diverses techniques peuvent étre utilisées podétarmination du temps d’exécution

(noté dans la suite Texec) d’'une application sw& cible architecturale donnée. Elles sont

divisées en deux catégories: la mesure et I'etittmaNous avons utilisé la méthode

développée dans [Fak04]. Elle consiste a utilisercampteur qui est activé au début de

I'exécution du programme puis arrété a sa fin.iffé@rénce entre la valeur initiale et la valeur

finale du compteur représente le temps d'exécaionombre de cycles comme le montre la

figure 72. Nous avons choisi cette méthode vu ddit@ d’utilisation du compteur d’une part

et vu la précision des résultats de mesure d’guatre

Démarrer

Stopper

-

}( X Débpp<_Instructions =< Fin ><_ < Récupération dutemps><

Etat de repos/!/

!\ Etat de repos

Temps d’exécution

v

Figure 72. Détermination du temps d’exécution (Texgc

Nous avons calculé le Texec de I'application « te8D » d’une sphere effectuant une

séquence de rotations autour des trois axes d’&@nmb00 fois avec trois versions :

— une version logicielle pure : toute I'applicatiost eexécutée par le processeur

NIOS.
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— une version mixte {logicielle+ interface+ IP aca@i&ur} en utilisant la premiére
conception de l'interface.

— Afin d’apercevoir I'effet de l'interface sur I'aphtion, nous avons également
déterminé le temps d’exécution de I'application wiisant une communication
entre I'lP et le processeur NIOS a l'aide de compts PIO. Le PIO est un
composant disponible dans I'environnement Quartudagilite I'interconnexion
de blocs matériels au processeur NIOS. Dans cel’eagpi des données se fait
selon 'ordre demandé par I'lP « produit matriciel

Les résultats sont rassemblés dans le tableau ds Rasons varier le nombre de

triangles constituant la sphére. Le nombre de dleminflue sur la qualité de la sphere

visualisée en 3D sur un écran 2D.

Tableau 4. Mesures de Texec

Texec (Ms) Texec (Ms)

. Texec (Ms) . h . ;

Nb triangles ; - (version mixte sans (version mixte avec
(version logicielle) . . .

interface) interface conceptionl)

62 13839 4152 4637

146 42025 12608 13205

191 44724 13417 13966

266 64364 19309 19745

366 75211 22563 23937

Nous remarquons que l'ajout de I'lP (cas 3) « prbdhatriciel » a permis un gain
moyen en Texec par rapport & la version logiciddle’0%. L'« overhead » di a I'interface est

d’'une moyenne de 500ms pour le déroulement de tayglication.
4.5.2. Comparaison de la surface de I'lP par rappdra son interface

Nous considérons les résultats présentés parleatab. Nous présentons dans la suite
les résultats de synthése de I'lP « produit mariciet de 'interface pour une cible FPGA de
la famille STRATIX d’Altéra.

Tableau 5. Influence du Nb_bus utiles sur I'occup&n FPGA

Casl/Cas 2 Cas 4 Cas 5
Nb_bus utiles 4 15 28
Nb_Lut IP sur FPGA (Famille Stratix 677 1198 1769
EPS1S10F484C3)

Nb_Lut Interface (conceptionl) (Famille 156 540 979
Stratix EPS1S10F484C3)

Nb_Lut Interface (conception2) (Famille 223 607 1046
Stratix EPS1S10F484C3)

Schématiquement, ce tableau ce traduit par ladigar

125



Chapitre 5 : Expérimentation de I'approche d’intégjion : exemple et validation

2000
1800 A
1600 -
1400
~ 1200 - ——Nb_Lut IP
>
o 1000 - /- —&— premiere conception
Z 800 o deuxi@me conception
600
400 - /
200 "
0 Nb_bus_utile
4 14 25
Occupations sur FPGA des différentes conceptions

Figure 73. Occupations sur FPGA
La premiére conception occupe moins de surface lgugeuxiéme conception vu
gu’elle ne procéde pas a un décodage d'adressessdionnées. En plus, dans la deuxiéme
conception, le module FIFO_IN posséde des cellples larges puisqu’elles contiennent la
donnée et son adresse.
En conclusion, le colt de l'interface est prinogmaént dominé par la taille des FIFOs,

si bien que leur minimisation doit étre une pririt

4.6. Optimisation de la taille des FIFOs

Les FIFOs dans une interface ont deux roles. Lenjgreest un réle de découplage
entre le systéme et I'lP connecté en terme de sgnidation. Le second est un rble de
mémorisation intermédiaire de la succession (ordno@ement spatial) des données.

