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1 Motivation 

Depuis longtemps, on assiste à un fort accroissement du rythme des innovations technologiques 

dans le domaine des systèmes électroniques. Ce progrès technologique permet de répondre aux 

exigences des applications de plus en plus complexes de traitement de l’information (notamment 

dans le domaine multimédia). Il rend possible  l’utilisation de ces applications non seulement sur 

les ordinateurs de bureau, mais aussi sur des systèmes embarqués nomades de faible 

encombrement. La conception de ce type de systèmes très populaire est actuellement au cœur 

d'enjeux économiques très importants, liés à l’expansion du marché des applications « mobiles » 

(téléphones portables, tablette, terminaux vidéos, etc.), à la réduction des délais de mise sur le 

marché et la concurrence farouche du domaine. 

Jouissant des progrès scientifiques dans les domaines du traitement multimédia, et du 

traitement du signal, les fonctionnalités offertes par ces systèmes sont devenues de plus en 

plus variées et complexes. Elles demandent par conséquent des capacités de calcul de plus en 

plus importantes. Cet accroissement persistant en complexité est également justifié par 

l’évolution de la technologie qui permet de réaliser de tels systèmes sur une seule puce de 

silicium. En effet, selon la loi de Moore [Moo65], la densité d’intégration augmente de 50% 

chaque année. Ce qui permet de créer des systèmes mixtes (logiciel/matériel) hétérogènes 

comportant divers modules (comme des processeurs, des DSP, des ASIP, etc) sur une même 

puce (SoC).  

Ces nouvelles générations de systèmes posent néanmoins de nouveaux défis aux concepteurs. 

Avec un tel niveau de complexité, les phases de conception de ces systèmes sur puce deviennent 

de plus en plus ardus (spécification initiale, simulation, fabrication, tests …) vu le nombre et la 

nature des applications à gérer, la nature hétérogène de l’architecture et surtout les délais courts de 

temps de mise sur le marché (time to market) avec toujours la nécessité d’un « zero default ». 

Afin de mettre en place un système informatique, les concepteurs ont longtemps disposé d’un 

choix restreint à deux alternatives. La première consiste à mettre en place un système 

multiprogrammé via un microprocesseur [Zhi08]. Cette solution est moins couteuse mais elle 

n’arrive pas assurer l’exécution de toutes les fonctionnalités du système avec la qualité requise.  

La seconde, se base sur la réalisation d’un circuit spécifique à l’application développée (ASIC) 

[Kri09]. De même cette solution souffre de quelques handicaps tels que la complexité de la phase 

de conception et le temps de fabrication du produit final. Comme solution la technologie 

programmable offre plus de flexibilité au produit final avec un temps de conception et un coût 
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assez réduit.  

Les circuits reconfigurables correspondent à des circuits matériels dont l'architecture peut être 

modifiée en fonction de l'application à développer [Gan10, Kon05]. Les plus populaires sont les 

circuits FPGA. Ces circuits permettent de faciliter la phase de mise en place d’un nouveau 

système multimédia (de la spécification au prototypage). En effet, leur architecture est riche et 

répond aux besoins des applications actuelles. De plus, leur nature reconfigurable réduit les 

phases de test, le coût associé aux erreurs de conception et le temps de mise sur le marché. Ces 

architectures se présentent comme une solution intéressante au défi des systèmes sur puce. Elles 

ont permis la conception de nouvelles applications bénéficiant de leurs caractéristiques propres 

telles qu’un fort parallélisme matériel et des possibilités de reconfiguration statique et/ou 

dynamique. 

Malgré toutes ces améliorations technologiques, l'implémentation d'applications multimédia sur 

un système embarqué reste une tâche compliquée qui doit répondre à un ensemble de 

contraintes antagonistes. 

L’une des contraintes est la complexité des applications supportées. En effet, ces nouvelles 

fonctionnalités sont exigeantes aussi bien au niveau puissance de calcul que capacité mémoire. 

Elles sont en même temps très consommatrices d’énergie. La norme de compression MPEG4 

par exemple est d'une complexité beaucoup plus importante que ses deux prédécesseurs 

MPEG1 ou MPEG2 puisqu'elle est destinée à couvrir un ensemble plus vaste d'applications 

[Tou00]. A titre d’exemple, l'encodage (profil simple) de la séquence "Weather" à 10 image/s 

au format QCIF (qualité moyenne de vidéo) demande un total de 1500 MIPS avec plus de 250 

millions d'accès mémoire [Kim03]. Cette augmentation de la complexité implique aussi une 

consommation en énergie plus importante, ce qui limite l’autonomie des systèmes embarqués.  

Une autre contrainte est la gestion de la consommation. C’est une tâche très difficile compte 

tenu le nombre de facteurs favorisant son augmentation. D’une part, le nombre et la nature des 

fonctionnalités multimédia supportées par un système embarqué ne cessent d’évoluer. D’autre 

part, le progrès technologique n’a pas apporté de solutions acceptables à ce problème. En effet, 

si la technologie autorise la réduction de la taille des transistors permettant ainsi de diminuer les 

tensions d'alimentation et donc la consommation dynamique, elle entraînera une augmentation 

relative des courants de fuite et donc de la consommation statique négligée auparavant. En plus 

l’augmentation de la densité d’intégration sur la même puce permet de réaliser des architectures 

assez complexes ; ce qui favorise la consommation [Kuh98].  
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L’exécution temps réel est une contrainte pour les systèmes temps réel. Diverses applications 

nécessitent une exécution en un temps limité et continu dans le temps pour des raisons de 

sécurité (dans le cas par exemple d’un système de navigation aérien) où pour des raisons de 

confort visuel (dans le cas de la compression vidéo par exemple, il faut assurer une cadence de 

25 image/s soit un temps de traitement de 40 ms/image). 

Une autre contrainte des systèmes embarqués est liée à la nature mobile des systèmes 

électroniques actuels.  Il est nécessaire de tenir en compte  un autre paramètre externe cette fois 

qui est l’environnement où évolue le système mobile. Perturbations atmosphériques, liaison 

radio variable, flux de données changeant sont des exemples de paramètres qui peuvent 

influencer de façon importante sur le fonctionnement du système et la qualité des services 

offerts (QoS).  

De ce fait, ces systèmes doivent être d’une part performants pour pouvoir traiter les applications 

multimédia complexes et d’autre part flexibles pour s’adapter à l’environnement externe 

variable non seulement pour respecter les contraintes temps réel, mais aussi afin de  préserver 

les ressources d’énergie du système et respecter ainsi la contrainte de durée de vie [Lic06, 

Kri08]. Le challenge consiste à concevoir des systèmes qui donnent une bonne qualité de 

service avec une consommation limitée d’énergie. Mais ce but de conception est difficile à 

atteindre puisque pour avoir une meilleure qualité de service il faut utiliser au maximum les 

ressources du système ce qui augmente la consommation du système. Il apparait ainsi important 

de pouvoir moduler l’utilisation des ressources matérielles selon les besoins de l’application 

d’une part et également en tenant compte des paramètres externes au système d’autre part.  

Tirant partie de ce fait, les concepteurs des systèmes embarqués se trouvent devant un 

compromis entre la QoS à fournir et l’utilisation des ressources d’énergie et de calcul. Il est 

alors nécessaire de définir des systèmes adaptatifs qui permettent d’adapter leur fonctionnement 

non seulement suivant les contraintes du système mais aussi suivant les préférences de 

l’utilisateur et l’état de l’environnement externe.  

2 Contribution de la thèse  

Le but de la thèse est de définir un système multimédia adaptatif capable de gérer de façon 

autonome et efficace ces ressources d’énergie et de calcul pour produire un maximum de QoS 

tout en respectant les contraintes d’énergie et performance.  

Notre approche prend en compte un certain nombre de contraintes qui agissent sur les 

performances d'un système multimédia embarqué pendant son exécution. Elles se situent à 
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différents niveaux: 

Ø Type de données traitées. Une tâche peut voir ces caractéristiques (temps 

d'exécution, occupation mémoire, consommation) changer en fonction des 

données traitées (valeur, quantité, type).  

Ø Influence du contexte dans lequel évolue le système embarqué. L’augmentation 

du taux d’erreur de transmission par exemple des données peut imposer le 

changement de l'algorithme de décodage et de correction utilisé et donc une 

augmentation de la consommation.  

Ø Influence des choix d'applications. L'utilisateur peut privilégier l'exécution de 

certaines fonctionnalités de son système mobile aux dépends d'autres qu'il peut 

désactiver. Ceci engendre des changements de la consommation d'énergie à une 

sollicitation plus importante des ressources du système.  

Ø Influence du niveau d’énergie de la batterie. La quantité d’énergie disponible 

dans le système peut imposer un mode de fonctionnement particulier ayant un 

niveau de performance limité. 

Diverses techniques ont été proposées [Kan11, Pha04, Yua06] pour le respect des contraintes du 

système tout en donnant une meilleure qualité de service. Ces techniques peuvent intervenir dans 

l’une des couches application, système d’exploitation ou architecturale telles que l’ajustement de 

la tension d’alimentation ou la fréquence de fonctionnement du système, la gestion optimisée des 

accès mémoires, l’utilisation des techniques d’ordonnancement de basse consommation et  la 

modification de l’apparence d’un objet 3D sur l’écran.  

Nous proposons dans cette thèse une nouvelle approche  multi couches  combinant l’adaptation au 

niveau RTOS, applicatif et architectural.  

Le modèle d’adaptation proposé doit être performant sans pour autant être trop complexe pour ne 

pas contribuer à dégrader les performances du système et ses ressources d’énergie.  

Dans ce contexte se situe notre travail qui consiste à ajouter une couche middleware (couche 

intergiciel entre la couche système exploitation et application) permettant l’auto adaptation du 

système. Nous proposons une approche originale et générique d’adaptation qui comporte 

essentiellement deux gestionnaires (global manager and local manager). Le gestionnaire global 

peut intervenir dans les trois couches afin de répondre aux grandes variations des contraintes du 

système (QoS et énergie). Le gestionnaire local intervient seulement dans les couches application 

et système d’exploitation. Il est mis en place pour contrôler le respect de la contrainte temps réel 
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du système.  En cas de besoin ce dernier peut interroger le gestionnaire global pour reconfigurer la 

totalité du système s’il ne peut plus modifier les paramètres applicatifs de l’application pour 

résoudre le problème localement. 

Le principe de fonctionnement de cette approche se base sur l’utilisation d’un jeu de 

configurations pour chaque application, pré-caractérisées hors ligne. A chaque fois que cette 

approche détecte un non respect des contraintes du système, elle intervient pour choisir une 

nouvelle configuration pour chaque application présente sur le système. Compte tenu du nombre 

croissant d’applications que les systèmes actuels peuvent exécuter simultanément et la présence 

de plusieurs configurations pour chaque application notre approche doit résoudre un problème 

NP-complet pour trouver une combinaison de configuration qui lui permet de respecter ses 

contraintes. Partant du fait que la tâche d’adaptation ne doit pas dégrader les performances du 

système on a eu recours à des méthodes d’optimisation (algorithme génétique et recuit simulé) 

pour résoudre ce problème NP-complet.  

3 Organisation du document 

Le manuscrit de cette thèse est organisé en six chapitres :  

Chapitre 2: conception des systèmes sur puce adaptatifs : état de l’art 

La première partie du deuxième chapitre est consacrée à la présentation du flot de conception 

traditionnel des systèmes sur puce ainsi que les facteurs qui ont favorisé l’ajout de l’aspect 

adaptatif. Dans la deuxième partie de ce chapitre, une étude sur les approches d’adaptations 

existantes dans la littérature sera présentée ; nous présentons aussi l’apport et les limites de 

chacune d’entre elles. Nous clôturons cette partie par une synthèse des travaux existants et 

l’introduction de l’approche d’adaptation multicouche proposée.  

Chapitre 3 : approche d’adaptation multicouche 

Ce chapitre est consacré à la description des étapes et les différentes techniques qui ont conduit à 

la mise en place de l’approche d’adaptation.  A ce niveau, nous détaillons les trois étapes 

(observation, adaptation et mise en place de la base des configurations) nécessaires pour la mise 

en place de l’approche d’adaptation proposée. Au niveau de la tâche d’observation, une nouvelle 

technique de contrôle du respect de la contrainte temps réel est proposée. Pour la réalisation de 

l’étape d’adaptation, on a présenté quelques méthodes d’optimisation pour le choix des 

configurations adéquates du système. Afin de mettre en place la base des configurations, une 

approche de partitionnement hardware software a été proposée ainsi qu’un ensemble de modèles 

qui permet de caractériser chaque configuration en termes de consommation, temps d’exécution et 



Chapitre1 : Introduction générale 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 
7 

niveau de qualité de service qui ont été développés. 

Chapitre 4 : étude de cas 

Le quatrième chapitre  présente les éléments nécessaires de notre étude de cas faite à travers 

l’application de synthèse d’images 3D et l’environnement de conception Hardware/software 

d’Altera. Nous clôturons ce chapitre par la présentation du système d’exploitation temps réel 

MicroC_OS-II.  

Chapitre 5 : expérimentation et validation 

Le cinquième chapitre illustre, dans sa première partie, les étapes nécessaires pour la mise en 

place de l’approche décrite dans le troisième chapitre sur la plateforme de conception. La 

deuxième partie illustre  les résultats expérimentaux de l’exécution de l’application de synthèse 

d’images 3D sur la plateforme conçue.  

Chapitre 6 : conclusions et perspectives 

Nous concluons cette thèse par le bilan des travaux effectués et nous détaillons les contributions 

apportées  ainsi que la réponse à la problématique abordée avant de proposer quelques 

perspectives à nos travaux. 
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1 Introduction  

La complexité croissante des applications actuelles nécessite des performances de 

plus en plus importantes, par ailleurs, afin de répondre à la contrainte imposée par le 

marché (time to market), la conception des systèmes embarqués multimédia impose 

l’utilisation des méthodes de conception spécifiques et performantes. Ces méthodes 

s'intègrent dans les méthodes de conception mixte logiciel/matériel (codesign).  

Par ailleurs la diversité des contraintes auxquelles doivent répondre les systèmes 

embarqués (augmentation de la puissance de calcul, diminution de la consommation 

d'énergie, réduction des coûts, flexibilité), l’utilisation des méthodes de conception 

traditionnelle  ne répond plus aux besoins des concepteurs.  Des travaux de recherche 

sont menés afin de combler les limites en ajoutant de nouveaux facteurs dans les 

méthodes de conception traditionnelle.  

Le but de ce chapitre est de présenter les notions de base reliées au domaine de 

conception des systèmes sur puce. Nous énumérons également, les limites du flot de 

conception traditionnelle. Nous terminons la première partie de ce chapitre par la 

présentation de nouvelles tendances pour la conception des systèmes embarqués. La 

deuxième partie de ce chapitre sera consacrée à la présentation des différents niveaux 

d’adaptation ainsi que quelques approches existantes qui traitent la notion 

d’adaptation dans les systèmes embarqués. 

2 Système embarqué 

Tout d’abord nous définissons l’élément de base de notre travail qui est le système 

embarqué (plus spécifiquement un système sur puce « SoC en anglais System-on-

Chip »).  

Un SoC est un système complexe et indépendant sur une seule puce. Il contient au 

moins un processeur (partie SW), de la mémoire sur puce, des composants spécifiques 

pour un traitement donné (accélérateur ou coprocesseur matériel HW), des périphériques 

externes (clavier, écran, interface d’entrées, sorties) peuvent compléter le fonctionnement du 

système [Hen99]. Il intègre dans la plupart des cas une interface homme/machine et il est 

géré par un système d’exploitation puisqu’un SOC peut être interfacé avec le monde 

réel. Il peut souvent incorporer des composants analogiques.  
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2.1 Domaines d’application 

Actuellement, les systèmes embarqués ont envahi beaucoup de domaines tels que 

l'astronautique (satellite artificiel, fusée, sonde spatiale), le militaire (fusée), le 

transport (aéronautique, automobile, avionique) et surtout la télécommunication 

(téléphonie, routeur, pare-feu, serveur de temps, téléphone portable). Cette large 

gamme de domaine d’utilisation englobe aussi les produits d'électroménager 

(télévision, four à micro-ondes), d'impression (imprimante multifonctions, 

photocopieur), d'informatique (disque dur, lecteur de disquette), le multimédia 

(console de jeux vidéo, tablette). D’autres domaines d’application prospèrent de 

l’évolution des systèmes embarqués dont on peut citer les guichets automatiques 

bancaires, l'équipement médical, l'automate programmable industriel ou la métrologie 

[Fré00]. 

2.2 Caractéristiques des systèmes embarqués  

2.2.1 Encombrement 

La plupart des systèmes embarqués actuels sont conçus pour répondre à une contrainte 

d’encombrement (petite taille et faible poids) tels que les téléphones portables les PDA 

etc). La fabrication de ces systèmes fait appel à une technologie d’électronique et de 

logiciel portable qui favorise la réduction aussi bien de l’encombrement que de la 

consommation. Par conséquent, la mise en place d’un système embarqué de faible 

surface qui englobe de l’électronique numérique, analogique et des composants radio 

fréquence est une tâche assez complexe [Ben07].  

Cette caractéristique peut limiter les fonctionnalités offertes vu que les composants 

doivent être d’une taille assez petite. Par exemple on ne peut pas utiliser un ventilateur 

pour le refroidissement des composants.  

2.2.2 L’autonomie 

On dit qu’un système est autonome lorsqu’il dispose de toutes les ressources qui 

assurent son fonctionnement.  Il s’agit de ressources matérielles (processeur, mémoire, 

etc), de ressources logicielles (OS,  applications) et de ressources d’énergie qui 

peuvent être continues ou rechargeables à travers des cumulateurs d’énergie pour 

pouvoir fonctionner [Fré00, Jal09].  

Un grand nombre de systèmes sur puce actuels sont mobiles et fonctionnent avec des 

ressources d’énergie limitées, il est donc extrêmement important de réduire au 
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maximum leur consommation afin d’augmenter leur durée de vie. 

2.2.3 Le temps réel 

La plupart des systèmes sur puce actuels communiquent avec leur environnement 

externe afin de recevoir les données à traiter ou d’envoyer des consignes suite à un 

traitement effectué. Dans certains cas, la validité d’un résultat dépend de l’instant de 

son arrivée (échéance). Ce type de système est appelé système temps réel [Aud 04, 

Bru06]. 

On distingue le temps réel dur qui correspond à un résultat catastrophique lors du non 

respect des échéances comme dans le cas des systèmes de transport. On parle de temps 

réel mou si le non respect des échéances s’accompagne par une dégradation de la 

qualité du service fourni par le système. Par exemple un GSM fait un retard à chaque 

décodage de trame le système devient inexploitable et les paroles des utilisateurs ne 

peuvent pas être synchrones. 

Deux techniques peuvent être distinguées [Fré00]: le développement monolithique et 

l’utilisation d’un système d’exploitation temps réel. Le développement monolithique 

est fait dans un langage de bas niveau. Il consiste à écrire un seul programme dans le 

système qui aura la totalité de la charge de travail du système. Les contraintes 

temporelles sont prises en compte lors de l’écriture du programme. L’utilisation des 

systèmes d’exploitation temps réel vient pour combler les défauts de la première 

technique. Elle permet l’exécution de plusieurs applications dans le système et elle 

offre les mécanismes nécessaires pour garantir le respect des contraintes du système. 

Cette deuxième méthode souffre aussi de quelques limites car la plupart des RTOS 

existants sont spécifiques et avec un code source fermé et non extensible. 

2.2.4 Qualité de service 

Les systèmes embarqués évoluent généralement dans des conditions 

environnementales imprévisibles et souvent non maitrisables vu qu’ils sont portables. 

La plupart d’entre eux sont incorporés dans des systèmes mobiles. Ils sont donc, 

soumis à des variations et à d’autres contraintes environnementales qui peuvent causer 

des défaillances : radiation, vibration, corrosion, chocs, variation d’alimentation, 

interférences radio fréquence, humidité, température etc. Il est donc nécessaire de 

prendre en compte l’impact de la variation des conditions environnementales lors de la 

conception de ces systèmes. 
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Les systèmes embarqués sont de plus en plus sophistiqués et utilisés dans des 

domaines assez critiques dans lesquels un disfonctionnement peut causer des 

nuisances, des pertes économiques et voir même des catastrophes sur la vie de l’être 

humain et l’environnement notamment dans le domaine médical, ou le nucléaire ou le 

domaine de transport.  

Généralement, les utilisateurs des systèmes embarqués sont très exigeants en termes de 

fiabilité, de robustesse et de QoS. La plupart des utilisateurs acceptent un temps de 

disfonctionnement de l’ordinateur par exemple pour quelques heures à cause d’une 

panne ou de coupure de tension électrique. Par contre, ils sont généralement beaucoup 

moins patients vis-à-vis du disfonctionnement des systèmes incorporés sous forme de 

système embarqué et surtout dans le domaine de télécommunication par exemple. 

2.2.5 Complexité  

Grâce à l’augmentation du taux d’intégration, les systèmes embarqués peuvent avoir 

des architectures matérielles trop complexes suivant les besoins de l’application. Un 

système embarqué peut contenir un processeur, de la mémoire et d’autres composants 

pour assurer les performances exigées par les applications. Il peut contenir plus qu’un 

processeur dans une seule puce voire des dizaines de processeurs. Toutes ces 

évolutions ont poussé les concepteurs à mettre en place des outils de conception plus 

sophistiqués pour pouvoir mettre en place ce type d’architecture assez complexe.  

3 Conception de système embarqué 
La conception des systèmes embarqués nécessite généralement une très grande 

quantité de travail manuel et une grande expertise pour choisir l’architecture 

adéquate, écrire les modules de gestion de périphériques, concevoir les interfaces de 

communication et/ou configurer les systèmes d’exploitation commerciaux. A ce stade, 

le concepteur se trouve face à la tâche la plus difficile qui consiste à faire fonctionner 

l’ensemble de ces éléments qui sont conçus sur mesure pour répondre aux exigences 

d’une application.  

Afin de réduire l’effort de conception et les risques d’erreurs de conception, une des 

techniques adoptées est l’utilisation des composants prédéfinis (IP).   L’organisation 

VSIA (VSI Alliance) a proposé une méthodologie basée sur l’assemblage d’IPs 

préconçus [Seo10]. Malgré les inconvénients de ce type d’approche un grand nombre 

de méthodologies adopte ce concept en utilisant des IP et des interfaces de communication 
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standard de HW et de SW standard et paramétrables. Les pénalités de performances de cette 

solution architecturale sont acceptables et ce afin de répondre à une autre contrainte plus 

importante qui est bien évidemment le temps de mise sur le marché TTM et le prix final 

du  produit. 

Dans le but d’accélérer le flot de conception des systèmes embarqués, plusieurs 

travaux ont été menés. Ces travaux se basent sur l’utilisation de nouveaux outils 

capables d’automatiser le processus de conception. Ces outils se concentrent sur 

l’automatisation du raffinement de la communication et la réutilisation de blocs 

préconçus avec la génération automatique des interfaces. Ces outils utilisent différents 

flots de conception. On se contente ici de présenter le flot traditionnel.  

Le flot de conception traditionnel est généralement constitué de trois étapes 

principales: (1) la spécification, (2) le partitionnement, et (3) la validation conjointe 

HW/SW.  

3.1 Flot de conception Logiciel/Matériel 

Le flot de conception SOPC traditionnelle est représenté par la Figure 1. Il admet 

comme entrée une spécification fonctionnelle de l’application et fournit en sortie une 

architecture adéquate qui répond aux différentes contraintes de l’application. 
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Le flot de conception des SOPCs de la Figure 1 regroupe essentiellement trois étapes : 

1. En partant d’une spécification fonctionnelle complète du design, le concepteur partitionne 

l’application en utilisant les outils adéquats ou manuellement en une partie logicielle et une 

autre matérielle. L’optimisation des techniques de partitionnement constitue un thème de 

recherche très sollicité par les scientifiques [Ara05, Cat01]. Ces activités de recherche 

s’intéressent surtout à l’automatisation de cette étape. 

2. Une fois le partitionnement effectué, on implémente la partie matérielle en utilisant un 

langage de description matérielle telle que VHDL, VERILOG ou SystemC. La synthèse de la 

partie matérielle est réalisée par des outils de conception assistée par ordinateur (CAO) tels que 

Design Compiler de Synopsys [Syn], Allegro de Cadence [Cad] et Agility Compiler de 

Celoxica [Cel]. La partie logicielle en revanche, sera implémentée en langage évolué par 

exemple C/C++. La compilation de la partie logicielle dépend du processeur cible. Ensuite, on 

passe à la synthèse de la communication des différents blocs du système. La plus part des 

systèmes sont conçus à base d’IP qui sont des composants matériels et logiciels déjà existants dans 

la bibliothèque d’IPs de l’environnement de conception il est donc nécessaire de mettre en place 

les mécanismes de communication entre eux. La synthèse des communications permet de 

raffiner les interfaces des sous-systèmes communicants. Ce raffinement se fait d’une manière 

interactive jusqu’à figer les mécanismes de communication (protocole, contrôleur, interface). 

3. Dans la phase finale du flot, on injecte le SOPC sur une plateforme adaptée de type FPGA. 

Cette plateforme représente un environnement idéal pour l’implémentation des SOPC contenant 

un ou plusieurs processeurs qui supportent la partie logicielle, une surface de portes logiques 

(pour supporter la partie matérielle et les bus de communication), des blocs mémoires et des 

interfaces de communication. 

Dans les paragraphes qui suivent, nous allons détailler les différentes étapes du flot de 

conception comme présentées dans la Figure 1. 

3.1.1 Spécification haut niveau 

La spécification d’un système fixe les fonctions principales exigées par l’utilisateur. En 

spécifiant le système, le concepteur doit tenir compte des performances techniques (paramètres 

architecturales) et économiques (coût de fabrication) du système sur puce. L’objectif de l’étape 

de spécification est de fixer un modèle fonctionnel et de le tester tout en vérifiant les contraintes 

d’implémentation de l’application. La création d’un modèle fonctionnel s’intéresse à la 
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structuration ou l’organisation du comportement du système au cours du temps. La spécification 

de l’application dépend des paramètres imposés par la plateforme d’implémentation. 

Divers types de modèles de spécification fonctionnelle existent dans la littérature tels que 

Statechart, les réseaux de pétri et UML (Unified Modeling Language). Ces modèles de 

spécification, restent inadaptés pour exprimer les contraintes non fonctionnelles de l’application 

telles que les performances temporelles (durée, latence et débit) et les ressources d’implémentation 

nécessaires (énergie, mémoire et surface d’implémentation). La vérification de l’intégrité 

fonctionnelle de l’application nécessite l’utilisation d’un langage de description de haut niveau 

associé à un noyau de simulation comme SystemC [Sys]. 

3.1.2 Partitionnement logiciel / matériel 

L’étape de partitionnement logiciel/matériel détermine les tâches qui vont être implémentées sur 

un ou plusieurs processeurs et les tâches de traitement effectuées par des accélérateurs 

matériels. Durant cette étape de partitionnement, le concepteur fixe également les interfaces 

entre la partie HW et SW [Ara05, Ana05].  

L’étape de partitionnement automatique d’une spécification est un problème complexe (un 

problème NP-complet). Afin de décomposer ce problème, on peut subdiviser ce processus en 

trois parties principales : 

- Une partie qui effectue l’allocation des différentes ressources matérielles et logicielles 

en fixant leurs types et nombres. Dans le cas d’un processus d’allocation statique, le 

concepteur dimensionne à un niveau d’abstraction très haut l’architecture globale de 

l’application embarquée. Le concepteur fixe ainsi la limite de performance du design qui 

dépend des composants déployés dans l’architecture. 

- Une autre partie qui effectue le partitionnement spatial ou temporel en affectant les 

tâches qui constituent l’application sur la partie matérielle ou logicielle. Dans les 

architectures statiquement reconfigurables, cette partie se limite souvent à un problème 

de partitionnement spatial dans lequel on affecte les différentes tâches aux différents 

composants fonctionnels. Cependant, dans le cas des architectures reconfigurables 

dynamiquement, le partitionnement temporel est devenu une étape indispensable dans la 

conception du système.  

- Une troisième partie qui effectue l’ordonnancement de l’exécution et de la 

reconfiguration des différentes tâches ainsi que la communication entre elles. A ce 

niveau, le concepteur doit explorer l’espace de solution afin de sélectionner une 
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architecture qui respecte les contraintes de traitement temps réel imposées.  

3.1.3 Validation 

Une fois qu'un partitionnement satisfaisant a été trouvé et que l'architecture a été définie, 

l'étape de synthèse post-exploratoire permet de générer le système. Il y a ici deux étapes, 

d'une part la synthèse matérielle dont le but est de générer soit un « netlist » pour la création 

d'un ASIC soit le code à télécharger « bitstream » dans un composant programmable de type 

FPGA, et d'autre part la synthèse logicielle (compilation) dont le but est de générer le code 

qui sera exécuté par un ou plusieurs microprocesseurs du système. 

 

 

 

 

 

 

 

3.2 Gestion de la consommation 

La maîtrise de la consommation de puissance et d'énergie est un problème souvent rencontré 

dans le domaine des systèmes embarqués autonomes. Elle est devenue, ces dernières années, 

un facteur essentiel dans l’étape de conception. Ceci est dû au fait que les nouvelles 

applications deviennent de plus en plus complexes, et requièrent des architectures très 

complexes et par conséquent un nombre croissant de transistors sur la puce. 

L’augmentation des puissances consommées rend l’amélioration de l’autonomie du système 

embarqué un objectif principal dès sa conception. Elle est aussi un facteur déterminant pour 

son succès commercial. Cet objectif peut être atteint par diverses techniques : 

- Augmentation de la capacité de stockage d’énergie des piles : cet objectif est très difficile 

à atteindre et l’évolution dans ce domaine ne suit pas le progrès des besoins des systèmes 

actuels. Ceci a causé un « gap » entre l’évolution de la complexité des applications et 

l’évolution de la densité d'énergie des piles (exprimée en Wh/kg) comme le montre la 

Figure 2. En effet, la loi d’Eveready prévoit une lente évolution de la capacité des piles 

ne dépassant pas 40 %, évolution 4 fois moins élevée que celle de la capacité 

Dans cette partie, nous avons présenté les étapes essentielles du flot de conception 

mixte typique. Le but des approches de conception existantes est de proposer des 

architectures le mieux adaptées au traitement requis afin d’optimiser la surface des 

architectures et leur temps de développement. Toutefois, avec l’apparition des 

systèmes embarqués, avec des ressources d’énergie limitées, la consommation est 

devenue une contrainte prioritaire qui doit être prise en compte dans la conception 

des systèmes multimédia. Ce sera l’objet du paragraphe suivant. 
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d'intégration des circuits prédite par la loi de Moore [Tur03]. Cette évolution ne permet  

plus de suivre la complexité croissante des applications prédite par la loi de Shannon 

[Kar03].  

- Diminution de la consommation du système embarqué. Diverses méthodes situées à 

différents niveaux d’abstraction peuvent être investiguées : au niveau algorithmique et au 

niveau architectural.  

Comme il reste toujours difficile d'augmenter la capacité de stockage d'une batterie sans en 

augmenter le poids, le volume et le prix, il est donc nécessaire d'investir d'avantage dans la 

deuxième solution. Par conséquent, des méthodes de gestion d'énergie efficaces doivent être 

définies et incluses dans les différentes phases de conception des systèmes [Ben07].  

 

Figure 2: "Gap" entre l'évolution des batteries et l'évolution des semi-conducteurs [Kan02] 

3.3 Techniques de réduction de la consommation 

Cette partie présente quelques techniques utilisées pour concevoir un système embarqué à 

faible consommation. Ces techniques peuvent être réparties en trois catégories : des 

techniques matérielles, d’autres logicielles et celles qui combinent les deux techniques 

précédentes, logicielles et matérielles. 

Diverses techniques ont été proposées pour mettre en place un système à faible 

consommation. La plus répandue est celle qui conçoit des composants spécifiques qui 

consomment le moins possible. La seconde méthode consiste à fournir la partie logicielle qui 

consomme la faible quantité d’énergie et ce à travers des méthodes d’optimisation du code de 

l’application à exécuter. La dernière méthode consiste à combiner les deux techniques 
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précédentes c'est-à-dire, utiliser des composants qui consomment le moins et adapter le code 

de l’application suivant l’architecture utilisée. 

3.3.1 Technique matérielle 

3.3.1.1 Au niveau composant 

Actuellement, on assiste à une très forte évolution dans le domaine de fabrication des circuits 

électroniques. Ceci est dû à l’augmentation du taux d’intégration et de la fréquence de 

fonctionnement des circuits actuels. Ce qui implique une augmentation au niveau de la 

consommation du système.  

Il est à noter que la consommation du système est la somme de deux types [Nab10] : 

- la consommation statique qui est proportionnelle au nombre de transistors et au courant 

de fuite 

- la consommation dynamique qui est proportionnelle à la fréquence de fonctionnement et 

la tension d’alimentation du système 

Diverses techniques ont été proposées pour remédier à ce problème, telles que la diminution 

de la tension d’alimentation, l’activation séparée des blocs logiques et le contrôle du taux de 

basculement des bits. 

- Diminution de la tension d’alimentation  

La tension d’alimentation est un facteur qui a un impact très important sur la puissance 

dissipée par un circuit qui peut être calculé par la formule suivante: 

Pdyn= α.C.f.V2  

Avec : 

C : la capacité équivalente 

F : la fréquence de fonctionnement 

V : la tension d’alimentation 

Ces dernières années, la tension d’alimentation des circuits intégrés n’a cessé de diminuer. Au 

début, cette valeur était fixée à 5v ; alors que, actuellement, la plupart des circuits travaillent 

avec une valeur de 3.3v ou 1.1v. Il est à noter qu’il y a des composants qui utilisent 0.5v et 

ceci est dû non seulement aux progrès de la conception des circuits intégrés mais aussi à la 

maitrise des techniques de fabrication ; on parle maintenant de la technologie 45nm [Mat09]. 

- Activation séparée de composants 

La deuxième technique proposée consiste à activer séparément les composants d’un circuit 

suivant les besoins de l’application [Koi06]. Cette technique n’est pas toujours réalisable et 

peut envisager des traitements supplémentaires pour l’activation des parties nécessaires au 
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bon moment. Cette technique a été utilisée pour diminuer la consommation de la mémoire 

cache. Elle consiste à diviser la mémoire en un ensemble de blocs qui peuvent être activés 

indépendamment les uns des autres. 

- Diminution du basculement des bits 

La troisième technique consiste à diminuer le nombre de basculements des bits entre 0 et 1, et 

ce, à travers la réutilisation des informations existantes sur le bus. Il est à noter que ce nombre 

intervient dans le facteur α déjà cité pour le calcul de la puissance dissipée par un circuit. 

3.3.1.2 Au niveau système 

La réduction de la consommation d’un système n’intervient pas seulement aux niveaux des 

composants mais aussi au niveau du choix de l’architecture du système complet [Jul04]. 

Parfois, là où la consommation du système coûte cher, on sera obligé à choisir des 

composants moins performants que d’autres et qui consomment bien entendu beaucoup moins 

d’énergie. Par exemple la plupart des systèmes actuels utilisent des supports de stockage de 

type mémoire flash bien que leur capacité de stockage soit beaucoup plus faible que celle d’un 

disque dur. Ce choix est notamment fait à cause de la faible consommation qui peut atteindre 

jusqu’à 90% de gain par rapport au disque dur [Lor98]. 

3.3.2 Technique logicielle 

Cette technique consiste à modifier le code susceptible d’être exécuté sur le système dans le 

but de diminuer la consommation induite à son exécution. Cette technique s’avère facile, mais 

en pratique, c’est très difficile de mettre en place des outils qui permettent l’automatisation de 

cette technique car elle demande une connaissance très précise de l’application ainsi que les 

spécificités de l’architecture du système [Mat07].  

Cependant, des travaux d’optimisation du code de l’application peuvent avoir lieu 

manuellement pour minimiser la consommation du système ; le programmeur peut utiliser des 

langages de bas niveau tel que l’assembleur pour faire des instructions spécifiques d’une 

manière précise qui consomme moins. Une deuxième technique a été proposée ; elle consiste 

à remplacer l’appel des fonctions par des fonctions en lignes.  

3.3.3 Technique mixte 

Cette technique est basée sur la collaboration entre les composants matériels et logiciels. Les 

mécanismes utilisés pour la réduction de la consommation proviennent aussi bien du matériel 

que du logiciel. Ce dernier prend en charge la prise de décision d’activation des mécanismes 

matériels nécessaires pour la réduction de la consommation [Chr11].  



Chapitre2 : Conception de système sur puce adaptatif : état de l’art 
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 
20 

 

 

 

 

 

 

 

 

3.4 Approches de codesign faible consommation 

Les méthodes de réduction de puissance et d’énergie sont plus efficaces, plus qu’elles sont 

adressées le plus tôt possible dans le processus de conception (globalement au niveau 

système). Cependant, la majorité des travaux existants sur l’optimisation de puissance adresse 

séparément les parties matérielles, logicielles et de communications après avoir fixé 

l’architecture du système. Seules quelques approches de codesign tiennent compte de la 

gestion de la consommation à un niveau d’abstraction plus élevé. Ces approches commencent 

en général par une étape d’estimation de la consommation des parties du système (tâches, 

fonctions, communications etc.) [Mou03a] pour déterminer ensuite, et le plutôt possible, la 

consommation totale du système. Parmi ces méthodes, on trouve: 

1. Dave et Al. Ils ont présenté l’environnement COSYN-LP [Dav97], qui est l’extension de 

l’environnement COSYN pour faire l’optimisation de la consommation au niveau système. 

Leur méthode inclut une première étape d’estimation de la consommation et des temps 

d’exécution des tâches du système. Ensuite, un algorithme de type heuristique fait le 

partitionnement/ordonnancement des tâches du système sur l’architecture cible 

multiprocesseur. Cette approche permet de réduire la consommation dans le système jusqu’à 

25%. 

2. Fornaciari et Al dans [For98] présentent des métriques de consommation efficaces pour 

guider le partitionnement Hw/Sw au niveau système. Les métriques d’évaluation de la 

consommation ont été définies pour explorer largement l’espace de solutions au niveau élevé 

d’abstraction. 

3. Dans [Jal09] les auteurs s’intéressent à l’exploration d’architecture basse 

consommation. Pour ceci ils ont proposé un flot de conception qui dispose d’une librairie d’IP 

modélisés en consommation à l’aide de paramètres de haut niveau. Par ailleurs des modèles 

Ces techniques de réduction de la consommation sont très efficaces et permettent un 

gain très important au niveau d’énergie. Le problème avec ces techniques est que le 

concepteur se trouve parfois devant un compromis performance/consommation d’où 

la nécessité d’intégrer la gestion de la consommation dans le flot de conception afin 

de guider le concepteur dans son choix. Dans le paragraphe suivant nous présentons 

quelques approches classiques de codesign faible consommation. 
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de performances riches et une technique  d’exploration  basse  consommation est proposée.  

Cette  approche  permet  de  considérer  un certain nombre de paramètres algorithmiques et 

architecturaux sur la consommation. Un modèle complet est proposé afin de déduire les 

performances globales du système qui seront utilisées lors  de  l’exploration  à  travers  une  

technique  basée  sur  le  recuit  simulé.    

3.5 Limitations des approches présentées  

Le codesign faible consommation permet la création de systèmes à basse consommation en 

tenant compte des caractéristiques de l’application et de l’architecture cible. Cependant, ces 

approches ne tiennent pas compte d’un ensemble de paramètres « dynamiques » imprévisibles 

à l’avance et donc difficilement analysables hors ligne.  