En revanche, le colt des FIFOs en terme de LutdB@GA est important. Il est
particulierement important pour une intégrationndiB GAUT vu :

— le nombre de bus d’interconnexion a l'interfacel’t®: a chaque bus correspond

une FIFO.

— la considération du sens de transmission (in, :oatchaque bus d’entrée/sortie

correspond deux FIFOs.

Pour une simulation, la taille des FIFOs n’influespsur le temps de simulation. Mais

pour la synthese, la profondeur de la FIFO colteene de cellules de mémorisation.
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La classification des FIFOs dans l'interface de eamication est considérée selon
deux niveaux (cf. figure 74) : niveau 1 (N1) eteau 2 (N2). Le niveau 1 contient des FIFOs
de type FIFO_IN et FIFO_OUT qui peuvent subir uestmpn de données (Cf. section 4.3 du
chapitre 3). Le niveau 2 contient des FIFOs simfgasis gestion) dont la taille des cellules
est égale a la taille des données réelles a consooura produire par I'lP.

La taille d'une cellule FIFO est initialisée par®C a la largeur de l'interconnecte
définie aussi par la taille de la donnée systénus. Le nombre des cellules FIFOs est
initialisé par une profondeur maximale. La profamdeaximale définie :

— le nombre maximum de données dans le motif consigéur une itération de

calcul pour les FIFOs N1.

— Le nombre maximum de données considéré pour unatit@ de calcul pour

chague FIFOs N2.

Flux de données

L
M
O
(o8
C
_|
aWlsAS

Conttdleurs |«

v

\ Enable & FIFO_Enable

2Y
: % Architecture N7
z — ' —_
: ]gs J B 8 e o= < ;;'
| o 1A S ? —> Fichierde —-t+— ¢ X
- I | Caractérisation T | |
|2 : LR a1 E ! -
P2 : I
1 ° I .
| @ : X FIFO P FIFO Y |
: 1 I . 11 . I :
! N 1 1
| Lo ! v I
| [ | t |
| I 1 n 1
1 | 1
b I
| 1 (I
1 1
1 1
1 1
1 1

Niveau 1
Figure 74. Classification des FIFOs dans l'interface
La gestion des cellules FIFOs (décrite a la secti@du chapitre 1ll) a permis dans
des cas d'optimiser le nombre de cellules de |OFIN (resp. FIFO_OUT) de l'interface de
communication. En effet, si tds est supérieuretailee de la donnée de I'lP accélérateur (tda),
un motif occupe un nombre de cellules FIFOs intérge la profondeur maximale en utilisant

le mécanisme de gestion de 'empilement des doreéssin d’'une cellule FIFO.
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Mais cette technique de gestion des FIFOs restdfisesnte puisqu’elle :
— ne traite que les FIFOs d’interconnexion au syst@fiieO niveau 1 dans la figure
74 définie par FIFO_IN et FIFO_OUT).

— ne permet pas toujours une optimisation : la gegtignifie une optimisation dans

le cas ou tds> tda pour les deux conceptions deiface.

Ce qui nous a poussé a définir une méthode pdemleala profondeur minimale des
FIFOs nécessaire pour le bon fonctionnement dietfiace.

Dans les expériences qui ont été faites que ceasoitle contexte de simulation ou de
synthese, les profondeurs des FIFOs de niveaulé eiveau 2 sont initialisées par défaut par
le GIC a la profondeur maximale pour la communaratiéfinie pour une itération de calcul.
En effet, l'architecture de linterface de commuation est définie selon la caractérisation
d’une itération de calcul, le nombre total d'itévas de calcul n’influe pas sur la taille des
FIFOs.