En effet, un certain nombre de paramètres peuvent modifier les performances d'un système 

multimédia embarqué pendant son exécution. Ils se situent à différents niveaux, certains étant 

aléatoires et non liés à une application cible : 

- Le comportement de la batterie du système 

- La variabilité des données et des applications 

- Préférences de l’utilisateur 

- Adéquation algorithme architecture 

- Influence de l’environnement 

3.5.1 Le comportement de la batterie du système 

La plupart des systèmes multimédia mobiles opèrent avec des batteries. Leur évolution reste 

lente par rapport à la demande des nouvelles applications. Il est en effet toujours difficile 

d’augmenter la capacité de stockage d’une batterie sans en augmenter le poids, le volume et 

essentiellement le prix [Azz04]. Ceci a poussé les chercheurs à opter pour l’optimisation de 

l’utilisation de l’énergie de ces batteries puisque la durée de vie du système en dépend 

directement. Dans ce contexte, les travaux de [kan02] ont montré que  l’augmentation de la 

durée de vie de la batterie du système n’est pas en liaison directe avec la réduction de la 

puissance moyenne consommée. En effet, le profil de courant instantané influe sur la capacité 

de la batterie. Ainsi l’exploration basse consommation est insuffisante pour augmenter la 

durée de vie du système. Il faudrait plutôt suivre en ligne l’évolution des ressources 

disponibles et agir en conséquence sur les éléments (architecture, application…) du système.  
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3.5.2 La variabilité des données et des applications 

Le progrès des systèmes informatiques mobiles et embarqués (téléphones mobiles et les 

PDAs) impose l’utilisation de plusieurs applications multimédia complexes [Ram05]. Ces 

applications, traitent un nombre variable de données, et la première source de variabilité de la 

performance de tels systèmes. En effet, la diversité des applications exécutées sur la même 

plateforme produit une variabilité au niveau de la charge de travail du système complet. La 

caractérisation de l’évolution instantanée de la charge de travail des différentes applications 

est une étape nécessaire pour estimer les performances d’exécution du système implémenté 

sur la plateforme. Par ailleurs, la variabilité des performances de traitement associée à une 

application dépend largement de la nature du flux de données traitées [Rut02]. Une 

architecture embarquée qui implémente une application traitant des données multimédias, 

comme les applications de vision artificielle, d’imagerie 3D et de codage audio, représente un 

exemple significatif qui illustre cette variabilité temporelle. Dans le cas des applications 

multimédias, l’origine principale de cette variabilité de performance est l’instabilité au niveau 

des propriétés des données traitées (images ou séquence vidéo) [Var04].  

3.5.3 Préférences de l’utilisateur  

L’utilisateur, maitre de cet environnement, peut donner ses consignes au système, tels que la 

durée de vie souhaitée du système et le niveau de qualité de service acceptable pour le 

fonctionnement du système. Ces exigences peuvent être modifiées à n’importe quel moment.  

Par ailleurs, l'utilisateur peut privilégier l'exécution de certaines fonctionnalités de son 

système mobile au dépend d'autres qu'il peut désactiver ou dégrader leur qualité de service. 

Ceci engendre des changements de la consommation d'énergie et de l’allocation des charges 

de travail des différentes applications du système.  

3.5.4 Choix architectural 

Une architecture système typique qui traite des données multimédias comporte des accélérateurs 

matériels spécifiques, un ou plusieurs composants programmables (processeurs, DSP ou 

contrôleurs) et de la mémoire [Sof07]. Une telle architecture permet d’améliorer les 

performances du système en termes de temps d’exécution et par conséquent en termes de 

qualité de service. Mais cette amélioration est pénalisée par l’augmentation de la consommation 

du système. D’une part, puisque ces composants ont des consommations dites statiques càd 

puisqu’ils consomment de l’énergie même s’ils ne sont pas en cours d’utilisation. D’autre part, 

il est évident qu’une tâche implémentée en hardware s’exécute plus rapidement que celle en 
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software. Mais il faut tenir en compte qu’ils consomment aussi plus que la tâche software 

[Ben07]. Par conséquent, le concepteur se trouve devant plusieurs choix architecturaux qui 

peuvent être utiles pour le système dans un contexte de fonctionnement, mais lorsque les 

exigences du système changent au cours du fonctionnement l’utilisation de ces composants 

devient inutile compte tenu de leur influence sur la consommation du système.  

3.5.5 Influence de l’environnement  

Le fonctionnement d’un système embarqué peut changer d’un emplacement à un autre si les 

caractéristiques de l’environnement change [Fre02]. Par exemple l’utilisation d’un caméscope 

dans un emplacement lumineux consomme beaucoup plus moins d’énergie que son utilisation 

dans un milieu sombre car il nécessite l’utilisation d’une source d’éclairage. Même chose 

pour les applications exécutées pouvant dépendre des contraintes imposées par 

l’environnement. Par exemple l’utilisation d’un téléphone dans un endroit bruité peut imposer 

l’exécution des algorithmes pour l’élimination des bruits de fonds. 

 

 

 

 

 

 

 

 

 

4 Méthodologies d’adaptation 

L’adaptation est une caractéristique nécessaire aux systèmes que nous venons de présenter, afin 

de maintenir leur fonctionnalité face à des modifications de leur environnement. Laddaga 

présente la notion de logiciel auto-adaptatif, c’est-à-dire « capable de surveiller, comprendre et 

modifier sa fonction à l’exécution » [Lad01]. L’objectif est de permettre de réagir au 

dynamisme de l’environnement d’exécution afin de fournir une nouvelle fonctionnalité ou 

d’améliorer la qualité de celles déjà rendues. Bien entendu, elle nécessite de la part du système 

une connaissance de cet environnement qui l’entoure.  

Afin de répondre à ces nouvelles exigences dictées par la prolifération de ces 

nouveaux systèmes embarqués, de nouvelles méthodes de conception doivent être 

mises en place. Ces méthodes doivent d’une part tenir compte des propriétés des 

applications multimédia pour générer l’architecture adéquate. Ainsi l’architecture 

générée est optimisée pour l’application ciblée ce qui permet de réduire les coûts et 

d’augmenter les performances. D’autre part, ces nouvelles méthodes de conception 

doivent permettre d’obtenir des systèmes qui peuvent s’adapter efficacement à leur 

environnement externe (contraintes de fonctionnement, énergie disponible…). 
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La tendance actuelle au niveau de la conception des systèmes sur puce est de générer des 

architectures réactives qui s’adaptent en lignes pour mieux satisfaire les besoins de 

l’application. Ces besoins s’expriment en termes de performance, de qualité de service ou de 

consommation d’énergie. Ils sont fixés, d’une part, suivant des paramètres fonctionnels telle que 

la charge de travail affecté à chaque application pour le respect de la contrainte temps réel et 

d’autre part, ils sont liés à des paramètres non fonctionnels telles que l’énergie disponible dans 

la batterie et les préférences de l’utilisateur (QoS et DDV). Le besoin d’adapter le 

comportement d’un système est une conséquence de la variabilité des ressources ou des 

contraintes d’un système sur puce fluctuant dans un environnement variable. 

Récemment, il y a eu de nombreuses contributions de recherches sur l'auto adaptation pour les 

systèmes autonomes dans plusieurs couches : couche matérielle, couche du système 

d’exploitation (OS), et couche applicative. Dans cette section, nous allons présenter les 

différents niveaux d’adaptation ainsi que les techniques utilisées ; ensuite nous citons 

quelques approches d’adaptation ; nous présentons également leurs apports et leurs 

limitations. 

4.1 Adaptation au niveau matériel  

Diverses techniques ont été proposées dans la couche matérielle pour l’adapter suivant les 

exigences du système. Parmi ces techniques on peut citer en premier lieu, la graduation 

dynamique de tension (DVS) qui est employée pour ajuster la vitesse et la puissance du CPU.  

En second lieu, nous citons la technique de gestion de la consommation dynamiquement 

« DPM » cette technique se base sur l’arrêt des composants inutilisables dans le système. En 

troisième lieu, pour les plateformes reconfigurables, le changement de l’architecture du 

système est fait suivant les besoins de l’application et les contraintes du système  

4.1.1 Technique DVS  

Beaucoup de méthodes d’adaptation [Luo02, Man03, Shi04, Mar05,Yut11, Muh11] reposent 

sur le changement dynamique de la tension d’alimentation « Vdd » et de la fréquence de 

fonctionnement « F» pendant le fonctionnement du système. Ces méthodes sont motivées par 

l’apparition de circuits électroniques à tension d’alimentation et fréquences variables 

[Oku01]. On peut citer par exemple la technologie PowerNow ! d’AMD et les technologies 

SpeedStep et XScale d’Intel. L’ordonnancement temps réel dans ce cas consiste non 

seulement à déterminer l’ordre d’exécution des tâches mais également à fixer la fréquence de 

fonctionnement ainsi que la tension d’alimentation. Beaucoup de techniques qui sont 

développées pour des tâches périodiques ou apériodiques  reposent sur deux approches 
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d’ordonnancement : un ordonnancement dynamique (on-line) [Lee00, Qua01] ou un 

ordonnancement statique (off-line) [Bam01, Gru01, Shi04]. L’approche dynamique recalcule 

à chaque fois les priorités des tâches et la tension d’alimentation pendant l’exécution du 

système. Pour l’approche statique, l’ordonnancement des tâches et le voltage sont calculés 

avant que le système n’entre en fonctionnement pour éviter l’overhead dû au calcul 

dynamique. Dans [Shi01] deux algorithmes sont présentés : l’un statique, basé sur un 

ordonnancement RM avec un gain en consommation d’énergie de 12%, et l’autre dynamique, 

basé sur un ordonnancement EDF avec un gain en énergie de 32%. Dans [Ouh03] les auteurs 

proposent une méthode de DVS dans le cadre de codesign logiciel/matériel. 

4.1.2 Gestion dynamique de la consommation « DPM » 

La gestion dynamique de la consommation DPM (Dynamique Power Management) est une 

approche efficace pour la gestion de la consommation sans dégradation des performances du 

système. Elle consiste à arrêter des parties du système pendant qu’elles sont inoccupées (idle) 

[Hua06, Xin07, Muh10]. Les algorithmes DPM observent l’arrivée des événements dans le 

système et prévoient les périodes d’inoccupation qui peuvent être déterminées par plusieurs 

méthodes. Cette technique est omniprésente dans les ordinateurs portables et les PDA : elle 

consiste à arrêter les composants après un temps fixe d’inactivité ; par exemple l’écran et le 

disque dur. 

Dans [Swa01] les auteurs présentent leur algorithme en lignes de DPM, qui s’appelle LEDS 

(Low Energy Device Scheduler), qui fait l’ordonnancement à faible consommation pour les 

périphériques d’entrée/sortie des systèmes temps réel strictes. Il prend en entrée un 

ordonnancement prédéterminé des tâches et une liste d’usage des périphériques d’E/S pour 

chaque tâche et il produit une séquence d’états de type actif/inactif pour chaque périphérique 

d’E/S. Il garantit la non violation des contraintes temps réel et la réduction au minimum de 

l’énergie consommée par les unités d’E/S utilisées par l’ensemble des tâches. Il présente aussi 

un exemple où la consommation d’énergie est réduite de 50% avec un ordonnancement EDF 

des tâches. 

4.2 Adaptation au niveau système d’exploitation 

Vu la complexité des systèmes actuels, la complexité et la diversité des applications et la 

présence de fortes contraintes, l’utilisation des systèmes d’exploitation temps réel dans les 

systèmes sur puce est devenue indispensable.  
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Un système d'exploitation offre divers types de services de communication et de 

synchronisation entre les tâches du système. Il propose aussi un ensemble de routines de 

gestion des ressources matérielles. Mais le service le plus important d’un système 

d’exploitation est l’ordonnancement et l’affectation de la charge de travail aux différents 

processus présents dans le système afin qu’il soit ordonnançable.  

Puisqu’on travaille dans un contexte variable au niveau de l’application exécutée et de 

données traitées les systèmes d’exploitation actuels doivent prendre en compte ces variations 

en modifiant la charge de travail CPU affectée à chaque tâche. 

Beaucoup de travaux ont été effectués dans le système d'exploitation et la couche middleware 

pour fournir l’allocation prévisible de l'unité centrale de traitement et l’adaptation des services 

[Bav00, Ban02, Kan11]. Dans [Fli01, Cor01, Wan03]. Les gestionnaires de ressources d'unité 

centrale de traitement, fournissent des garanties de performances en temps réel. D’autres 

travaux se sont focalisés sur le changement de la politique d’ordonnancement (ordonnanceur 

basse consommation) parmi ces travaux on peut citer [Bav00, Ban02].  Les auteurs de 

[Wan03, Fli01, Bra02] utilisent une couche middleware qui est une couche intermédiaire 

située entre la couche applicative et le système d’exploitation pour faciliter aux applications 

l’adaptation de leur QoS. 

4.3 Adaptation au niveau applications 

Beaucoup de projets préconisent l'économie d'énergie dans la couche application. Par 

exemple, les auteurs de [Fli99] explorent comment adapter le comportement d'application 

suivant l'énergie. Mesarina et autres [Mes02] discutent comment réduire l'énergie dans le 

décodage de MPEG. Dans [Van02, Pha04] deux approches sont proposées pour la 

dégradation de la qualité d’un objet 3D pour satisfaire des contraintes de ressources et 

d’environnement. Notre modèle prend en compte la modification des paramètres de 

l’application pour économiser de l’énergie et par conséquent augmenter la durée de vie du 

système. 

 

 

 

 

 



Chapitre2 : Conception de système sur puce adaptatif : état de l’art 
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 
27 

 

 

 

 

 

 

 

4.4 Approches d’adaptation existantes 

Différentes approches d’adaptation ont été proposées dans la littérature. Elles exploitent un ou 

plusieurs niveaux d’adaptation et gèrent différents types de contraintes comme l’énergie 

consommée, la qualité perçue (QoS), le temps réel etc.  

Dans la suite de ce chapitre nous présenterons quelques approches existantes. Nous traiterons 

également l’apport et les limites de chacune d’elles. 

4.4.1 Gestion de la QoS pour assurer une interaction de trames  

L’auteur de [Pha04] présente un travail de gestion de QoS pour garantir une interaction de 

trame par dégradation de la QoS de l’objet 3D sous des contraintes de ressources et 

d’environnement. 

 

Figure 3: Schéma du système d'adaptation [Pha04] 

Le but de ce travail Figure 3 est de mettre en place une approche qui permet de faire une 

interaction entre un émetteur et un récepteur d’une scène formée par plusieurs objets 3D. Afin 

de réduire la quantité d’informations échangées entre les deux, le traitement des objets 3D est 

Afin de bénéficier des avantages des méthodes citées ci-dessus et d’en réduire les 

limites, des travaux ont été faits en se basant sur des méthodes qui travaillent sur les 

différentes couches du système tel que le modèle GRACE [Wan03]. Ces approches, 

cependant, supposent que la couche de matériel soit statique. La seule modification 

prise en compte est au niveau de la fréquence et de la tension du CPU. A la suite de 

cette section on présentera le principe de fonctionnement de quelques méthodologies 

d’adaptation. 
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fait chez le récepteur. La contrainte à prendre en considération est que le temps de traitement 

de la scène chez le récepteur ne doit pas dépasser le temps d’envoi d’une trame sur le réseau. 

Puisque dans le cas contraire le récepteur n’arrive pas à afficher toutes les trames reçues. 

Comme solution il a proposé de modifier la qualité des objets 3D suivant leur profondeur dans 

l’écran dans le but de réduire le temps de traitement chez le récepteur. 

En premier lieu une étude sur les différents facteurs qui influent sur la qualité des objets 3D à 

été menée. En second lieu ils ont présenté leur problème comme étant un problème 

d’optimisation qui cherche à choisir les meilleurs paramètres applicatifs pour chaque objet 

permettant de fournir la meilleure QoS possible sous contrainte que le temps de traitement 

chez le récepteur ne dépasse pas le temps d’envoi d’une trame sur le réseau. 

Comme solution ils ont présenté un algorithme qui définit pour chaque objet une liste de 

(bénéfice, coût) puis commence des itérations pour trouver une solution qui présente un 

bénéfice maximum pour tous les objets tout en respectant la contrainte temporelle. La 

complexité de l'algorithme proposé dans le pire cas est O (N.L.logL.) où L est le nombre de 

niveaux de qualité de l'objet et N représente le nombre d’objets visibles pour un point de 

vision considéré. 

Cette approche s’avère être utile dans des cas bien spécifiques mais elle ne peut pas être 

appliquée dans plusieurs  systèmes où le traitement se fait aussi bien sur l’émetteur que sur le 

récepteur. De plus on constate bien qu’elle ne tient en compte que d’une seule contrainte qui 

est le temps d’envoi d’une trame sur le réseau et abandonne les autres, surtout la 

consommation et les préférences de l’utilisateur. En plus l’algorithme proposé nécessite un 

traitement assez complexe par conséquent il consomme beaucoup de ressources du système; 

ce qui influe sur les performances  du système. 

4.4.2 Adaptation à base d’affectation de budget de ressource 

L’auteur de [Van02] présente une approche de gestion de ressources du système entre les 

différentes applications présentes. Le principe se base sur l’affectation d’un budget de chaque 

type de ressource à chaque application. Les applications ne doivent pas dépasser leur budget. 

Dans le cas contraire cette approche peut modifier les paramètres applicatifs en dégradant la 

QoS de l’application pour respecter le budget, la prochaine itération. 

Cette approche peut être utilisée pour l’adaptation de la qualité dans le cas où le système 

exécute plusieurs applications simultanément, elle se compose essentiellement d’un 
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Ressource Manager (RM), plusieurs « Ressource Consuming Entities » (RCE), plusieurs 

« Domain Quality Manager » (DQM) et d’un « Global Quality Manager » (GQM) Figure 4. 

La gestion de ressource est basée sur des budgets de ressource fournis par le RCE et alloués 

par le gestionnaire global de qualité (GQM). Dans ce travail, ils considèrent une ressource, le 

CPU, et deux RCE, 3D et vidéo. Les budgets sont exprimés en pourcentage de temps de 

traitement CPU avec une granularité donnée, par exemple 70% du temps de processeur toute 

les 20 ms. Le dépassement du budget pour une période donnée peut causer un retard de RCE 

jusqu’à la période du budget suivante. Le contrôleur de RCE s’assure que le RCE s’exécute 

acceptablement dans les limitations de son budget. 

Le gestionnaire de qualité détermine les paramètres de qualité préférée et le budget du RCE. 

Le Global Quality Manager (GQM) est indépendant du domaine (3D, vidéo) et prend des 

décisions dans de multiples domaines. Le GQM coopère avec un ou plusieurs Domaine 

Quality Manager (DQM) qui a la connaissance de détail de domaine. Pour un système donné, 

il peut y avoir plusieurs DQM, un par domaine sémantique. 

Puisque 3D et vidéo sont deux domaines sémantiques séparés, les systèmes avec 3D et vidéo 

exigeront un 3D Quality Manager (3D_QM) et un Vidéo Quality Manager (VQM) 

En cas de surcharge, si un contrôleur de RCE ne peut pas maintenir un niveau de qualité 

acceptable dans les limitations de son budget, les gestionnaires de qualité doivent renégocier 

les budgets de tous les RCE. 

 

Figure 4: Structure de la couche d'adaptation [Van02] 

Cette méthode traite le cas de plusieurs applications et peut être utile dans le cas où on connait 

auparavant les besoins en termes de ressources pour chaque type d’application. Or comme on 
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l’a déjà mentionné au début de ce chapitre les besoins des systèmes actuels différent d’une 

situation à une autre.  

Par ailleurs cette approche ne tient pas compte de la possibilité d’adaptation au niveau de la 

couche hardware. 

4.4.3 Gestion de la QoS basée sur le partitionnement HW/SW 

L’auteur de [Pha03] présente un travail de gestion de la qualité de service pour des 

plateformes reconfigurables à base de FPGA. Le changement de l’architecture est fait suivant 

le type de l’application exécutée (MPEG ou 3D) et en fonction des ressources disponibles 

(capacité de l’FPGA, temps d’exécution). Pour ce faire, il propose d’ajouter une couche 

Middleware de gestion de la qualité de service dont la fonction principale est de décider 

quelles sont les tâches qui vont être implémentées en hardware et  celles en software de telle 

manière que l’utilisateur reçoive la meilleure qualité possible. 

L’objectif de la gestion de la QoS basée sur le partitionnement HW/SW est de trouver une 

solution de partitionnement  qui permettrait de maximiser la qualité de l’application sous des 

contraintes de ressource. 

Cette méthode est utilisée pour les plateformes reconfigurables, mais, elle aussi, ne prend pas 

en charge la consommation qui est une contrainte très importante surtout pour les systèmes 

embarqués. D’autre part, les algorithmes de partitionnement présentés ont une grande 

complexité ; ce qui influe sur les performances du système. 