Pour optimiser la profondeur des FIFOs, nous prop®$algorithme de la figure 75.

Début
Profondeur :=profondeur maximale ; //initialisation
Faire
Profondeur=profondeur-1//Diminuer d’'une cellule la profondeur de chadt&O
dans un niveau de classification des FIFOs;
/[Tester le fonctionnement de I'interface ;
Jusqu’a (//interface ne fonctionne pas ou interfaceluit des résultats inexacts)
Profondeur=profondeur+1 ;
Fin

Figure 75. Algorithme de calcul de la profondeur FIFO
Cet algorithme itératif est proposé pour I'optintisa de la profondeur des FIFOs. En
revanche, il est colteux en terme de nombre deAéstde limiter ce nombre, nous pouvons
procéder pour une recherche dichotomique (cf. gé6) qui considere :
— une recherche récursive dans une moitié du tableau.
— que les éléments du tableau sont deux a deuxatsstin

— que les éléments du tableau sont rangés dansl'omissant ;

Les éléments du tableau sont les numéros desatial |la FIFO. Le raffinement considére :

— une condition d'arrét : taille du tableau =1,
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— taille = 0 non trouve,
— taille = 1 tester ;
— les limites du tableau (deb et fin) sont des arqumde la fonction.

Début
int rechDichRec(int valRech, int FIFO[], int debt fin)
{ int mil = (deb+fin)/2;
if(deb > fin) return (-1);
if(valRech == FIFO[mil]) return mil,
if (valRech < FIFO[mil])
return rechDichRec(valRech, FIFO, deb, mil-1);
return rechDichRec(valRech, FIFO, mil+1, fin);
}
Fin

Figure 76. Algorithme de la recherche dichotomique

D’ou, I'algorithme de calcul de la profondeur dd-©I devient I'algorithme donné par

la figure 77 :
Début
fin :=profondeur maximale ; //initialisation
deb :=1; //initialisation
int rechDichRec(bool test, int FIFO[], int debt fim)
{ int mil = (deb+fin)/2;
if(deb > fin)
return fin;
/[Tester le fonctionnement de I'interface avecdavelle profondeur = fin ;
if (test ==true)
return rechDichRec(test, FIFO, 1, mil-1);
sinon
return rechDichRec(test, FIFO, mil+1, fin);
}
Fin

Figure 77. Algorithme de calcul de la profondeur FIFOconsidérant une recherche dichotomique
A chaque étape :
— 1 addition, 1 division, entre 1 et 3 tests et upehpécursif.

— division par 2 de la taille du tableau FIFO.
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L’ordre de complexité a la recherche de la profemdainimale est don©(logx(n))
qui est inférieur a la complexité exponentiellel'dégorithme de calcul de la profondeur de
FIFO. Ce qui permet de réduire le nombre de tgslifstativement pour des flux de données
de tailles importantes.

Nous avons utilisé l'outil GIC pour générer l'inkece de communication. La
simulation de la structure synthétisable de lif#@ee de communication avec son
« testbench » sous Modelsim nous a permis de trolavgprofondeur minimale pour le
fonctionnement de I'interface de communication selalgorithme proposé.

Le tableau 6 prouve que le nombre d'itérations fhian pas sur la profondeur des
FIFOs, autrement dit, le nombre de données échanggetotalité n’influe pas sur la
profondeur des FIFOs. C’est le nombre de donnéleangées lors d’une itération de calcul
qui :

— S’ augmente, la profondeur au minimum des FIF@ssd'interface augmente.

— S’il diminue, la profondeur au minimum des FIFOsliue.