Cette approche peut être étendue afin qu’elle intervienne aussi sur la couche applicative et 

système d’exploitation pour en bénéficier de l’apport de chacune d’entre elles. 

4.4.4 Approche d’adaptation multicouche « GRACE » 

L’approche GRACE présentée dans [Yua06], intervient dans les trois couches du système 

pour assurer à l’utilisateur la meilleure QoS possible tout en respectant la contrainte temps 

réel et la durée de vie souhaitée du système. Au niveau architectural ils ont utilisé la technique 

de variation de la fréquence de fonctionnement du système. Au niveau système d’exploitation 

elle intervient dans la charge de travail affectée à chaque tâche et au niveau applicatif ils ont 

proposé de modifier les paramètres applicatifs de l’application pour réduire les ressources 

consommées. 
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Figure 5: Schéma de l’approche Grace [Wan03] 

Le modèle GRACE présentée par la Figure 5 permet de faire une adaptation sur trois couches. 

En plus, il prend en considération la gestion de la consommation du système. Mais ce modèle 

présente quelques inconvénients puisque la plupart des processeurs embarqués ne permettent 

pas de changer dynamiquement la fréquence de fonctionnement. De plus cette approche ne 

tient pas en considération la possibilité de modifier l’architecture du système suivant les 

besoin des applications exécutées.  

4.4.5 Approche d’adaptation du Lab-STICC 

Une approche d’auto-adaptation multicouche a été mise en place [Jph11]. Cette approche se 

base sur l’utilisation d’une base de configurations pré-caractérisées dans une étape qui se fait 

hors ligne. Au cours du fonctionnement, l’approche décide les prochaines configurations  du 

système. La décision se base sur un algorithme de vote multidimensionnel mis à jour par des  

mesures et des estimations. Son principe de fonctionnement est illustré par la Figure 6 : 

 

Figure 6: Principe de fonctionnement de l’approche du Lab-STICC 
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Cette approche est focalisée essentiellement sur la migration des tâches software en hardware 

et la prise en compte de ce changement dans le système d’exploitation. Cependant, elle ne 

contient pas les mécanismes nécessaires pour le contrôle du respect de la contrainte temps 

réel. 

4.4.6 Approche d’adaptation multi contrainte « class » 

Dans le cadre de la thèse de Nader BEN AMOR, une approche d’adaptation à contraintes 

multiples « class » (Cross Layer Adaptation Simulator System) Figure 7 a été établie [Ben07]. 

Il a proposé une méthode reposant sur la régulation du compromis durée de vie / Temps réel / 

Qualité de service. Cette méthode suppose d'une part l’existence de divers modes de 

fonctionnements du système et d'autre part que celui-ci est capable de passer d’un mode à un 

autre suivant l’évolution des paramètres durée de vie, temps d’exécution et QoS.  

Cette méthode a été validée à travers un environnement de prototypage virtuel. Cet 

environnement émule le fonctionnement d’un système embarqué réel exécutant une 

application test. Le simulateur utilise plusieurs modules.  

Le premier module indique le scénario que le simulateur doit exécuter.  

Le second module est un modèle de batterie qui permet de déterminer la durée de vie du 

système connaissant la puissance que le système consomme. Une procédure de suivi de 

l’évolution des ressources d’énergie du système est utilisée. La fréquence utilisée pour le suivi 

de l'application est variable. Cela permet d’adapter d'une part le compromis entre le coût 

d'adaptation et le gain d'adaptation, et d'autre part, de suivre la vitesse d’évolution de 

l'utilisation des ressources du système.   

Le module suivant est un modèle de consommation du système. Il permet, en connaissant le 

scénario, de prévoir la consommation du système. Ce modèle tient compte aussi de l’effet de 

la variation des données sur la consommation du système.  

Le dernier module est la procédure de choix des configurations. Ce choix suit la priorité des 

trois contraintes. L’algorithme de choix assure la contrainte prioritaire tout en faisant du 

mieux possible pour les deux autres.  

L’environnement utilise aussi une base de configurations pré caractérisées et mise à jour au 

cours du fonctionnement du système. Cet environnement a été développé pour la validation de 

la méthode d’adaptation générale ainsi que pour le test de différents algorithmes et techniques 

d’adaptation. 
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Figure 7: Interface du simulateur « class » 

Cette approche présente un nouvel apport. Elle consiste à utiliser une base de configurations et à 

ce que le système puisse passer d’un mode à un autre au cours de son fonctionnement. En 

revanche, elle présente quelques limites puisqu’elle est validée à travers un démonstrateur et 

non pas un système réel d’une part. D’autre part, elle ne prend pas en considération l’utilisation 

d’un RTOS et les contraintes temps réel.  

4.5 Discussion 

Suite à l’étude faite sur les approches d’adaptation existantes on a remarqué que ces méthodes 

souffrent de quelques « handicaps ». Afin de surmonter quelques limites nous proposons dans le 

cadre de notre travail une approche d’adaptation multicouche qui permet de maximiser la QoS 

fournie pour l’utilisateur tout en respectant les contraintes du système (Ddv/Texe/QoS). Elle 

intervient dans la couche applicative en agissant sur les paramètres applicatifs pour modifier les 

ressources utilisées. Dans la couche système d’exploitation elle utilise la technique d’affectation 

des charges de travail pour chaque application et pour la couche hardware elle se base sur la 

modification de l’architecture du système en cours de fonctionnement. 

5 Conclusion 

La consommation est devenue un facteur important et limitatif dans la conception des systèmes 

embarqués par conséquent le flot de conception traditionnelle ne répond plus à leurs exigences. 

Pour surmonter ce problème, différentes méthodes de réduction de la consommation ont vu le 
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jour. Ces Méthodes sont d’un apport inestimable dans la conception des systèmes sur puce mais 

elles restent limitées puisque les systèmes embarqués ne cessent d’évoluer ; ce qui est traduit 

par l’apparition de nouvelles contraintes qui sont imprévisibles et de natures fluctuantes. De 

nouvelles approches d’adaptation ont été proposées pour répondre à ces nouvelles exigences. 

Dans la dernière partie de ce chapitre nous avons présenté quelques approches d’adaptation. 

Nous avons également présenté leurs apports et leurs limites.  

Dans ce contexte les travaux menés dans cette thèse portent essentiellement sur la proposition et 

la mise en place d’une approche d’adaptation pour les systèmes embarqués temps réel. Le 

chapitre suivant sera consacré à la présentation de l’approche d’adaptation multicouche 

proposée. Nous présenterons également les différentes étapes qui ont conduit à sa mise en place.
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1 Introduction  

Avec l’évolution des systèmes embarqués actuels, différents facteurs interviennent dans leur 

conception. Ces facteurs peuvent être de deux types prédictibles ou aléatoires au cours du 

temps. Nous avons montré dans le chapitre précédent l’importance d’avoir un système 

performant, flexible et adaptatif qui puisse gérer ses ressources selon des contraintes externes 

reliées à l’énergie disponible, la bande passante, les choix de l’utilisateur, etc. Dans ce 

contexte, nous avons présenté différentes méthodologies d’adaptation qui ont été mises en 

place pour permettre au système d’assurer un fonctionnement satisfaisant en milieu 

perturbateur et en présence de ressources d’énergie et de calcul réduites. Afin de combler les 

limites des approches existantes dans ce chapitre nous proposons une approche d’adaptation 

multicouche ainsi que les étapes qui ont conduit à sa mise en place. Cette approche intervient 

dans  les trois couches du système (application, système d’exploitation et architecture).  

Le principe du système d’adaptation proposé est illustré par la Figure 8. Il comporte : 

- Une activité d’observation qui permet de suivre l’évolution et le respect des différents 

paramètres Texe, QoS et Ddv.  

- Une activité d’adaptation qui permet de choisir une configuration pour le système afin 

qu’il puisse satisfaire les différentes contraintes de fonctionnement.   

- La mise en place de la base des configurations pré-caractérisées. 

- Nous supposons que le système possède divers modes de fonctionnement et qu’il est 

capable de passer d’un mode à un autre selon les consignes du système d’adaptation au 

cours de son fonctionnement. Une configuration (mode fonctionnement) du système 

représente une version de l’application multimédia et un type d’implémentation HW/SW. 

L’activité d’adaptation utilise la base de configurations mise en place et caractérisée hors 

ligne pour choisir une configuration pour le système qui fournit la meilleure QoS possible 

tout en respectant les contraintes du système. 
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Figure 8: Schéma du système d’adaptation 

Dans la suite de ce chapitre, nous détaillerons chacune de ces trois tâches. Dans la section (2), 

nous présenterons la tâche d’observation. Dans la section (3) nous présenterons la tâche 

d’adaptation développée, ses composants ainsi que leur principe de fonctionnement. Nous 

clôturerons ce chapitre par la présentation et la mise en place de la base des configurations. 

2 Activité d’observation 

L’activité d’observation permet, d’informer la tâche d’adaptation globale de tout type de 

changement qui apparait dans le système tel que l’apparition ou la disparition d’une tâche ou 

bien le changement des préférences de l’utilisateur.  

Par ailleurs, l’activité d’observation, doit suivre en lignes l’évolution et le respect des trois 

paramètres Ddv, QoS est le respect des contraintes temps réel (noté Texe). Au cas où elle 

trouve des anomalies elle devra activer la tâche d’adaptation adéquate (global 

manager « GM » ou local manager « LM ») pour remédier au problème. 

Le suivi de ces paramètres en ligne nécessite d’ajouter au système les routines logicielles et 

les structures matérielles adéquates. La Ddv d’un système dépend de la quantité d’énergie 

résidante dans sa source d’alimentation.  
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Le suivi de la Ddv d’une batterie nécessite l’utilisation d’un estimateur de l’état de charge de 

la batterie (gas gauge). Connaissant la puissance en cours de consommation et les paramètres 

de notre batterie, nous pouvons déterminer la durée de vie de notre système.  

Le suivi de la contrainte temps réel se fait au niveau du système d’exploitation à l’aide de la 

technique du watchdog qui permet de détecter tout dépassement d’échéance.  

Le suivi de la QoS se fait également au niveau du système d’exploitation. Il est déterminé à 

l’aide du modèle de la QoS.  

2.1 Paramètres de l’activité d’observation  

L’observation est une activité périodique. Nous notons dans la suite du document « Pobs » sa 

période. Une valeur faible de « Pobs » permet un suivi fin des différents paramètres à 

contrôler ce qui permet au système de réagir rapidement aux changements de consignes (ou 

de données à traiter). Cette rapidité de réaction est obtenue au dépend d’une augmentation de 

la consommation de l’activité d’observation due à une sollicitation plus importante de la jauge 

batterie. Pour remédier à ce problème nous avons proposé de faire varier la valeur de Pobs 

suivant la stabilité du système. Nous avons défini pour ceci deux valeurs limites pour 

« Pobs » : 

- Une borne inférieure à Pobs notée Pobs_lim_inf : ce paramètre est introduit afin de 

limiter les coûts associés à l’activité d’observation (due à une valeur trop faible de Pobs). 

Elle est déterminée après la construction des différentes configurations du système.  

- Une borne supérieure de Pobs notée Pobs_lim_sup, elle est spécifiée par l’utilisateur. 

Cette borne garantit que Pobs ne devienne pas trop importante ce qui empêcherait le 

système d’adaptation de suivre l’évolution des paramètres Ddv et QoS.  

Durant le fonctionnement du système embarqué, Pobs doit satisfaire la condition suivante :  

Pobs_lim_inf <Pobs< Pobs_lim_sup 

Au cours du fonctionnement du système, la valeur de Pobs est ajustée selon la stabilité du 

système. Nous détaillons dans la suite l’ajustement dynamique de Pobs.  

2.2  Ajustement dynamique de Pobs 

Le principe de la mise à jour de Pobs se base sur le principe suivant :  

- Pobs commence toujours à partir de la valeur initiale Pobs_lim_inf  
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- A chaque période de l’activité d’observation Pobs si la quantité d’énergie qui reste 

dans la batterie assure la durée de vie souhaitée par l’utilisateur et que la période 

Pobs est inférieure Pobs_lim_sup. la valeur de Pobs sera ajustée suivant la formule 

de l’équation E1. Dans le cas contraire (c'est-à-dire à chaque fois que la tâche 

d’adaptation globale est activée) la période Pobs est remise à sa valeur initiale E2. 

Pobs=Pobs+a*Pobs    avec 0<a<1   

Pobs=Pobs_lim_inf. 

3 Activité d’adaptation 

Dans cette section, nous étalons l’intervention du modèle d’adaptation dans les couches 

hardware, OS et application. Nous montrons également l’interaction entre les différentes 

couches afin de bénéficier d’une meilleure qualité de service tout en respectant les 

contraintes. Notre technique d’adaptation peut être appliquée à trois niveaux : niveau 

architectural (hardware), niveau OS et niveau application.  

3.1 Modèle d’adaptation niveau application  

Nous considérons des applications multimédia telles que la synthèse d’images 3D le 

codage/décodage vidéo qui sont exécutés pour une longue durée et qui consomment un temps 

CPU élevé. Chaque tâche consomme un temps CPU et fournit un résultat de sortie. 

L’adaptation au niveau applicatif est faite en changeant les paramètres et le type de traitement 

pour fournir en sortie une qualité de service proportionnelle aux ressources consommées. Plus 

on accroit la consommation des ressources plus la qualité s’améliore. Par exemple, pour 

l’application de synthèse d’images 3D, on peut changer le nombre de polygones représentant 

l’objet. En effet, l’augmentation du nombre de polygones entraîne systématiquement une 

amélioration de QoS et vice versa. La modification du type d’algorithme d’ombrage utilisé 

(gouraud, plat, phong) modifie également la qualité observée puisque le modèle Gouraud par 

exemple permet de cacher l’apparence des polygones contrairement au modèle plat. Cette 

caractéristique (existante dans plusieurs autres applications multimédia comme MPEG, 

codage audio, etc…) peut être exploitée pour réduire la QoS au profit d’une réduction de la 

consommation de ressources (si par exemple les ressources d’énergie atteignent un niveau 

bas).  

Le changement de l’un de ces paramètres entraîne une intervention au niveau de la couche 

système d’exploitation et parfois elle peut imposer une modification au niveau de 

l’architecture du système (si on change le type de traitement par exemple). 

E1 

E2 



Chapitre3 : Approche d’adaptation multicouche proposée 
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 40 

3.2 Adaptation niveau architectural  

Une application peut avoir différentes implémentations. Une implémentation logicielle pure 

correspond à l’exécution de toutes les fonctions de l’application par le microprocesseur. Une 

implémentation mixte correspond à l’utilisation de composants matériels dédiés  qui vont 

exécuter les tâches de l’application les plus complexes à la place du microprocesseur. Une 

implémentation mixte est généralement plus performante qu’une implémentation logicielle 

pure mais plus gourmande en ressources d’énergie. Comme les applications multimédia ont 

des besoins variables en terme capacité de calcul (du à leur variabilité), l’utilisation d’une 

seule implémentation peut causer des performances trop dégradées (cas où on utilise 

uniquement une implémentation logicielle) ou être trop gourmande (cas où on utilise 

uniquement une implémentation matérielle). 

Afin de remédier à ce problème de choix de l’architecture, notre approche vise la possibilité 

de la modification de l’architecture du système au cours de  son fonctionnement. Bien 

entendu, le changement du type de l’architecture hardware doit être signalé à la couche 

application pour qu’elle en tienne compte dans le code des applications exécutées. De même, 

la couche système d’exploitation doit être informée de ce changement pour qu’elle recalcule 

la nouvelle charge de travail affectée à chaque tâche. 

Cette technique est plus performante que le changement dynamique de la tension 

d’alimentation pour diverses raisons. D’une part, cette technique peut être appliquée à tout 

type de processeur embarqué puisqu’elle n’exige pas qu’il supporte le changement dynamique 

de la tension d’alimentation. D’autre part, la technique DVS est de moins en moins  utile 

compte tenu de la baisse des tensions d’alimentation des circuits actuels. 

3.3 Modèle d’adaptation niveau système d’exploitation  

Actuellement, les systèmes sur puce peuvent exécuter différentes applications simultanément. 

Afin de respecter la contrainte temps réel, il faut que toutes les tâches du système s’exécutent 

à leurs échéances. Le dépassement de l’échéance par l’une des tâches peut entraîner un retard 

de toutes les tâches ce qui perturbe le fonctionnement du système.  

Nous travaillons avec des applications multimédia nous parlons donc de temps réel mou, par 

concequent les dépassements d’échéances sont acceptables mais dans une certaine limite. 

Puisque le système exécute plusieurs applications à la fois, et que chaque application possède 

différents modes de fonctionnement (temps d’exécution différents) nous avons adopté la 
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notion d’affectation de budget de charge de travail (CPU_workload) à chaque tâche. En fait, 

l’exécution d’une tâche nécessite un certain nombre de cycles CPU (charge de travail). Afin 

de respecter la contrainte temps réel, nous allons allouer pour chaque tâche un nombre de 

cycles CPU suivant le nombre de tâches présentées sur le système. Lors de son exécution une 

tâche ne doit pas dépasser son budget pour terminer son traitement.  

Cependant, une même tâche peut consommer différents nombres de cycles CPU selon 

différents paramètres (nombre et type de données, type de l’implémentation de la tâche 

HW/SW, …). C’est pourquoi il est nécessaire d’allouer à chaque fois à une tâche un nombre 

de cycles bien déterminé suivant les paramètres applicatifs et architecturaux. Cette 

réaffectation aura lieu dans deux cas. Le premier cas est lorsqu’il y a un changement au 

niveau architectural ou applicatif qui correspond à une modification de l’algorithme utilisé ou 

de l’implémentation. Dans sa nouvelle configuration, la tâche a besoin d’une nouvelle valeur 

du  (CPU_workload) qu’il est nécessaire de recalculer et de réaffecter. Le second cas 

correspond à un dépassement d’échéance qui oblige le système d’adaptation à faire des 

ajustements qui peuvent imposer pour une tâche de changer d’implémentation. La détection 

du dépassement d’échéance est faite à travers la technique du « watchdog » qui sera expliquée 

dans la section(4).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

La coordination de l’adaptation dans les trois couches hardware, système 

d’exploitation et application nous offre un modèle d’adaptation multicouche 

« cross layer » dont les capacités d’adaptation sont plus performantes que les 

adaptations monocouches comme nous l’avons montré au chapitre 1. Cette 

technique multicouche nécessite la coopération entre les différentes couches du 

système puisque le changement des paramètres de l’une peut entrainer des 

changements dans les autres couches. Spécifiquement, pour avoir une qualité de 

service pour une application donnée et qui consomme une quantité d’énergie bien 

fixe, nous avons besoin de configurer l’architecture adéquate dans la couche 

hardware, allouer un nombre de cycles processeur pour chaque tâche dans la 

couche système d’exploitation et modifier les paramètres applicatifs dans la 

couche application. 
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4 Adaptation multicouche 

Le but du système d’adaptation est de satisfaire les consignes de l’utilisateur tout en tenant 

compte des données à traiter et des opportunités d’adaptation offertes par l’application et 

l’architecture cible. Les entrées pour le système d’adaptation sont : 

- Les consignes de l’utilisateur : elles sont données par ce dernier ; la durée de vie « Ddv » 

souhaitée et le niveau de qualité de service minimale acceptable « QoSmin ». 

- Les données à traiter : elles dépendent des contraintes imposées par l’environnement 

externe (type de données, type d’applications exécutées sur le système) 

Cette section présente la conception de l’approche d’adaptation multi couche. Nous décrivons 

ainsi l’architecture et le mode de fonctionnement de cette approche. 

4.1 Vue d’ensemble 

L’approche d’adaptation proposée combine l’adaptation dans les trois couches, hardware, OS 

et application. La Figure 9 présente l’architecture globale de notre approche. Elle est 

composée essentiellement de :  

- Un gestionnaire global qui coordonne entre les trois couches en se basant sur l’énergie 

disponible et les préférences de l’utilisateur (niveau minimal de la qualité de service et 

durée de vie souhaitée) pour donner la meilleure qualité de service possible. 

- Un gestionnaire local qui coordonne entre la couche application et système d’exploitation 

afin de garantir le respect de la contrainte temps réel 

- Un adaptateur de tâches qui permet d’ajuster les paramètres et les opérations de la tâche. 