Tableau 6. Influence du nombre de données sur la pfondeur minimale des FIFOs

Nom de I'exemple (architecture GAWsEns | Nombre de données par Taille minimale des FIFO_IN de
unité de duplication itération de calcul l'interface générée (une seule
FIFO_IN)
Prodmat 4x4 77 31
Dct 4x4 45 10
FFT 4 points 4 4
Fir 16 1 1

Pour notre exemple « produit de deux matrices 4néwis considérons le méme IP
avec des architectures différentes. Le nombre de utiles pour le transfert des données
differe d’'une architecture a une autre. Le tabléguésente les résultats sur la profondeur des

FIFOs suite a I'application de I'algorithme présent

Tableau 7. Application de I'algorithme de re-dimentonnement de FIFO

Casl/Cas 2 Cas 4 Cas 5
Nb_bus utiles 4 15 28
Nombre de FIFOs 4FIFOs 2FIFOs | 15FIFOs| 2FIFOs | 28 FIFOs | 2 FIFOs
N2 N1 N2 N1 N2 N1
Profondeur maximale par FIFO 16 32| 16 16 32 16 16 32 16
profondeur minimale par FIFQ 4 18 7 4 13 7 4 3 |7

Total des cellules FIFOs | 16x4 + (32+16) £12 | 16x15 + (32+16)288 | 16x28 + (32+16)496
(profondeurmaximalée

Total des cellules FIFOs 4x4 + (13+7)36 4x15 + (13+7)80 4x28 + (13+7)%32
(profondeuminimale)
Gain relatif 71% 72% 73%
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L’application de l'algorithme permet un gain de $lde 70% en termes de cellules
FIFOs. Le tableau 8 illustre I'influence de la mofleur des FIFOs sur I'occupation FPGA.
Nous remarquons comme prévu, que le fait de réditalle des FIFOs impligue un gain en

terme de codt en surface ou dans notre cas en tBoreupation sur FPGA.

Tableau 8. Influence de la profondeur des FIFOs sutdccupation FPGA

Casl/Cas 2 Cas 4 Cas 5
Nb_bus utiles 4 15 28
Nb_Lut Interface (conceptionl) (Famille Stratix 156 540 979
EPS1S10F484C5)
Nb_Lut Interface (conception2) (Famille Stratix 223 607 1046
EPS1S10F484C5)
Nb_Lut Interface (conceptionl) (Famille Stratix 129 487 928
EPS1S10F484C5) avec optimisation
Nb_Lut Interface (conception2) (Famille Stratix 197 564 986
EPS1S10F484C5) avec optimisation
Gain relatif (conception 1) 17% 10% 5%
Gain relatif (conception 2) 11% 7% 6%

Le dimensionnent de la FIFO doit prendre I'aspexddtribution sur les cellules en
considération. L'IP GAUT requiere des FIFOs plugitpe mais plus nombreuses. Cela
implique plus de surface mais aussi plus de cantrol

En revanche, la recherche dichotomique supposdaguepartition des données qui
transitent dans les FIFO en amont des bus ou edem®les FIFOs de niveau 2 est équitable.
En réalité, la répartition est imprévisible parufib GAUT. A l'interface de l'architecture
générée par GAUT, la répartition des données ésjuitables et imprévisibles dans les bus.
Le nombre des données transitant en entrée ou rie sar les bus est distribué d'une
maniere non égale. Donc, chaque FIFO de niveaalNde niveau N2 doit étre considérée a
part. D'ou l'apparition d’'un probleme de distribati des profondeurs des FIFOs. Un
algorithme « Branch and Bound » [Cla99] peut éwmeasaéré pour résoudre le probleme
d’optimisation sur le nombre de test pour I'optiatien de la profondeur des FIFOs.

Bref, le probleme de redimensionnement de la tdidie FIFOs doit étre considéré a la
fin du flot d’intégration d'IP et que cette fonatisalité soit intégrée dans l'outil GIC juste

avant la génération du code de l'interface de conication.

5. Conclusions

Dans ce chapitre, nous avons présenté I'outil GICaytomatise les étapes du flot
proposé pour l'intégration d’IP. Le GIC permet dmgrer l'interface de communication entre
un IP (généré par l'outil GAUT) et le reste du gyse. Cette interface peut étre générée pour

131



Chapitre 5 : Expérimentation de I'approche d’intégjion : exemple et validation

la simulation, dans ce cas elle est décrite ere®ySt Elle peut étre générée pour un contexte
de synthése, dans ce cas elle est décrite en angdbL. Dans les deux cas, le principe est
le méme. Les modules constituant l'interface saftrits sous forme générique. lls sont
regroupés dans une bibliotheque. A partir de cbibdiothéque, le GIC modifie leurs
paramétres génériques, et instancie les modulesssdices selon la caractérisation du
transfert des données sous forme des graphes dimmdoement des données. Il génére
également le fichier de test associé. Dans les daaxsimulation et synthese), nous avons
utilisé I'lP « produit matriciel » généré par 'duBAUT.