- Un adaptateur d’OS qui permet d’ajuster le nombre de cycles CPU et l’échéance affectée 

pour chaque tâche. 

- Un adaptateur d’architecture qui s’occupe du changement de l’architecture du système  

- Un moniteur de batterie  qui donne une indication sur le niveau d’énergie restant dans la 

batterie.  

- Une base de configuration qui contient des configurations pour chaque type d’application.  
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Figure 9: Approche d’adaptation 

L’approche d’adaptation doit être assez performante et pas trop complexe. Le défi est donc de 

fournir la meilleure qualité possible pour un système tout en respectant les contraintes du 

système et sans être trop complexe pour ne pas consommer les ressources du système. 

4.2 Gestionnaire global « GM » 

Le gestionnaire global peut être activé par la tâche d’adaptation ou pour répondre à une 

demande du gestionnaire local. Dans de telles situations, le GM coordonne entre les trois 

couches (application, OS, hardware) pour choisir la meilleure configuration du système, à 

partir d’une base de configurations pré-caractérisées. La configuration choisie doit fournir à 

l’utilisateur la meilleure qualité de service possible tout en respectant les préférences de 

l’utilisateur et les contraintes du système (Ddv/Texe/QoS). 

La Figure 10 montre le schéma du GM [Lou09c]. Ces entrées sont les préférences de 

l’utilisateur. Pour  le moment, nous considérons deux paramètres, la durée de vie souhaitée et 

le niveau de qualité de service minimum accepté. Le gestionnaire global cherche à maximiser 

le niveau de qualité de service des applications multimédia exécutées tout en assurant les 

préférences de l’utilisateur. 

 



Chapitre3 : Approche d’adaptation multicouche proposée 
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 44 

 

 

 

 

 

 

 

Figure 10: Le gestionnaire global 

4.2.1 Formulation mathématique du problème 

Plus formellement, on suppose que notre système exécute n tâches concurrentes 

”S1”={A1,…..,Ak}. Chaque application « Ak » , 1<k<n, possède m différents modes de 

fonctionnement Ai
k є ”S2”={ A1

k …… Am
k }. Chaque mode Ai

k, correspond à une version 

algorithmique d'une application Ak. Chaque Ai
k peut avoir des configurations 

hardware/software différentes en fonction de la mise en œuvre de ses différentes fonctions 

(tâches): Ai
k,p, où p є "S3".  

Chaque Ai
k,p est caractérisé par un temps d’exécution au pire cas noté Texe_Ai

k,p  pour une 

période « Pk » et consomme au cours de cette période une énergie « Eck »  

On cherche à fournir une qualité de service « QoSk », pour une durée de vie « Ddv» et avec un 

niveau de QoS minimum « QoS_mink». Sachant que la quantité d’énergie disponible dans la 

batterie est « Ed». Ce problème peut être représenté par les équations suivantes :  

Maximiser  

Sous contraintes :  

    
    

Configurations 
 

Gestionnaire global 
Ddv 

 
NQoSmin 

(Tâche1, P1)……………………….……(Tâchei, Pi) 

Energie disponible (Ed(t) Base des configurations 

E4 

E3 

E6 

E5 

F1 
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Les équations E3 et E4 permettent de fournir à l’utilisateur la meilleure qualité de service 

possible qui doit être supérieure au niveau de QoS minimum fixé par l’utilisateur pour chaque 

application.  

L’équation E5 permet de garantir la contrainte de durée de vie. La quantité d’énergie 

consommée par toutes les tâches ne devra pas dépasser la quantité d’énergie disponible si le 

système fonctionne avec l’état actuel tout au long de la durée de vie.  

L’équation E6 représente la condition suffisante d’ordonnançabilité du système selon 

l’algorithme d’ordonnancement EDF. Cette contrainte nécessite que le temps d’exécution de 

toutes les tâches ne doit pas dépasser 1.  

Le problème de ce modèle est qu’il accepte la substitution d’une QoS d’une application par 

rapport à une autre ce qui peut conduire à avoir une tâche avec une excellente QoS et une 

autre tâche avec une faible QoS (vidéo excellente avec qualité audio médiocre par exemple). 

Ainsi, il est important d’homogénéiser la distribution de la QoS à toutes les applications du 

système. Ceci peut être assuré par une répartition équitable des ressources disponibles aux 

différentes applications. 

Le Tableau 1 montre, avec un exemple simple, que deux solutions différentes avec des sorties 

de qualité de service très distinctes peuvent avoir les mêmes valeurs de la fonction objectif. 

Tableau 1 : Résultat de la fonction objectif avec la fonction F1 

 

Afin d’éviter ce problème et afin de garantir l’obtention d’une bonne qualité de service à 

chaque application notre fonction d’évaluation doit avoir la forme F2=Max 揸 ∑ 륈ǁǑ ૚ܑۼܑܓୀ૚  ሻ qui 

consiste à maximiser  la fonction somme des qualités en exposant (1/k) (avec k un entier 

supérieur à 1). 

Le Tableau 2 illustre un exemple du résultat de la fonction objectif en appliquant la deuxième 

formule. 
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Tableau 2 : Résultat de la fonction objectif avec la fonction F2 

 

Pour démontrer que si nous avons n valeurs qui ont la même qualité de service totale, la 

recherche du maximum de la fonction somme des valeurs en exposant (1/k) (avec k un entier 

supérieur à 1) va nous donner un résultat où toutes les valeurs sont similaires. Nous avons 

utilisé la méthode de multiplicateur de Lagrange [Hif07] qui propose une stratégie pour 

trouver l’optimum d'une fonction sous contraintes. Néanmoins afin de vérifier que l’optimum 

trouvé est un maximum global nous avons appliqué la méthode Hessienne [Ste10]. Une 

démonstration complète de cette formule existe dans [lin10a]. 

4.2.2 Quantification de la consommation en énergie électrique  

Nous considérons un système formé par un {CPU, mémoire, des accélérateurs matériels} 

Figure 11 : 

 

Figure 11 : Architecture d’un SoC 

La consommation du système dépend de : 

· La puissance statique du processeur et de la mémoire associée. Cette valeur est notée 

Pow_idl 

· L’impact de chaque accélérateur sur la puissance statique noté Pow_conf 

·  La puissance consommée dynamiquement du système qui est due à l’exécution de 

chaque application. Cette valeur est notée Pow_app 
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La Figure 12 montre ces différentes puissances  

 

Figure 12 : Modélisation de la consommation 

Ainsi avec ce modèle de consommation, l’équation E5 peut être reformulée selon l’équation 

E7 r5 _:݀lᦨ ൅݄∑ r5 _欸5e _݂:௡7ୀ퓈 ᦨ ൅݄∑ r5 _ܽ݌݌_: ᦨ ௛Ỹ7௡7ୀ퓈 ᦨݔܧ:൏ݍ݁ܤ    

Avec le budget affecté pour un quantum Beq � ୉ୢీౚq౞    et  h est l’hyper-period du système 

Donc notre problème d’optimisation peut être formulé de la manière suivante : 

  Maximiser 揸 ∑ Qos୧భౡ୒୧ୀ퓈  ሻ  
Sous contraintes: 

   ψ: ൒ψ5P_݉:e        
    
r5 _:݀lᦨ ൅݄∑ r5 _欸5e _݂:௡7ୀ퓈 ᦨ ൅݄∑ r5 _ܽ݌݌_: ᦨ ௛Ỹ7௡7ୀ퓈 ᦨݔܧ:൏ݍ݁ܤ

  
 

     
å
=

<=
n

1i

1
Pi

Exi

       
4.2.3 Recherche de la solution 

Le gestionnaire global devra sélectionner la configuration adéquate pour chaque tâche 

(architecture+paramètres applicatifs) à partir de la base de configuration qui devra contenir 

E7 

E3 

E4 

E7 

E6 
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des informations relatives à chaque configuration telle que les niveaux de  QoS, le nombre de 

cycles CPU requis, la quantité d’énergie consommée pour une période. Donc afin de choisir la 

meilleure configuration de chaque tâche, le GM se trouve devant un problème NP-complet, 

puisqu’il devra extraire toutes les combinaisons possibles qui peuvent répondre aux 

contraintes déjà citées. Par exemple, si on considère que notre système exécute trois tâches 

concurrentes et que l’on a « n » configurations possibles pour chaque tâche les GM devront 

vérifier n3 solutions possibles pour extraire toutes les combinaisons possibles afin de répondre 

aux exigences du système.
 

Partant du fait que la tâche d’adaptation doit avoir un overhead minimum et pour réduire la 

complexité de la tâche d’adaptation, nous avons étudié différentes méthodes d’optimisation de 

résolution de ce type de problème. 

4.2.4 Présentation des méthodes d’optimisation 

L’optimisation est un ensemble de techniques permettant de trouver les valeurs des variables 

qui rendent optimale une fonction de réponse, appelée aussi fonction objectif. 

Il existe deux classes d’algorithmes d’optimisation qui sont les algorithmes exacts et les 

algorithmes approchés (Figure 13).  

 

 

 

 

 

 

 

 

Figure 13:Classification des algorithmes d’optimisation 

Méthodes 
d’optimisation 

Méthodes exactes Méthodes approchées 

Méta heuristiques Heuristiques 

Trajectoire Evolutionnaire 

Méthodes 
polyédrales 

Programmatio
n dynamique 

Branch and 
bound 
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4.2.4.1  Méthodes exactes 

Diverses méthodes de résolution exactes existent dans la littérature. Elles se caractérisent par 

le fait qu'elles permettent d'obtenir une ou plusieurs solutions dont l'optimalité est garantie. 

Parmi ces méthodes on cite : 

· la programmation dynamique 

· les méthodes polyédrales  

· le Branch & Bound  

· la méthode de recherche par énumération explicite de toutes les solutions  

Ces méthodes permettent de trouver des solutions optimales pour des problèmes de petite 

taille. Mais malgré les progrès réalisés en termes de technologie, le temps de calcul nécessaire 

pour trouver une solution risque d'être très grand puisqu’il dépend de la taille du problème. 

Les méthodes exactes rencontrent généralement des difficultés avec les problèmes de taille 

importante dans notre travail on va opter pour la dernière méthode « full enumeration». 

Cependant dans certains cas nous pouvons nous contenter des solutions de bonne qualité, sans 

garantie d’optimalité, mais au profit d’un temps de calcul réduit. Nous utilisons pour cela une 

méthode approximative avec l’inconvénient de ne disposer en retour d’aucune information sur 

la qualité des solutions obtenues. 

4.2.4.2  Les méthodes approximatives 

Dans certaines situations, telles que la limite des ressources disponibles pour le système, cas 

de la plupart des systèmes embarqués actuels, il est nécessaire de disposer d'une solution qui 

permette de fournir une bonne qualité (assez proche de l’optimale). Nous parlons ainsi des 

approches approximatives. 

Dans ce cas l'optimalité de la solution ne sera pas garantie, ni même l'écart avec la valeur 

optimale. Cependant, le temps nécessaire pour obtenir la solution sera beaucoup plus faible et 

pourra même être fixé. Typiquement ce type de méthodes, est particulièrement utile pour les 

problèmes nécessitant une solution dans un laps de temps très court ou pour résoudre des 

problèmes difficiles sur des instances numériques de grande taille. 

Parmi ces méthodes, on distingue les heuristiques qui concernent un problème bien spécifique 



Chapitre3 : Approche d’adaptation multicouche proposée 
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 50 

et les méta-heuristiques qui sont plus puissantes et qui peuvent résoudre un grand nombre de 

problèmes. 

- Les heuristiques 

Dans le but d’améliorer le fonctionnement d’un algorithme dans sa recherche dans l’espace 

des solutions d’un problème donné, le recours à une méthode heuristique permet d’améliorer 

les performances dans le processus de recherche des solutions optimales. 

Feignebaum et Feldman définissent une heuristique comme une règle d’estimation, une 

stratégie, une astuce, une simplification, ou toute autre sorte de système qui limite la 

recherche des solutions dans l’espace des configurations possibles[Bap06]. 

- Les métaheuristiques 

Les métaheuristiques se placent à un niveau plus général encore, et peuvent être utilisées dans 

toutes les situations où le concepteur ne connaît pas d’heuristique efficace pour résoudre un 

problème donné. 

En 1996, I.H. Osman et G. Laporte définissaient la méta-heuristique comme « un processus 

itératif qui subordonne et qui guide une heuristique, en combinant intelligemment plusieurs 

concepts pour explorer et exploiter tout l’espace de recherche. Des stratégies d’apprentissage 

sont utilisées pour structurer l’information afin de trouver efficacement des solutions 

optimales, ou presque-optimales » [Bap06]. 

Les méta-heuristiques sont souvent inspirées par des systèmes naturels, qu’ils soient pris en 

physique (cas du recuit simulé), en biologie de l’évolution (cas des algorithmes génétiques) 

ou encore en éthologie (cas des algorithmes de colonies de fourmis ou de l’optimisation par 

essaims particulaires). 

· Méta-heuristique trajectoire 

Comme point de départ, ces algorithmes partent d’une solution initiale proposée par le 

concepteur ou aléatoirement et commencent des itérations dans le but de l’améliorer ; ce qui 

construit une trajectoire des solutions choisies. Dans cette catégorie d’algorithmes on peut 

citer: 

- la méthode Tabou 

- la méthode de descente 
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- le recuit simulé 

- la recherche par voisinage variable 

· Méta-heuristique évolutionnaire 

Contrairement à la méthode trajectoire, celle-ci travaille avec un ensemble de solutions 

simultanément, qui évoluent au cours du temps : ce qui permet en conséquence une 

amélioration de l’espace des solutions. Dans cette seconde catégorie, on recense : 

- l’optimisation par essaim particulaire 

- les algorithmes génétiques 

- les algorithmes à estimation de distribution 

- les algorithmes par colonies de fourmis 

- le path relinking (ou chemin de liaison) 

Dans la section suivante nous nous intéressons à la description détaillée du mode de 

fonctionnement d’un algorithme de chaque catégorie l’algorithme génétique et recuit simulé.  

4.2.5 Algorithme génétique 

4.2.5.1  Définition 

Les algorithmes génétiques font partis des algorithmes d'optimisations évolutionnaires. 

L’utilisation de la théorie de l'évolution comme un modèle informatique pour trouver une 

solution optimale peut être justifiée par le fait qu’elle permet de trouver une solution parmi un 

grand nombre de possibilités dans un délai raisonnable. De ce fait, les algorithmes génétiques 

ont été inspirés du concept de la sélection naturelle développée par Charles Darwin et des 

méthodes de combinaison des gènes introduites par Mendel pour traiter des problèmes 

d'optimisation [Lay09]. 

Les premiers travaux réalisés dans ce domaine ont débuté dans les années cinquante, lorsque 

certains biologistes américains ont simulé des structures biologiques sur un ordinateur, puis 

dans les années soixante, sur la base des travaux antérieurs, John Holland a développé les 

principes de base des algorithmes génétiques dans le cadre de l'optimisation mathématique 

[Lac04].   
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4.2.5.2  Caractéristiques principales

Puisque ces algorithmes sont inspirés de la génétique classique, le vocabulaire employé est le 

même que celui de la génétique. Ainsi pour décrire un algorithme génétique les 

sont : 

· Gène : Le plus petit élément d’une solution potentielle au 

· Chromosome / Individu: un chromosome (parfois aussi appelé un génome) est un 

ensemble fini de gènes. Il définit une proposition de solution au problème que 

l'algorithme génétique essaie de résoudre. Dans la plupart des cas un individu est 

présenté par un seul chromosome.

· Population : elle est formée par l’ensemble des individus utilisés par l’algorithme 

génétique. 

· Génération : c’est l’évolution de la population à un instant t donné.

· Fonction de performance (fitness) :

prescrit l'optimalité d'une solution. Elle est utilisée pour calculer le coût d'un point de 

l'espace de recherche. 

4.2.5.3  Principe 

Pour un problème d’optimisation, les étapes de l’algorithme génétique sont les suivantes 

(Figure 14) :  

Figure 14: Principe de base d’un algorithme génétique
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1. Générer aléatoirement une population de n chromosomes x 

2. Évaluer l’adaptabilité f(x) de chaque chromosome 

3. Créer une nouvelle population 

a.  Sélectionner 2 parents chromosomes 

b.  Croiser les 2 parents pour obtenir 2 enfants 

c.  Muter les enfants obtenus  

d.  Placer les enfants dans la population 

4. Itérer à partir de l’étape (2) jusqu’à ce qu’à attendre le critère d’arrêt [Lac04]. 

Le critère d’arrêt peut être choisi : 

- Aléatoirement : le nombre d’itérations qui correspond au nombre de générations. 

- Basé sur le critère de convergence : valeur de fitness incluse dans un intervalle désigné au 

paravent. 

Dans notre cas le critère d’arrêt est atteint après un nombre de générations choisies d’avance 

par l’utilisateur du système selon la précision attendue.  

4.2.6 Algorithme du recuit simulé 

4.2.6.1  Historique 

La structure complexe de l’espace des configurations d’un problème d’optimisation difficile a 

conduit trois chercheurs de la société IBM S.Kirkpatrich, C.D.Gelatt et M.P. Vecchi à 

proposer en 1983 une nouvelle méthode itérative en s’inspirant de la technique expérimentale 

du recuit utilisée par les métallurgistes pour simuler l’évolution d’un système physique vers 

son équilibre thermodynamique [Sia03]. 

La technique du recuit consiste à chauffer préalablement le matériau pour lui conférer une 

énergie élevée puis à le refroidir lentement en marquant des paliers de température de durée 

suffisante. Cette stratégie de baisse contrôlée de la température conduit à un état solide stable 

correspondant à l’optimum absolu de l’énergie. 
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4.2.6.2  Définition 

Le recuit simulé est souvent présenté comme la première méta-heuristique qui a mis en œuvre 

une stratégie d’évitement des minima locaux [Bap06]. Cette technique est l’un des exemples 

typiques des méthodes de trajectoire à base de solution unique qui construit une trajectoire 

dans l’espace des solutions en tentant de se diriger vers des solutions optimales. 

L’idée d’utiliser la technique du recuit consiste à introduire en optimisation un paramètre de 

contrôle qui joue le rôle de la température. La température du système à optimiser doit avoir 

le même effet que la température du système physique : elle doit conditionner le nombre 

d’états accessibles et conduire vers l’état optimal si elle est abaissée de façon lente et bien 

contrôlée.  

4.2.6.3 Principe 

En pratique, cette technique exploite l’algorithme de Metropolis, qui permet de décrire à une 

certaine température T le comportement d’un système en équilibre thermodynamique. 

Pour une procédure de maximisation de la fonction « objectif », le principe est le suivant :  

- En partant d’une configuration donnée, le système subit une modification élémentaire si 

cette transformation a pour effet d’améliorer la fonction objectif du système, elle est 

acceptée, si elle provoque au contraire une diminution ΔE de la fonction objectif elle peut 

être acceptée tout de même avec la probabilité eexp(ΔE /T).  

- En appliquant itérativement ce procédé tout en gardant la température constante, 

l’équilibre thermodynamique sera atteint concrètement au bout d’un nombre suffisant de 

modifications. La température est alors abaissée avant d’effectuer une nouvelle série de 

transformations. La loi de décroissance par paliers de la température est souvent 

empirique tout comme le critère d’arrêt du programme [Sia03]. 

La Figure 15 présente l’organigramme de l’algorithme du recuit simulé. 
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Figure 15: Organigramme de l’algorithme

4.2.6.4  Paramétrage 

· Solution initiale : La solution initiale peut être choisie au hasard dans l'espace des 

solutions possibles ou  par un expert du problème.

· Mémoire : La méthode du recuit simulé est une méthode sans mémoire. En effet, 

l’algorithme pourrait converger vers une certaine solution 

solution S’ de qualité supérieure. C’est pourquoi afin de l’améliorer on peut ajouter une 

mémoire à long terme qui stocke les meilleures solutions rencontrées.

· Température initiale : Son choix dépend de la qualité de la configuration de départ. Si 

cette configuration est choisie aléatoirement, il faut une température relativement élevée. 