La génération de linterface de communication esdtée pour le contexte de
simulation en utilisant la plateforme SoCLiB. Pdercontexte de synthése, l'interface est
testée en utilisant le processeur NIOS équipé duAWALON. L'application cible est la
« synthése d’'images 3D ».

Nous avons élaboré également une démarche potiniisption de la taille des FIFOs
qui équipent I'interface afin de réduire son ocdigrasur FPGA.

Divers tests ont été effectués avec le GIC pourdiesx contextes : simulation et
synthese. Nous avons étudié I'impact de la vamates parametres de I'lP sur la taille de
I'interface. A travers ces tests, nous avons mowué l'architecture de linterface de
communication est bien indépendante de l'intercoten€u systéme intégrant. Sa structure
modulaire lui permet une adaptation facile (aves a@difications mineures) avec d’autres
systéemes.

Nous avons montré que l'architecture générique awule d’interface permet de
réaliser automatiquement l'intégration d’'lP danssystéme en instanciant des schémas de
communication prédéfinis sous contraintes.

De plus, cet outil est un environnement ouvert g@xploration de nouvelles pistes.

Il peut étre équipé d’outils de décision, par exlemgui automatise I'optimisation de la taille
des FIFOs ou qui évalue des résultats de I'intégrat
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CHAPITRE 6. CONCLUSIONS & PERSPECTIVES

Ce chapitre conclut la these en donnant un bilamalail effectué et en présentant les
perspectives envisageables au terme de cette cbehd?Pour cela, nous allons tout d'abord
analyser les aspects de I'approche d’intégratith ef I'environnement d’application que ce
soit pour la simulation ou pour la synthese. Na&sumons donc les caractéristiques de ces
aspects ainsi que notre contribution. Enfin, nogmeons les perspectives de notre travail.

1. Synthése des travaux de thése

Les nouvelles technologies s’orientent vers linédign sur une méme puce de
plusieurs coeurs de processeurs tels que les D¥smbcesseurs RISC, ainsi que des blocs
matériels dédiés a certaines fonctions, totalipbugieurs centaines de millions de portes sur
une seule puce de silicium. Nous parlons ainsiygeemes multiprocesseurs mono puce. En
fait, les systemes multiprocesseurs sont une desists pour répondre a la complexité
croissante des systemes intégrés utilisés dammiraines multimédia et traitement de signal.
En plus de la complexité des applications suppsrtis SoCs sont assujettis a des fortes
contraintes de conception telles que les contraitgmps réel, la limitation des ressources de
traitement et d’énergie et aussi les contraintesai# et temps de mise sur le marché. Pour
satisfaire ces contraintes antagonistes, l'intégmatles blocs existants dits IPs est devenue
une exigence. Ceci nécessite des outils de CA@<stathgages de haut niveau unifiés pour la
conception dite systéme.

Dans ce cadre se situent les travaux de cette.thdlgeprésente une approche de
génération d’interface de communication dans leecald la conception d’'un SoC/MPSoC
pour l'intégration des IPs. Cette approche permetcancepteur d’automatiser la phase
d’intégration d’'IPs. Elle est considérée dans udreade simulation et de synthese. La
génération est basée sur une structure génériquerfiice de communication. Cette interface
est élaborée au profit des IPs orientés flot dendes. Le modele d’interface est suffisamment
générique afin de pouvoir 'adapter aux différgmstocoles de communication.

Dans le chapitre 2, nous avons rappelé le flot aeception dans le cadre du « co-
design» et de la conception des SoCs. Dans ce,cadrétat de I'art sur la conception
automatisée des interfaces de communications a péégenté: les approches, des
méthodologies permettant la réutilisation assisié@utomatisée des IPs dans la conception

des systémes monopuce mono/multiprocesseur. 8 mméntré que les approches concernées
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different par la spécification de I'application emtrée, les domaines d'application et
I'architecture cible.