Si au contraire, la solution de départ est déjà assez bonne, parce qu’elle a été choisie par un 

expert du problème considéré par exemple, une température initiale assez basse sera 

suffisante. 
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· Décroissance de la température : la température suit souvent une loi géométrique 

décroissante : a×=+ kk TT 1  , avec α un nombre réel appartenant à l’intervalle ]0..1[.  

· Arrêt du programme : lorsque la température a atteint une valeur négligeable ou bien 

lorsque aucune solution n'a été accepté au cours du palier : par exemple, lorsque trois 

paliers successifs de température ont été descendus sans qu’aucune solution nouvelle n’ait 

pu être trouvée.  

4.3 Le gestionnaire local 

Dans ce qui précède, nous avons présenté le principe de fonctionnement du gestionnaire 

global dont le rôle est de choisir une configuration pour le système qui lui permet de respecter 

ses contraintes. Mais ce dernier ne possède pas les techniques pour contrôler leur respect. 

Cependant, nous travaillons dans un système multimédia temps réel mou qui permet les 

dépassements des échéances dans une certaine limite. Nous avons proposé une technique de 

contrôle du respect de la contrainte temps réel qui se base sur l’utilisation d’un gestionnaire 

local.  

4.3.1 Principe de fonctionnement 

Notre technique de contrôle intervient dans les deux couches application et système 

d’exploitation. Elle se base sur le principe de watchdog. Il s’agit dans notre cas d’un logiciel 

permettant de s'assurer que le système ne reste pas bloqué dans une situation qui altère son 

bon fonctionnement suite à la violation de ses contraintes. C'est une protection destinée à 

reconfigurer le système si une action définie n'est pas exécutée dans un délai imparti. La 

Figure 16 présente un schéma qui décrit d’une manière générale la technique de contrôle. 
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Figure 16:Schéma de principe du gestionnaire local 

Nous avons défini deux types de watchdog : un watchdog local responsable sur le contrôle 

d’exécution au niveau tâche, et un watchdog global chargé du contrôle d’exécution au niveau 

système sur toute l’hyper-période (HP), le plus petit commun multiple de toutes les périodes. 

En effet, afin de respecter les contraintes temporelles, toutes les tâches doivent être exécutées 

à chaque période. Et dans l’hyper-période h du système, une tâche Ti de période Pi doit être 

exécutée ni = h/Pi fois.  

Cependant, un dépassement d’HP peut toujours avoir lieu et c’est au watchdog global de le 

gérer.    

On affecte à chaque tâche un watchdog local responsable de contrôler son exécution et 

maintenir son état pour chacune de ses périodes. Il est créé au moment de la création de la 

tâche, et supprimé lorsqu’elle l’est aussi. En cas de détection de dépassement d’échéance, le 

watchdog local alerte le watchdog global qui enregistre ce dépassement. A l’expiration de HP,  

le watchdog global analyse la liste des violations d’échéance pour voir si elles ont une 

influence sur le fonctionnement global du système. S’il n’y a pas d’influence, le système 

continue à fonctionner avec les mêmes paramètres applicatifs et d’OS. Mais s’il détecte un 

dépassement d’HP, il en déterminera alors l’origine.          

Ensuite, il fera l’appel à une fonction d’adaptation qui se chargera de prendre une décision 

d’adaptation selon le dépassement. Cette fonction choisit de nouveaux paramètres applicatifs 
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pour la tâche correspondante afin de résoudre le problème de dépassement. Cette recherche 

est beaucoup moins complexe que celle du gestionnaire global puisqu’elle ne prend en 

considération que les configurations de la tâche source du dépassement. Donc la configuration 

choisie est celle qui a les mêmes attributs architecturaux de la configuration actuelle avec un 

temps d’exécution inférieur à la valeur actuelle. Une fois une nouvelle configuration est 

choisie le gestionnaire local envoi les nouveaux paramètres aux adaptateurs des tâches et de 

l’OS pour qu’ils modifient leurs paramètres suivant les caractéristiques de la nouvelle 

configuration choisie. Dans le cas où le gestionnaire local ne trouve pas de solution pour 

résoudre le problème, il fait appel au gestionnaire global pour reconfigurer la totalité du 

système. 

4.3.2 Choix de l’algorithme d’ordonnancement  

Comme nous l’avons déjà mentionné, l’ordonnancement a pour rôle d’allouer le processeur 

aux diverses tâches. L’ordonnanceur est une procédure de service du système d’exploitation. 

Au cours de l’exécution à chaque laps de temps le système d’exploitation détermine si le 

système a besoin d’un ré-ordonnancement. Si c’est le cas, le système invoquera son 

ordonnanceur pour choisir une nouvelle tâche pour l’exécuter.  

Nous donnons par la suite un bref rappel sur les algorithmes d’ordonnancement et nous 

expliquons la solution retenue. 

4.3.2.1 Ordonnanceurs préemptifs  

Un ordonnanceur est dit préemptif ou « avec réquisition », si l’exécution du processus courant 

peut être arrêtée par l’ordonnanceur (suite à une interruption) pour laisser le processeur 

volontairement à une autre tâche. Il est dit non préemptif  ou « sans réquisition » le cas 

contraire. [Dan04] 

Dans le cas d’un système d’exploitation non préemptif, une commutation de contexte ne peut 

avoir lieu que si la tâche courante termine son exécution ou passe à l’état bloquée. 

4.3.2.2 Lois d’ordonnancements classiques 

Les  politiques d’ordonnancement déterminent  la prochaine tache qui sera mise dans l’état 

« courant ». Les politiques d’ordonnancement  les plus répandues sont : 

- premier arrivé, premier servi « PAPS » (ou FIFO)  



Chapitre3 : Approche d’adaptation multicouche proposée 
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 59 

- le tour de rôle ou tourniquet (round robin, circulaire), 

- l’ordonnancement par priorité. 

Dans la politique FIFO, les tâches « prêtes » sont placées dans une file FIFO gérée suivant la 

politique premier arrivé premier servi. Une tâche qui passe à  l’état prêt s’insère en fin de file, 

et lorsque la tâche courante libère le processeur, c’est la tâche qui est en tête de file qui 

devient la tâche courante. 

Dans la politique de tourniquet, les tâches sont placées dans une file FIFO et sont activées 

périodiquement. La période d’activation s’appelle un quantum de temps. A la fin d’un 

quantum, la tâche qui est en tête de file est activée.  

4.3.3 Les algorithmes d’ordonnancement pour les systèmes temps réel 

   Pour les systèmes temps réel on distingue deux types de politiques d’ordonnancement :  

- ordonnancement hors ligne (of line): l’ordonnancement est pris avant l’exécution du 

système. 

- ordonnancement  en ligne (on line) : il prend les décisions d’ordonnancement durant 

l’exécution du système. 

4.3.3.1 Les ordonnanceurs sous contrainte de temps 

4.3.3.1.1 Description 

L’ordonnanceur est une pièce fondamentale d'un système temps réel. Pour chaque processeur, 

l'ordonnanceur est en charge de définir la séquence d’exécution des processus, qui est une 

séquence infinie d’éléments du type : (date, identifiant travail) tout au long de l’évolution du 

système. Donc le système d’exploitation doit disposer des mécanismes nécessaires pour la 

gestion du temps et ce pour prendre les bonnes décisions aux bons moments.  

4.3.3.1.2 Ordonnanceurs à priorités simples 

Dans cette partie, nous définissons les algorithmes d'ordonnancement à priorité fixe. 

Les ordonnancements à priorités les plus courants sont les suivants : 

· RM (pour Rate Monotonic) : ordonnancement à priorité statique pour les tâches 

périodiques/sporadiques avec échéance relative égale à la période/délai d'inter-arrivée. 

Une tâche est d'autant plus prioritaire que sa période est petite.  
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· DM (pour Deadline Monotonic) : ordonnancement à priorité statique pour les tâches 

sporadiques. Une tâche est d'autant plus prioritaire que son échéance relative est petite. 

DM équivaut à RM quand l'échéance relative est égale à la période. 

· EDF (pour Earliest Deadline First) : ordonnancement à priorité dynamique. Une tâche 

est d'autant plus prioritaire que sa date d'échéance est plus proche.  

· LLF (pour Least Laxity First) : ordonnancement à priorité dynamique. Les tâches sont 

d'autant plus prioritaires que leur laxité est faible à la date courante. 

4.3.3.1.3 Propriétés des ordonnancements 

- EDF et LLF sont optimaux parmi les ordonnancements préemptifs non oisifs [LL73]. 

EDF est également optimal relativement à la minimisation du retard maximal des tâches. 

- EDF est optimal parmi les ordonnancements non-préemptifs non oisifs [Bru06]. 

- RM est optimal parmi les ordonnancements préemptifs non oisifs à priorité statique, pour 

les tâches périodiques non-concrètes/synchrones ou sporadiques, lorsque l’échéance 

relative est égale à la période (ou au délai d'inter-arrivée dans le cas sporadique) [LL73]. 

- DM est optimal parmi les ordonnancements préemptifs non oisifs  à priorité statique, pour 

les tâches périodiques non-concrètes/synchrones ou sporadiques  à échéance relative 

inferieure à la période. 

- Dans les cas où les tâches périodiques concrètes ne sont jamais synchrones, ni RM, ni 

DM ne sont optimaux parmi les ordonnancements préemptifs non oisifs à priorité 

statique. Dans [Aud04], on donne l'adéquation optimale des priorités pour 

l’ordonnancement préemptif non oisif à priorité statique pour le cas général (i.e. qui reste 

valable quand les échéances relatives et les périodes ne sont pas reliées). 

- DM est optimal parmi les ordonnancements non-préemptifs non oisifs à priorité  statique, 

pour les tâches périodiques non-corsètes/synchrones ou sporadiques  à échéance relative 

inferieure à la période [Bat98]. Pour l'ordonnancement  à priorité dynamique, les 

démonstrations utilisent le fait que si on dispose d'un ordonnancement faisable, il faut 

alors faire intervertir 2 tâches pour le respecter l’ordre d'ordonnancement EDF ou LLF 

conserve la faisabilité de l'ordonnancement. Le même type de démonstration est utilisé 

avec les priorités des tâches pour démontrer l’optimalité de RM/DM. 

4.3.4 Choix de l’ordonnanceur 

La méthode d’adaptation nécessite la disponibilité d’ordonnanceurs à caractéristiques 

spécifiques. A titre d’exemple un ordonnanceur à priorité fixe ne peut être utilisé. En effet, si 
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on utilise cet ordonnanceur avec les budgets de temps affectés par le GM on peut rencontrer 

des cas là ou l’une des tâches ne peut pas terminer son exécution au cours de l’hyper période. 

Le graphe de la Figure 17 illustre l’un de ces cas. 

Considérons un système qui exécute trois tâches T1 (période=10, priorité=1, Texe=3), 

T2(période=10,priorité=2,Texe= 3) et T3  (période=15,priorité=1,Texe=6). Le graphe 

d’exécution des différentes tâches sur un ordonnanceur à base de priorité  est illustré par la 

Figure 17 : 

 

 

 

 

 

Figure 17: Graphe de séquences avec MicroC 

On remarque bien que la tâche T3 a dépassé sa période(t=18) et ceci est dû au fait que les 

tâches T1 et T2 sont plus prioritaires ce qui entraîne son interruption. On est donc amené à 

chercher un ordonnanceur adéquat qui permet de garantir l’exécution des différentes tâches 

dans leur propre période. Nous avons choisi de travailler avec l’ordonnanceur EDF (earliest 

deadline first) qui se base sur l’affectation dynamique des priorités puisqu’il a une condition 

(E6) nécessaire et suffisante pour que le système soit ordonnançable.  

Le système ne peut être ordonnançable que si  ഐ � ∑ 梐7்7൑1ே7ୀ퓈   E8 

Avec Ci et Ti sont respectivement le temps d’exécution et la période de la tâche i.  

Corollaire : EDF est un algorithme optimal 

Si U>1 aucun algorithme n’est capable d’ordonnancer l’ensemble des tâches 

Si U<1 l’ensemble des tâches est ordonnançable par EDF  

Reprenons le même exemple du graphe suivant et considérons que la valeur du deadline de 

chaque tâche est égale à la période. Le graphe d’exécution des différentes tâches sur un 

système d’exploitation qui se base sur un ordonnanceur de type EDF est illustré par la Figure 

18. 
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Figure 18: Graphe de séquences avec EDF 

On remarque bien que toutes les tâches terminent leur exécution avant la fin de la période. 

L’ordonnanceur EDF répond bien à nos besoins.  

5 Etape de caractérisation des configurations  

Cette étape permet à partir d’une analyse ou à travers des outils de construire la base des 

configurations. Cette étape se fait hors ligne. Nous présentons dans cette partie les méthodes 

et les outils utilisés dans notre travail afin de mettre en place la base des configurations.  

La construction de la base des configurations nécessite deux principales étapes. La première 

étape consiste d’abord à la détermination de l’ensemble des tâches candidates à une 

implémentation HW ensuite à la mise en place des différentes architectures possibles du 

système. La deuxième étape consiste à caractériser les différentes configurations possibles du 

système en agissant sur les paramètres de l’application.  

5.1 Mise en place des configurations 

Le choix du nombre de configurations du système dépend d’un compromis 

précision/complexité. En effet, la disponibilité d’un nombre important de configurations 

permet d’avoir une adaptation fine qui permet de mieux ajuster les contraintes. Cependant, 

cette finesse d’adaptation est obtenue au dépend d’une complexité plus importante du système 

d’adaptation (due à l’augmentation de l’espace occupée pour la sauvegarde des 

configurations) et un coût plus élevé du système de gestion des contraintes (complexité plus 

grande de l’algorithme de recherche de la solution). 

5.2 Partitionnement  logiciel/matériel  

Dans notre travail nous avons opté à une méthode de partitionnement logiciel/matériel qui se 

base sur : 

- l’utilisation des résultats fournis par le profilage de l’application sur la plateforme de 
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travail et l’utilisation de l’outil design trotter. Cette approche est représentée par la Figure 

19 [Lou09b]. 

- l’outil Design Trotter développé au laboratoire Lab-STICC est étendu dans le cadre de la 

thèse de nader Ben Amor [Ben05]. 

 

 

 

 

 

 

 

Figure 19: Approche de partitionnement SW/HW 

5.2.1 Profilage de l’application :(Profiling) 

Cette étape permet de donner au concepteur des statistiques sur les différentes fonctions 

exécutées dans un programme (temps d’exécution, pourcentage d’occupation du processeur, 

nombre d’itération, l’occupation mémoire, etc). Cette technique peut donner une idée sur les 

chemins suivis pour l’exécution de l’application.  

Dans notre travail nous avons utilisé cette technique pour comparer le temps d’exécution et le 

nombre d’itérations des différentes fonctions qui constituent l’application. Les fonctions qui 

prennent plus de temps d’exécution seront favorisées pour une implémentation hardware. 

5.2.2 Analyse par design trotter 

Les entrées de l'environnement Design Trotter se présentent sous la forme de fonctions 

décrites en langage de haut niveau (en langage C). L'environnement Design Trotter fournit en 

sortie différents types d'estimations et d'informations visant à guider le concepteur de 

systèmes embarqués. Parmi celles-ci nous pouvons citer l’estimation système par métriques 

[Mou03b]. 

L'objectif des métriques est d'analyser les fonctions de l'application afin d'en déterminer deux 

paramètres : d'une part leur orientation traitement, Contrôle ou Mémoire  (à l’aide des 
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métriques MOM et COM) et d'autre part leur criticité (parallélisme moyen disponible) à l’aide 

du métrique gamma. La Figure 20 montre l’environnement Design Trotter [Ben07].  

 

Figure 20: Environnement Design Trotter 

Ces métriques sont calculées pour chaque fonction de l’application et pour chaque niveau 

hiérarchique de graphe. Par la suite en analysant ces résultats numériques on peut classer les 

différentes fonctions qui constituent notre application selon leurs comportements. Par 

exemple, d’une part, les fonctions orientées contrôlent avec peu d’occasions de parallélisme et 

sont donc un candidat prometteur d’une implémentation logicielle. D’autre part, les fonctions 

à parallélisme élevé sont candidats pour les implémentations matérielles. 

En se basant sur l’information issue de la première étape, on construit deux classes de 

fonctions. Les premières fonctions incluent des candidats pour l’implémentation matérielle, 

elles peuvent être par exemple des fonctions flot de données avec des opérations de test (avec 

une valeur petite de COM et une valeur grande de γ) et un temps d’exécution élevé. Cela va 



Chapitre3 : Approche d’adaptation multicouche proposée 
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 65 

être additionné comme un accélérateur  matériel au cœur du processeur embarqué pour 

obtenir une architecture à coût réduit. Ces modèles incluent des modules utilisés qui couvrent 

plusieurs applications multimédia comme la transformation d’images (DCT, le transformateur 

d’ondelettes DWT, etc.) et des algorithmes classiques de traitement d’image comme le 

filtrage, et aussi les fonctions de traitement de vidéo comme l’estimation de mouvement. 

La deuxième classe contient des fonctions logicielles, elle peut être par exemple des fonctions 

avec beaucoup de contrôle et peu de parallélisme (des valeurs grandes de COM et petites de 

γ) et un temps d’exécution bas.  

5.3 Caractérisation des configurations 

Elle consiste à déterminer pour chaque configuration son temps d’exécution au pire cas, son 

énergie consommée et son niveau de QoS.  

5.3.1 Calcul de Texe 

Pour caractériser les configurations du système nous avons besoin de calculer le temps 

d’exécution de l’application au pire cas (Worst Case Execution Time WCET). Différents 

travaux ont été menés pour l’estimation de cette valeur. Dans notre travail nous avons utilisé 

une mesure directe sur la carte vue la précision de cette méthode. En effet, une fois les 

différentes configurations matérielles sont mises en place on peut les utiliser pour faire les 

mesures et ce à travers un « timer » hardware. Bien entendu, il faut initialiser les paramètres 

de l’algorithme de façon qu’il suive le plus long chemin possible. 

Le timer est un composant hardware qui joue le rôle d’un décompteur qui se décrémente à 

chaque n ticks d’horloge qui est appelé période. Elle est fixée lors de la conception de la 

partie hardware. Pour mesurer le temps d’exécution d’une tâche, on lit alors, la valeur du 

timer avant et après son exécution. Le temps pris par cette période est la différence entre les 

deux valeurs multipliées par la période du timer. [Lou09a] 

5.3.2 Mesure de la consommation 

Cette étape peut être déterminée par simulation ou par mesure directe. La 1ère solution utilise 

l’environnement de simulation relatif à la cible choisie (par exemple Quartus « Power 

estimator » si le processeur NIOS est choisi). Cette solution exige des temps de simulation 

relativement longs. De plus, les valeurs fournies ne sont pas exactes. La deuxième solution 

consiste à mesurer la puissance consommée Pconso par mesure directe. Cette deuxième 
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méthode est plus rapide et plus précise mais elle exige un matériel bien spécifique avec une 

haute précision.  

5.3.3 Quantification de la QoS  

Un modèle doit être défini pour quantifier la QoS de chaque configuration connaissant ses 

attributs applicatifs. Il permet de caractériser la qualité de service fournie à l’utilisateur en 

fonction des paramètres liés à l’application multimédia.  

6 Conclusion 

La notion d’adaptation est devenue indispensable dans la conception des systèmes embarqués 

autonomes. Cette adaptation peut intervenir dans les trois couches du système afin de 

bénéficier au maximum de son apport. Dans ce contexte nous avons décrit dans ce chapitre, 

un système d’adaptation à contraintes multiples dédié aux systèmes embarqués. Ce système 

permet de satisfaire les trois contraintes Ddv, Texe et QoS. Afin de mettre en place ce 

système, deux étapes sont nécessaires. La première étape est une étape « hors ligne » qui 

permet la construction de la table des configurations et sa caractérisation. Pour cela, une 

analyse préliminaire de l’application doit être effectuée afin de déterminer les attributs 

applicatifs susceptibles d’influencer le compromis Ddv, Texe et QoS. La deuxième étape est 

une étape en ligne formée par deux activités : l’activité d’observation et celle d’adaptation. 

L’activité d’observation permet le suivi des paramètres Ddv, Texe et QoS. L’activité 

d’adaptation permet d’adapter le système en choisissant la configuration adéquate de la table 

des configurations. 

L’approche proposée est générique puisqu’elle est indépendante de l’application et de la 

plateforme de prototypage. Afin de la mettre en place pour pouvoir évaluer ses performances 

il est judicieux de passer par un environnement de conception logiciel/matériel et une 

application cible. Dans le chapitre suivant nous entamons une étude de cas pour valider 

l’approche proposée. Nous décrivons ainsi les éléments principaux de l’application et de 

l’environnement choisis. 
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1 Introduction 

La validation est une étape primordiale dans la réalisation de n’importe quel projet. Cette 

étape permet d’une part de valider et de combler les défaillances de la partie théorique étudiée 

et d’autre part elle permet de mettre en évidence les performances des travaux réalisés. Afin 

de valider l’approche proposée nous sommes amenés à choisir un environnement de 

prototypage logiciel/matériel et une application cible. Ceci est le thème du présent chapitre. 

Nous présentons dans sa première partie l’application de synthèse d’images 3D connue sous 

le nom du pipeline graphique 3D ou moteur 3D. Cette application répond bien à nos besoins 

puisqu’elle présente des paramètres applicatifs modifiables selon le compromis (temps 

d’exécution, qualité de l’objet fourni). 

La deuxième partie de ce chapitre est consacrée à la présentation de l’environnement de 

conception des systèmes sur puce. Il s’agit de l’environnement QUARTUS qui permet de 

concevoir des systèmes sur puces sur les circuits FPGA de la société ALTERA et qui intègre 

aussi le système d’exploitation MicroC_OS-II. 

2 Aperçu sur l’application synthèse d’image 3D  

La chaîne de production d’une image 3D est appelée pipeline graphique. Elle est formée par 

l'ensemble des opérations nécessaires pour afficher un objet 3D regardé depuis une position et 

avec une orientation donnée. A chaque fois que l'état de la scène change (c’est-à-dire à chaque 

mouvement de la caméra), elle doit être redessinée. Pour cela, la description des objets de la 

scène doit être traduite en points 2D à l'écran.  

Les éléments d’entrée de ce pipeline sont des triangles qui sont plus pratiques que les 

quadrilatères ou autres polygones pour les calculs. En effet, ils ne peuvent être ni vrillés (dont 

les sommets ne sont pas coplanaires) ni concaves. La plupart des moteurs 3D effectuent une 

triangulation des différentes faces avant de les envoyer au pipeline graphique. 

2.1 Différentes étapes du pipeline  
 

Tout objet graphique complexe est d’abord transformé en un ensemble de triangles. La Figure 

21 montre deux exemples de cette transformation. 
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Figure 21: Objets transformés en un ensemble de triangles 

Plusieurs éditeurs 3D permettent d’exporter un objet dans un fichier ASCII, comme le cas de 

3D Studio. Ce fichier contient le nom de l’objet, le nombre de sommets et le nombre de faces. 

Les sommets sont décrits avec leurs composantes x, y et z. Une fois les sommets initialisés, 

les faces seront énumérées avec leurs trois sommets. Chacun des triangles subit alors les 

différentes étapes du pipeline graphique. La Figure 22 représente ces étapes. 

 

 

 

 

 

 

 

Figure 22: Les différentes étapes du pipeline [lou04] 

2.1.1 Transformations 

  

Les transformations sont des translations, des rotations et des homothéties des triangles pour 

les convertir de leurs repères locaux au repère global de la scène puis dans le repère de la 

caméra. Pour ce faire, la position et l'orientation de l'utilisateur sont utilisées. En fait, ce sont 

des opérations matricielles donnant le transformé d’un point par une ou plusieurs des  

matrices de transformations. 

2.1.2 Test de visibilité  
 

Le test de visibilité d’un triangle se fait grâce à son vecteur normal donnant sa face avant. Si 

l’angle formé entre le vecteur normal N et le vecteur de vision V (allant de la face à l’œil) est 

aiguë alors la face sera  visible. Sinon elle sera  invisible. Ce calcul se fait en utilisant le 
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produit scalaire entre N et V. Si celui-ci est négatif alors cela signifiera que la face est 

invisible.  

Dans la suite, on détaille la détermination des fonctions de « calcul de normale » et « sa 

normalisation » parce qu’on aura besoin dans la phase de réalisation des accélérateurs 

hardwares.   

2.1.2.1 Détermination de la normale à une face 
 

Pour calculer la normale à une face triangulaire, on prend les trois vecteurs délimiteurs du 

triangle, dans le sens des aiguilles d'une montre. La Figure 23 illustre cette étape. On soustrait 

celui du milieu des 2 autres, et on obtient 2 vecteurs dont le produit vectoriel est la normale à 

la face.  

Soit les trois vecteurs V1 :  ,V2 :     et V3 :        , on détermine Vn1 et Vn2  tel que : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 : Détermination de la normale 
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La normale de la face est N (Nx,Ny,Nz) tel que : 

 

 

2.1.2.2  Normalisation 
 

La normalisation est une étape très importante dans la détermination du signe du cosinus de 

l’angle entre deux vecteurs (lumière et normale) pour le calcul de l’intensité de la couleur. En 

effet, un produit scalaire entre deux vecteurs normalisés donne directement ce cosinus.  

La normalisation du vecteur normal N(Nx,Ny,Nz) est donnée par le système d’équation E12. 
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2.1.3 Calculs des lumières  

Les modèles d’illumination, ci-dessous, prenant  en compte seulement les interactions entre 

une surface et la source lumineuse, servent à déterminer  l’intensité de la couleur en un point. 

L’intensité de la lumière est donnée par l’équation E13 

I=lumière ambiante + lumière diffuse+lumière spéculaire [lou04]  

2.1.3.1 Lumière ambiante  

La lumière ambiante correspond au modèle le plus simple. On considère qu'il existe une 

source lumineuse présente partout éclairant de manière égale (constante) dans toutes les 

directions. Le calcul de l’intensité de la lumière ambiante est donné par l’équation E14. 

 

Iamb : intensité de la lumière ambiante. 

E11 

Nx = Vn1.y   Vn2.z – Vn2.y ´  Vn1.z 

Ny = Vn1.z  ´   Vn2.x – Vn2.z ´  Vn1.x 

Nz   =  Vn1.x   ´    Vn2.y  –  Vn2.x  ´   Vn1.y 

´

E12 

E13 

Iamb= ρaIa E14 
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ρa: est le facteur qui détermine la quantité de lumière ambiante réfléchie par la surface et en 

fonction des propriétés matérielles de la surface (0 £ ρa £1).       

Ia:   l’intensité de la lumière. 

2.1.3.2 Lumière due à une réflexion diffuse  

Dans le modèle de réflexion diffuse, l'intensité en un point d'une surface dépend de l'angle 

formé entre le rayon de lumière qui touche le point de la surface et la normale à cette surface. 

Plus l'angle formé entre le rayon de lumière et la normale au plan est faible, plus l'intensité 

lumineuse réfléchie visible par l'observateur est forte. L’équation E 15 donne cette intensité. 

Idiff = ρd Il ||Np|| ||Lp|| cos θ = ρd I l (Npx.Lpx+ Npy.Lpy + Npz.Lpz) 
 

Idiff : intensité de la lumière due à une réflexion diffuse.  

ρd : coefficient de réflexion diffuse de la surface 0 £ ρd £  1  

Il: l’intensité de la source lumineuse.  

 Np (Npx,Npy,Npz) :la normale à la surface à un point  P. 

Lp(Lpx,Lpy,Lpz) : la direction du point  P à la source lumineuse. 

θ: l’angle formé entre Np et Lp. 

2.1.3.3 Lumière due à une réflexion spéculaire  

Le modèle de réflexion spéculaire se différencie du modèle de diffusion par le fait de faire 

intervenir le point d'observation. Dans ce modèle les rayons de lumière sont réfléchis par 

symétrie par rapport à la normale à la surface. Ce modèle correspond aux propriétés de 

"miroir" des objets. L’équation E16 calcule l’intensité de la lumière due à une réflexion 

spéculaire. 

Isp = ρs Il (||Np|| ||Lp|| cos θ)n  
 
Isp : intensité de la lumière due à une réflexion spéculaire. 

ρs : coefficient de réflexion spéculaire  0 £ ρs £  1  

n : coefficient de la diffusion autour du rayon réfléchi. 
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2.1.4 Transformations des textures  
 

Cette étape permet de transformer les textures avant qu’elles ne soient appliquées au triangle 

dans l’étape de Rastérisation. Ce sont des transformations 2D sur les images qui sont un cas 

simplifié des transformations 3D précédentes. Si aucune texture ne doit être appliquée au 

triangle, cette étape sera rejetée. Dans notre travail on n’a pas tenu compte de cette étape 

puisqu’on n’utilise pas de textures dans nos objets.  

2.1.5 Clipping (fenêtrage) 

Dans cette étape on élimine les triangles qui ne font  pas partie du volume de vue (dans notre 

cas l’écran de l’ordinateur)  et on découpe  ceux en partie visible selon leurs intersections 

avec le volume de vue. La Figure 24 présente un exemple de fenêtrage d’une figure. 

 

Figure 24: Clipping d’une figure 

2.1.6 Projection 
 

La projection est la transformation qui permet de donner la position du point image sur le 

plan à partir d'un point dans l'espace. Il s'agit donc de déterminer ce que l'on doit dessiner sur 

le plan de l'écran pour que l'observateur voie la même chose sur le plan comme s'il observait 

vraiment l'objet. La Figure 25 représente la projection d’un objet sur un écran. 

 

 

Figure 25: Projection 
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Les coordonnées de l’objet en question sont données par le système d’équation E17. 

z
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imagex C
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-=  
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y F
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C D ´
-=imageyC  

· Cimagex : coordonnée en x de l'image de l'objet 

· Cimagey : coordonnée en y de l'image de l'objet  

· DF : distance focale. 

· Cx : coordonnée suivant x de l’objet. 

· Cy : coordonnée suivant y de l’objet. 

· Cz : coordonnée suivant z de l’objet. 

2.1.7 Rastérisation  
 

La rastérisation est l’étape  transformant les formes géométriques 3D en des pixels sur  

l’écran tout en donnant un aspect réel à l’objet 3D en question.  

La solution la plus simple pour effectuer le rendu d’une surface consiste à calculer 

l’illumination en chaque point visible de la surface. Cette méthode est très coûteuse en temps 

de calcul. Dans cette partie, nous allons voir les différentes méthodes permettant de diminuer 

le coût en temps en n’effectuant le calcul d’illumination que pour un nombre limité de points.  

2.1.7.1 Ombrage plat 
 

La méthode d’ombrage la plus simple pour les facettes polygonales est l’ombrage plat. Elle 

consiste à calculer l’intensité de couleurs pour un seul point de la surface que l'on veut 

représenter. Ensuite, on applique la même intensité pour toute la surface. La Figure 26 montre 

une application d’ombrage plat sur un triangle. 

  

 

 

 

 

 

 

Figure 26: Ombrage plat appliqué à un triangle 
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Soit P un point de la surface, l’intensité de couleurs est calculée par l’équation de 

Lambert (E18).  

           

                 

IP : intensité de couleurs au point P. 

Iamb, Idiff et Ispec sont respectivement définis dans (E14, E 15 et E16). 

 Si  Np et Lp sont unitaires, à partir de l’équation E18, on obtient une nouvelle équation de 

Lambert (E19) plus simple. 

 

Si cos θ <0, l’intensité résultante sera la valeur de l’intensité de la lumière ambiante, sinon on 

la calcule selon l’équation de Lambert.  

Une fois l’intensité de couleurs calculée, on l’applique sur toute la surface du polygone en 

utilisant un algorithme de balayage de lignes. Le  résultat  d’ombrage  plat  appliqué  sur une 

sphère est représenté par la Figure 27. 

 

 

 

 

 

 

Figure 27: Ombrage plat appliqué à une sphère  

Cette méthode a tendance à trop faire ressortir les polygones qui représentent un objet comme 

le montre la Figure 27. 

2.1.7.2 Ombrage de Gouraud 
 

La méthode développée par Gouraud élimine les discontinuités d’intensité de couleurs sur 

une facette polygonale par interpolation des valeurs d’intensité aux sommets de la facette. 

Cette technique permet d'avoir un lissage qui "gomme" les frontières entre les polygones que 

l'on obtient avec un ombrage plat. 

La Figure 28 présente une application de l’ombrage de Gouraud à un triangle ainsi que les 

points clefs utilisés dans l’algorithme. Cet algorithme nécessite un calcul des intensités  de 

IP = Iamb + Idiff + Ispec  E18 

 

IP = Iamb + ρd Il cos θ + ρs Il cos θ E19 
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couleurs dans les trois sommets du triangle (I1, I2 et I3), une interpolation de l’intensité de 

couleurs entre les sommets et une interpolation horizontale (selon l’axe des x) de l’intensité 

de couleurs.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 28: Ombrage de Gouraud appliqué à un triangle 

Calcul de l’intensité de couleurs dans les sommets  

Le calcul de l’intensité de couleurs dans un sommet du triangle nécessite d’abord la 

détermination des normales aux sommets. La normale à un sommet est la moyenne des 

normales des faces partageant ce sommet. Par la suite, l’intensité est calculée à l’aide de 

l’algorithme d’ombrage plat. 

Interpolation de l’intensité de couleurs entre les sommets 

Dans cette étape, on considère une ligne de balayage (ys) qui fait le parcourt  du triangle en 

commençant par le sommet (a). A chaque déplacement vertical de (ys), on calcule les 

couleurs aux extrémités IA et IB  respectivement selon les équations E20 et E21. 
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Interpolation horizontale de l’intensité de couleurs  

Pour avoir une interpolation horizontale de l’intensité de couleurs entre IA et IB, en faisant le 

parcourt de la ligne de balayage pixel par pixel, on incrémente l’intensité de couleurs par 

(ΔIS) selon l’équation E22. 

AB

AB

xx

II

-
-

=D SI

 

La Figure 29 montre une sphère en utilisant l’ombrage de Gouraud.  

 

Figure 29 : Ombrage de Gouraud appliqué à une sphère 

2.2 Graphe de tâches de l’application 3D 

Il faut dire que nous avons un code original (qui a des limites qu’il faut citer) qui utilise des 

fichiers ascii en entrée, et qui génère sur « écran un seul objet 3D animé avec l’algo plat et 

gouraud selon le modèle de couleur à spécifier 

Nous avons réalisé le graphe de tâches associé à cette application. Il est illustré par la Figure 

30. 

E22 
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Figure 30: Graphe de tâche de l’application synthèse 3D 

2.3 Modification de l’application « synthèse 3D » 

Afin de pouvoir appliquer les décisions d’adaptation (algorithmique) du module 

« adaptateur » il est nécessaire que le code original soit modifié pour qu’il puisse: 

ü générer un nombre d’objets 3D différents sur l’écran 

ü varier le nombre de polygones représentant un objet 3D. 

ü varier le type de d’ombrage de l’objet (Plat ou Gouraud). 

Le principe consiste à dégrader la qualité (en réduisant le nombre de polygones ou 

l’algorithme d’ombrage) si nécessaire au profil de la préservation de l’autonomie du système.   

2.3.1 Construction des configurations  logicielles 

Comme première étape, nous avons créé différentes configurations {Ai
k,im } d’objets 3D. 

Dans un premier temps, ces configurations sont purement logicielles (Im ={logicielles}) avec 

deux paramètres applicatifs d’adaptation : 

Mat_ident 
4X4 

Matrice homogène M 

Echelle Rotation Translation 

Fichier ASC 

Load ASC 

Table de coordonnées sommets 
Table des faces 

Calcnormale 
 {vectoriel, normalisation} 

Normale à la face 
Vecteur lumière  

Normalisé 

Produit scalaire 
Tri des faces 

Dessin_Objets 

Transformation 
{projection} 

Les coordonnées des 
Sommets (monde xyz,  

Ecran xy) 

Dessin_poly 
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· Le nombre variable de triangles  

· Le type d’algorithmes d’ombrage.   

o Variation du nombre de triangles  

Pour cela, on a utilisé l’éditeur Autodesk 3Ds max 2010. Cet outil permet la modification du 

nombre de polygones constituant l’objet. En effet, l’augmentation du nombre de polygones 

entraine l’amélioration de la qualité et vice versa. La Figure 31 montre l’effet de la 

modification du nombre de polygones sur la qualité de l’objet 3D. 

 

Figure 31 : Objets 3D avec qualités différentes 

Les objets crées sont ensuite enregistrés sous forme de fichier d’extension «.3Ds ». Pour les 

exploiter par l’application synthèse 3D, ces fichiers doivent être  transformés en fichiers 

ASCII d’extension « .asc ». Pour cela nous avons utilisé l’outil Wcvt2pov pour la réalisation 

de cette conversion [Ben07].  

Le fichier ASCII créé contient le nom de l’objet, le nombre de sommets et le nombre de faces. 

Les sommets sont décrits avec leurs composantes x, y et z. Une fois les sommets initialisés, 

les faces seront énumérées avec leurs trois sommets. Ce fichier sera ensuite fourni comme 

entrée pour l’application « synthèse 3D ». 

o Modification du type d’ombrage  

Nous avons modifié le code de l’application 3D afin d’être capables de traiter deux types 

d’algorithmes d’ombrage qui sont l’algorithme plat et l’algorithme Gouraud avec un nombre 

de polygones qui peut varier au cours du fonctionnement du système. Bien entendu, nous 



Chapitre4 : Etude de cas & environnement de conception 
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 80 

avons modifié la plupart des structures de données utilisées afin de pouvoir modifier le type 

d’ombrage et le nombre de polygones de l’objet au cours du fonctionnement du système. 

2.3.2 Développement d’une version multi-applications  

Pour tester notre technique d’adaptation, nous devons traiter plusieurs applications 

multimédia simultanément. Pour cela, nous avons modifié le code principal de l’application 

3D qui fait le traitement d’un seul objet 3D en un code qui peut manipuler plusieurs objets à 

la fois dans la même scène.  On suppose que chaque objet 3D constitue une application 

indépendante et que chaque application représente une seule tâche qui s’exécute 

indépendamment des autres tâches (une tâche ne peut pas utiliser les accélérateurs marériels 

des autres). 

2.4 Intégration des services de MicroC/OS-II 

Afin d’exécuter le code de la synthèse 3D sur MicroC/OS, nous devons les répartir en tâches 

qui coopèrent pour générer une scène d’objets 3D choisis par l’utilisateur. La Figure 32 

présente le principe utilisé. 

 

Figure 32 : Scénario du fonctionnement de l'application 3D avec les services MicroC/OS 

Tout d’abord nous avons défini une tâche initiale « task_init » qui permet de : 

o spécifier le nombre d’objets N à afficher dans la scène.  
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o Faire l’appel des fonctions indépendantes du traitement de l’animation des 

objets : 

ü Preparepal () pour la préparation de la palette des couleurs. 

ü  Precalc () pour le calcul des tableaux de sinus et cosinus. 

ü Normalise () pour la normalisation du vecteur de lumière). 

o Ensuite selon le nombre d’objets choisis dans la tâche précédente nous faisons 

la création des tâches d’animation. Chaque tâche « Task_Anim i » (avec 0< i 

≤ N) manipule l’animation d’un objet 3D de la scène. 

o Une fois que toutes les tâches d’animation ont terminé leurs traitements, nous 

faisons l’appel de la tâche « Task_Assemblage » qui permet l’assemblage de 

tous les objets dans une même scène. Après l’exécution de la tâche 

d’assemblage nous revenons à l’exécution des  tâches d’animation et ainsi de 

suite. 

3 Environnement de conception des configurations mixtes 

Divers types d’environnement de conception de système sur puce existent. Dans notre travail 

nous avons choisi celui fourni par Altera. L’inconvénient de cet environnement est qu’il ne 

permet pas de faire de la reconfiguration dynamique. Pour remédier à ce problème toutes les 

configurations hardware seront embarquées et le système switch entre elles suivant les 

besoins du système. Bien entendu nous supposons que les autres configurations n’existent pas 

dans le système.  

Ce choix à été fait vu la disponibilité ainsi que la maitrise qu’on a développé de se type de 

plateforme dans notre laboratoire. Par ailleurs, la contribution de la thèse est de traiter le 

problème d’adaptation et non pas la reconfiguration dynamique qui est traitée dans d’autres 

travaux (ex. thèse de Linfeng YE, dans le laboratoire Lab-STICC [Lin10b]). 