Le chapitre 3 a présenté I'approche d’intégratiare qqous proposons. Dans ce
chapitre, nous avons traité les hypothéses etdesaintes pour I'application de I'approche.
Cette approche part d'un systeme partitionné déretatogicielles et matérielles, et aboutit a
un systéme contenant des IPs interconnectés. licapph de I'approche prend en
considération la nature de I'lP & intégrer, I'atebiure cible d’intégration en se basant sur la
compatibilité de I'ordonnancement du transfert desnées entre I'lP et le systeme. Nous
avons présenté limplémentation structurelle du édgénérique de linterface de
communication. Ceci permet la construction d'undrdirie de modules assurant
I'automatisation de la génération de l'interfacassavoir recours a spécifier les détails relatifs
aux protocoles de communication dans une architectible. La bibliotheque de
communication interagit avec un modele de graphm@iant une spécification générique de
I'ordonnancement des données du c6té du compostuglet du coté du systeme intégrant.

Nous avons détaillé dans le chapitre 4 les étapesodception de réalisation d’'un
environnement « générateur d’interfaces de commatioi» automatisant les étapes de
I'approche. L'environnement développé est de typrérateur de code. Il est facilement
extensible pour étre utilisé avec d’autres outdscdnception réalisant d’autres taches de co-
design. Ce qui permet d’augmenter la productivitdésdun milieu industriel.

Dans le chapitre 5, nous avons présenté les résudtaxpérimentation de notre
approche pour un contexte de simulation et de sgethDeux environnements ont été utilisés :
« SOCLIB » pour la simulation et « Quartus » (déutdéir les circuits FPGA Altéra) pour la
synthese. L’'application cible utilisée est le «dhipe graphique 3D ». C’est une application
complexe qui doit faire appel a des IPs accélératpour I'amélioration de son temps de
calcul. L'IP choisi est « le produit matriciel »oNs nous sommes placés dans le cadre d'un
flot de conception SoC basé sur des outils SHNmplémentation des modules pour la
réalisation de la bibliotheque de composants detefface est élaborée pour des IPs
synthétisés avec l'outil GAUT. L'interface de commization est générée pour la simulation
puis pour la synthése ce qui nous a permis de mesas performances en termes de délai et
de complexité.

En résumé, l'approche d’intégration d’'IP proposée lmsée sur une architecture
générique modulaire et flexible d’interface dédaér applications orientés flot de données.
Elle permet la génération des structures des schém@ommunication du systéme incluant
I'lP. En effet, la communication du systeme peut étalidée en utilisant une simulation
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rapide. Le modéle d'architecture associé permet iom@émentation matérielle facile de
I'interface.

Par ailleurs, I'approche cible les méthodologiescdaeception des circuits intégrés a
base de plateforme (platform based design) et@&dasomposant (component based design).

Notre contribution dans le cadre de cette thesenimnt a deux niveaux :
méthodologique et applicatif. Le niveau méthodadogi concerne [I'élaboration d’une
approche de génération d'interfaces de communitatur [intégration des IPs
accélérateurs dans un systeme sur puce. Le niymdicatif concerne la validation de cette
approche a travers :

— son automatisation dans un environnement de typeérgteur de code

implémentant les étapes du flot d’intégration quiglst associée.

— son expérimentation pour I'application « synthéBe»3

2. Perspectives

Plusieurs perspectives se dégagent a la suitesdgaaeux de recherche. D’'une part,
I'application de I'outil pour la simulation ou polm synthese a partir de I'architecture de
I'interface nécessite plus de raffinement. D’aypaat, ce raffinement permettra d’intégrer
I'approche de vérification formelle au flot d'intégion afin de garantir des spécifications
exemptes d’erreurs. Cette approche de vérificdtiomelle peut étre appliquée surtout pour
I'étape de génération de graphes et de test deatdipé.

Les perspectives envisageables en prolongemertt dieecette thése concernent deux
points :

— Le premier point est I'extension de I'approche pmemmettre l'intégration d’IPs

autres que les accélérateurs matériels.

— Le second point correspond a I'extension de I'enviement pour étre un support

de génération automatique et d'évaluation des tadésutle simulation et des

résultats de synthese.

2.1. Extension de l'approche

L'approche d’intégration d’'IP proposée se fait agegpartitionnement. Le seul moyen
qui permet d'éviter le probléme de révisions tadidu partitionnement, si les contraintes de
performances ne sont pas satisfaites, réside boneit dans la modularité et la flexibilité de

I'architecture cible. Comme perspective, nous posvétendre les primitives de l'approche
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pour permettre la génération d’interfaces de conication d'une maniére interactive avec

I'étape de partitionnement comme celle proposés {Bar05]. Dans ce cas, I'approche peut
étre étendue pour les IPs comportementaux ou lesabotes aux données sont plus souples
gu’une spécification CABA. Ainsi I'application d&approche peut s’orienter de plus en plus

vers des niveaux d’abstraction plus éleves.

Nous envisageons a moyen terme, d’ajouter de Wigémce au controleur de
I'interface. Ainsi, ce travail peut étre étendu passurer la communication avec des IPs de
sources différentes (synthétisés par exemple aeedrds outils SHN), ou des IPs mémoires
ou des IPs processeurs. L'objectif est d’adaptgpfoche d’intégration et la conception de

I'interface de communication pour généraliser kgpiplication.

2.2. Extension de I'environnement

Les travaux liés a l'intégration d’IPs corresporidienin besoin réel dans la conception
des systemes mono puce mono/multiprocesseursalailtprésenté dans cette thése peut étre
considéré comme une contribution a la mise en cadiureensemble de regles applicatives
pour la génération automatique des structures dememications (interface, contréleurs) au
niveau comportemental et RTL, facilement synthétes par les outils de synthése actuels.
Les travaux a venir doivent permettre :

— l'extension de l'environnement pour permettre tiédi graphique du modéle

d'entrée, I'édition des configurations et la vimadlon des résultats.

— I'évaluation des résultats de I'intégration panleonnement en tant que support

de programmation complet pouvant posseder desquésipour la mesure des

performances.
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Acronyme & Abréviations

ACRONYMES & ABREVIATIONS

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CABA  Cycle Accurate Bit Accurate

CAO Conception Assistée par Ordinateur

DCT Transformée en Cosinus Discréte

DMA Data Memory Access

DSP Digital Signal Processing

FFT Transformée de Fourrier Rapide

FIFO First In First Out

FPGA Field Programmable Gate Array

GAUT  Générateur Automatique d'Unité de Traitement

GIC Geénérateur d’Interfaces de Communication
GOES Graphe d’Ordonnancement des Entrées/Sorties
GOESS Graphe d’Ordonnancement des Entrées/SortieStpacture
GOS Graphe d’Ordonnancement aux entrées/saltieSysteme
HDL High Description Language

IPERM IP Execution Requirement Model

IP Intellectual Property

IOCG Input Output Constraint Graph

MPSoC SoC multiprocesseur

MEF Machine a Etats Finis

NoC Network on Chip

OCB On Chip Bus

OCP Open Core Protocol

oS Operating System

P10 Peripheral Input Output

PiBus Peripheral Interconnect Bus

RAM Random Access Memory

ROM Read-Only Memory

RTL Register Transfer Level
RTOS  Real time Operating System
SoC System on Chip

SHN Synthése de Haut Niveau
SDL System Description Language

TLM Transaction level modelling

TDSI Traitement du Signal et de I'lmage
VC Virtual component

VCI Virtual Component Interface

VHDL Very High Speed Integrated Circuit HardwaesEription Language
VSIA Virtual Socket Interface Alliance

XML eXtensible Markup Language

UAL Unité Arithmétique et Logique

uT Unité de Traitement

UM Unité de Mémorisation
UCOM Unité de Communication
ub Unité de Duplication

SDFG  Signal Data Flow Graph
UML Unified Modeling Language
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