Cet environnement de développement comporte essentiellement : 

· un environnement de conception hardware/software formé par un ensemble de 

logiciels : 

o Quartus : compilation et simulation du hardware 
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o Programmer : configuration de l’FPGA par la partie hardware 

o SOPC Builder : conception de la partie hardware par assemblage d’IP 

o Nios IDE : implémentation et exécution de la partie software par émulation ou 

sur la carte 

· une carte pour le prototypage du système. 

o L’FPGA utilisée est le (Stratix III )  

o Le processeur Nios-II 

o Un cable JTAG pour la configuration de l’FPGA et l’exécution de la partie 

software. 

La Figure 33 montre le schéma de la carte de développement utilisée 

 

Figure 33 : Schéma de la carte de développement Stratix III 
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3.1 Le processeur embarqué NIOS  

Le processeur embarqué NIOS est un processeur RISC (Reduced Instruction Set Computer),  

délivré sous forme d’un Soft Core (une IP disponible dans l’environnement SoPC Builder), 

dédié à la famille d’Altera. L’architecture du NIOS II peut être choisie selon les besoins de 

l’application :  

- Possibilité de réduire ou (enrichir) les périphériques supportés par ce processeur.  

- Ajout d’instructions spécialisées (au maximum 256 instructions)  

- Pouvoir de supporter des composants faits par le concepteur  

 

Figure 34: CPU NIOS 

Ce processeur possède une largeur de bus de 32 bits, au maximum 6 niveaux de pipeline 

Figure 34. Sa fréquence de fonctionnement est de 100MHZ. 

Le NIOS II utilise le bus Avalon  Dans la suite nous nous intéressons à étudier le bus Avalon. 

Cette étude nous aidera au fur et à mesure, de notre travail à l’ajout  des accélérateurs à notre 

architecture hardware. [Alt11] 

3.2 Etude du bus Avalon 

L’Avalon est un bus simple conçu pour connecter les processeurs embarqués et les 

périphériques dans un système sur un composant programmable (SOPC). 

Les transactions de base du bus Avalon peuvent utiliser une largeur variable de données (8, 

16, ou 32 bits) entre un périphérique maître et un périphérique esclave. Une fois un transfert 

est accompli, le bus est immédiatement disponible sur le prochain coup d’horloge pour une 

autre transaction entre la même paire maître-esclave ou entre des maîtres et des esclaves 
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indépendants. Le bus Avalon supporte également les dispositifs avancés de communication 

tels que les périphériques latents, les périphériques de transferts. Ces modes avancés de 

transfert permettent à plusieurs unités de données d’être transférées entre les périphériques 

pendant une simple transaction du bus. 

3.2.1 Caractéristiques  

La Figure 35 montre la décomposition du bus Avalon. Il  comprend un décodeur d’adresse, un 

multiplexeur de données, un générateur de cycles d’attente et un contrôleur d’interruption. 

Le bus Avalon supporte plusieurs maîtres du bus. Cette architecture multi-maîtres fournit une 

grande flexibilité dans la construction des systèmes SOPC et est favorable aux périphériques 

de large bande passante. Par exemple, un périphérique maître peut exécuter des transferts par 

accès direct en mémoire (DMA), sans exiger un processeur pour transférer des données à 

partir du périphérique à la mémoire [Alt02]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Architecture de bus Avalon 

Cette interface est générée de façon transparente par le SOPC Builder ce qui permet la 

création rapide d’un système complet fonctionnel intégrant le NIOS avec ses périphériques.  

L’ajout d’un périphérique sur le bus dépend de son type maître ou esclave. 
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Un périphérique maître est un  périphérique qui peut initialiser les transferts. Il a au minimum 

un port master qui est connecté  au bus Avalon. Il peut avoir un port esclave  qui permet au 

périphérique de recevoir des transferts  initialisés par les autres maîtres. 

Un périphérique esclave est un périphérique qui accepte les transferts mais il ne peut pas les 

initialiser. Par exemple une mémoire, un UART. 

3.2.2 Modes de transfert.  

Le bus Avalon offre différents modes de transferts que nous détaillons par la suite :  

Ø Transfert simple 

Un transfert est une opération de lecture ou d’écriture qui peut prendre un cycle s’il s’agit 

d’un transfert sans «  wait state » pour les périphériques synchrones ou plus d’un cycle pour 

les périphériques asynchrones qui nécessitent wait state. 

Ø Transfert avec latence 

Le bus Avalon supporte les transferts de données avec latence. Dans ce cas le maître peut 

initialiser un transfert de lecture, passe à un autre transfert et  retourne pour recevoir les 

données  plus tard.  

Ø Transfert en mode Streaming  

Ce mode de transfert permet de créer un canal entre le « streaming maître » et le « streaming 

esclave » pour exécuter successivement des transferts de données. Ce mode de transfert peut 

utiliser le « setup time » ou le « hold time » ou « waite states ». Ce mode de transmission 

maximise le débit entre le  maître et l’esclave. 

3.3 Flot de conception de l’environnement d’Altera 

La Figure 36 présente les étapes nécessaires pour le prototypage d’un SoC en utilisant le kit 

de développement d’Altera. 
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Figure 36: Flot de conception logiciel et matériel 

4 Etude du système d’exploitation temps réel : MicroC/OS-II 

MicroC/OS-II, conçu et mis à point par Jean J. Labrosse, est un noyau temps réel permettant 

d’effectuer une exécution de plusieurs tâches sur un microprocesseur ou un microcontrôleur 

[Lab02]. 

Ce noyau temps réel est maintenant disponible sur un grand nombre de processeurs, et il peut 

intégrer des protocoles standards comme TCP/IP (µC/IP) pour assurer une connectivité IP sur 

une liaison série. Les différentes versions de MicroC/OS-II sont portées sur des systèmes 

différents : Motorola famille 680x0, 68HC11/16, Power PC 860, Intel 80x86, Philips XA, etc. 

4.1 Capacités et caractéristiques 

Les caractéristiques essentielles de ce noyau  sont les suivantes : 

- Ouvert, code source disponible [Lab02],  

- Portable, ROMable donc Encapsulable dans un produit, 

- Fiable et robuste, 

- Aux fonctionnalités ajustables, 

- Multitâches et préemptif (l’Ordonnanceur de ce noyau contient seulement quatre lignes 

simples de code C), 

- Fichiers verilog/vhdl 
- TCL Scripts 
- Test Bench 

Logiciel 

Configuration du CPU 

Sélection des périphériques 

Génération 

Configuration du Bus 

Core NIOS 

Périphériques (IPs) 

-   Fichiers *.c 
 -   Pilotes de 

périphériques 

Cygnus/Red Hat GNU Pro SignalTap  TM 

STRATIX 

Quartus TM & 
LeonardoSpectrun TM 

- Code Utilisateur 
- Bibliothèques  
- RTOS 

- Conception utilisateur 
- Autres IPs 

.SOF .EXE 

PC Trace JTAG 

Debug Info 

Matériel 
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- Interruptible : traitement des interruptions Par les ISR, 

- Il permet de gérer 63 tâches où chaque degré de priorité correspond à une seule tâche, 

c'est-à-dire que deux tâches ne peuvent pas avoir le même degré de priorité. 

- Changement de priorité des tâches (inversion et héritage de priorités). 

- Fonction d'attente de tâche,  

- Occupation optimale dans la mémoire: 2 Koctets taille du code, 

- Création et gestion des sémaphores, des mutex, des mails box, des queues de messages et 

des drapeaux d’événements, 

- Le temps d'exécution pour la plupart des services fournis par µC/OS-II est constant et 

« déterministe ». 

4.2 Structure de MicroC/OS-II 

Le système MicroC/OS-II peut être vu comme une bibliothèque de fonctions réparties sur des 

couches logicielles. Cette bibliothèque est liée avec l’application à développer. Ainsi, les 

services de MicroC/OS-II sont appelés depuis l’application comme de simples fonctions. Et 

comme le montre la Figure 37, le code source de ce noyau est divisé en deux sections : la 

première est indépendante du processeur et la seconde en est dépendante. 

 

 

 

 

 

 

 

 

 

 

Figure 37: Structure de MicroC/OS-II 
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4.3 Fonctionnement de MicroC/OS-II 

Lors de l'initialisation du programme MicroC/OS-II, les différents programmes de l'utilisateur 

sont considérés comme des tâches qui sont toutes créées pendant cette période d'initialisation. 

Le programmeur doit alors spécifier le point d'entrée de la tâche, l'emplacement des données 

pour cette tâche, l'adresse de la tête de la pile de la tâche et le degré de sa priorité. Ainsi, la 

tâche du plus haut degré de priorité est prête à l’exécution. Les tâches peuvent communiquer 

avec d’autres grâce aux sémaphores, boîtes aux lettres, files d’attentes et aux drapeaux 

d’événements, ou bien avec des périphériques grâce aux ISRs. 

4.3.1 Création d’une tâche 

Une telle tâche de l’application est constituée par une zone d'initialisation (une zone 

permettant d'initialiser les variables du programme utilisateur), une zone où l'utilisateur place 

le code de son programme et une instruction OSTimeDly(n) permettant de céder « n » coups 

d'horloge aux autres tâches. La création de la tâche se fait en appelant la routine suivante : 

OSTaskCreate(AppTask1, (void *)0, (void *)&AppTask1Stk[255], 3); 

AppTask1: point d'entrée du programme utilisateur (nom de l'étiquette). 

(void *) 0 : adresse des données. 

(void *)&AppTask1Stk [255] : adresse de la tête de la pile de la tâche.  

3 : degré de priorité de la tâche. 

4.3.2 Fonctions de base 

Les principales routines de MicroC/OS-II sont [Lab02] : 

§ Initialisation de µCOSII : OSInit() 

§ Démarrage du multitâche : OSStart(), 

§ Gestion des tâches: OSTaskCreate, OSTaskCreateExt, OSTaskQuery, OSTaskDel, 

OSTaskDelReq, OSTaskChangePrio, OSTaskSuspend et OSTaskResume.  

§ Gestion d'interruption : OSIntEnter et OSIntExit. 

§ Gestion du temps: OSTimeDly, OSTimeDlyHMSM, OSTimeDlyResume, 

OSTimeSet, OSTimeGet et OSTimeTick.  

§ Gestion des sémaphores : OSSemCreate, OSSemAccept, OSSemPost, OSSemPend, 

OSSemDel et OSSemQuery.  
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§ Gestion des mails box : OSMboxCreate, OSMboxAccept, OSMboxPost, 

OSMboxPend, OSMboxDel et OSMboxQuery.  

§ Gestion des files de communication : OSQCreate, OSQAccept, OSQPost, OSQPend, 

OSQQuery et OSQDel. 

§ Gestion des drapeaux d’événements : OSFlagCreate, OSFlagPost, OSFlagPend, 

OSFlagDel, OSFlagAccept et OSFlagQuery. 

4.3.3 Communication inter tâches 

Deux mécanismes élémentaires sont adoptés : 

4.3.3.1 Partage de variable 

Dans le cadre d’un partage de variable, le plus souvent, une tâche produit des données qui 

sont utilisées par une (ou plusieurs) autre(s) tâche(s). La coopération des tâches de 

l’application entre elles s’effectue à travers les messages, et les queues de messages. Alors 

que le sémaphore est employé pour gérer l’accès exclusif à la ressource partagée du système 

(mémoire vidéo). Le commun entre toute coopération est la présence de deux actions : 

- Signalisation ; appelée aussi envoi (Posting). 

- Attente ; appelée aussi réception (Pending). 

Avec MicroC/OS, lors de la création d’un tel outil de communication, un ECB (Event 

Control Block) est créé pour maintenir l’état courant de cet outil. En fait, un ECB est une 

structure de données désignée pour décrire le type de l’événement en cours, ainsi que la liste 

des tâches en attente sur cet événement, avec d’autres informations nécessaires pour sa 

gestion. 

Les actions de synchronisation mises au point sont les suivantes : 

- Lors d’un PEND sur un sémaphore, un mutex, un message de la queue de messages ou un 

message d’un mail box, la fonction OS_EventTaskWait() est appelée pour retirer la tâche 

courante de la liste OSRdyGrp, et la mettre à l’état bloqué dans la liste OSEventGrp. 

- Lors d’un POST sur l’un de ces outils, la fonction OS_EventTaskRdy() est appelée pour 

déterminer la prochaine tâche en attente qui aura la section critique. Et donc, celle-ci sera 

retirée de la liste OSEventGrp et mise à nouveau, active dans la liste OSRdyGrp. 

- Lors d’un retour au PEND sur timeout, la fonction OS_EventTo() va retirer la tâche de la 

liste OSEventGrp, mais sans la mettre à nouveau active car elle l’est déjà. En effet, c’est 
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OS_TickTime() qui a la responsabilité de mettre OSTCBDly à jour et puis de rendre la 

tâche active lorsque ce dernier arrive à 0. 

4.3.3.2 Synchronisation par événements 

Dans ce cadre, les tâches sont synchronisées via les événements. En fait, si deux tâches ont 

besoin de se synchroniser avec l’apparition de multiples événements, typiquement, la 

seconde, afin de poursuivre son exécution, devra attendre que la première parvienne à un 

point donné. La synchronisation est maintenue à travers les drapeaux d’événements (Event 

Flag). 

Les drapeaux d’évènements de µCOS-II sont constitués de deux éléments : une série de bits 

(8 ou 16 ou 32 bits) utilisés pour maintenir l’état courant des événements dans le groupe, et 

une liste de toutes les tâches en attente de la combinaison de ces bits (0 et 1) selon l’ordre 

désiré. 

La gestion d’un événement se fait généralement au moyen des actions suivantes:  

- Lors d’un PEND, la fonction OS_FlagBlock() est appelée pour maintenir le blocage de la 

tâche en attente sur l’apparition de l’événement. En fait, si les bits désirés dans le groupe 

de drapeaux d’événements (Event Flag Group) ne sont pas encore obtenus, cette tâche 

restera en attente indéfiniment jusqu’à la production de l’événement, ou bien l’expiration 

du timeout. Dans le cas de notre application, nous attribuons la valeur 0 au champ 

« timeout », étant donné que les tâches en attente sur un événement ne consomment 

aucune capacité de traitement,  donc elles restent indéfiniment en attente jusqu’à ce que 

l’événement se produise. 

- Lors d’un POST, la fonction OS_FlagTaskRdy() est appelée pour retirer la tâche bloquée 

de la liste d’attente (Waiting List of the Event Flag Group), et la remettre à nouveau à 

l’état prêt pour s’exécuter. Pour garantir qu’à tout moment le système puisse répondre 

aussi rapide que possible à un événement, cette tâche devrait commencer son exécution 

juste après la terminaison de la tâche produite. Pour ce faire, si la priorité associée à la 

tâche produite est « i », alors celle  de la tâche consommatrice sera « i+1 » sachant que la 

valeur la plus petite correspond à la priorité la plus élevée.  

5 Conclusion 

La première partie de ce chapitre a été consacrée à la présentation de l’application de 

synthèse d’images 3D. On a présenté les différentes étapes du moteur graphique 3D qui 
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permet la création d’un objet 3D. On a présenté aussi les modifications qui ont été apportées à 

cette application pour qu’elle supporte la création de plusieurs objets. On a ajouté aussi la 

possibilité de changer le type d’algorithme d’ombrage et le nombre de polygones au cours du 

fonctionnement du système.  

On a présenté dans la deuxième partie l’environnement de conception Hardware/Software 

adopté  ainsi que le système d’exploitation temps réel MicroC_OS-II fourni avec 

l’environnement.  

La deuxième partie de l’étape de validation consiste à mettre en place l’approche proposée à 

travers l’environnement et l’application choisis dans le but de mesurer ses performances et 

valoriser son apport.  
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1 Introduction 

Dans ce chapitre nous décrivons dans la première partie les différentes étapes qui ont conduit 

à la mise en œuvre concrète de cette application pour la validation de l’approche. Ces étapes 

regroupent la mise en place de la plateforme de prototypage et la caractérisation des 

configurations choisies pour le système. La deuxième partie de ce chapitre est consacrée à la 

présentation des résultats expérimentaux issus de l’exécution de notre approche sur un 

système physique. Nous clôturons ce chapitre par la présentation des résultats fournis avec les 

algorithmes d’optimisation implémentés.  

2 Construction de la base des configurations 

Nous allons suivre les étapes décrites dans le troisième chapitre pour la mise en place de la 

base des configurations. Nous commençons par l’étude de différents paramètres applicatifs 

qui influent sur la QoS du système. Ensuite nous appliquons l’approche de partitionnement 

hardware/software pour déterminer les parties candidates pour une implémentation matérielle 

pour notre application.  Une fois les configurations implémentées et interfacées sur le bus 

nous passons à l’étape de caractérisation. 

2.1 Configuration purement logicielles 

Dans cette étude, nous utilisons un même attribut architectural : une implémentation 

purement logicielle (processeur + mémoire) sans avoir recours à des modules d’accélération 

hardware. Nous disposons d’un code C faisant du rendu 3D sur écran en utilisant les deux 

techniques d’ombrage flat et Gouraud (Dore, 2005) décrites dans le chapitre précédant. Ce 

code permet de charger un fichier d’extension .ASC décrivant les sommets et les polygones 

de l'objet 3D et de lui faire les traitements nécessaires pour le visualiser sur l’écran. Le cycle 

d’exécution de l’application de synthèse d’images 3d est représenté par la Figure 38. 



Chapitre 5: Expérimentations & Validation  
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 94 

 

Fichiers. ASC représentant 
des objets avec  
NbPoly variable  

wc2pov27 3DMAX 

Exécution 
sur 

plateforme 

Programme principal   
« rendu 3D »  adapté au  
compilateur de  NIOS 

Format .3DS Format .ASC 

Programmer 
Mémoire 

flash 

Winzip 
Avec un taux de 
compression nul 

 

Figure 38: Procédure d’exécution de l’application synthèse d’images 3D 

L’environnement de conception de la partie software le Nios-IDE, ne prend pas en 

considération le traitement des fichiers séquentiels. Afin de remédier à ce problème nous 

avons utilisé la mémoire flash pour que l’application puisse lire les coordonnées des 

polygones formant l’objet 3D. Cette méthode exige que les fichiers chargés soient être 

compressés par le logiciel Winzip avec un taux de compression nul (Figure 39). 

 

 

Figure 39 : Configuration des composants logiciels 
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2.1.1 Etude de l’effet des attributs applicatifs sur le temps d’exécution  

Nous étudions dans l’impact du changement du nombre de polygones de l’objet 3D et le type 

d’algorithme d’ombrage sur le temps d’exécution de l’application. Cette étude est faite dans 

les deux cas d’ombrage : ombrage plat et ombrage de Gouraud. Pour la mesure du temps 

d’exécution on a utilisé le Timer. Le résultat est en nombre de tics ; pour le convertir en 

secondes il suffit de diviser la valeur par la fréquence de fonctionnement du système (100Mhz 

dans notre système). 

La Figure 40 illustre le résultat de l’exécution de l’application 3D en modifiant le nombre de 

polygones et de l’algorithme d’ombrage. 

 

 

Figure 40: Impact du changement du nombre de polygones et de l’algorithme d’ombrage sur 

temps d’exécution de l’application 

Nous constatons que le temps est d’autant plus élevé qu’on augmente le nombre de 

polygones. Même chose l’utilisation de l’algorithme d’ombrage de Gouraud demande un 

temps d’exécution plus élevé que l’algorithme de Lambert (Plat). Cette étude permet de fixer 

les premières caractéristiques des configurations à construire : temps d’exécution, type 

d’ombrage, nombre de polygones. 

Nous détaillons dans la suite l’étude de l’effet des attributs architecturaux sur le temps 

d’exécution de l’application.  
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2.2 Conception des configurations mixtes  HW/SW 

Dans cette section, nous étendons notre étude au deuxième niveau d’adaptation qui est le 

niveau architectural et nous étudions l’influence des attributs architecturaux sur le temps 

d’exécution de l’application.  

Nous détaillons dans un premier temps la mise en place des accélérateurs, ensuite nous 

étudions l’effet de l’utilisation de ces accélérateurs sur le temps d’exécution. 

2.2.1 Conception d’accélérateurs dédiés à la synthèse 3D 

Nous présentons dans cette section une implémentation matérielle de quelques modules de 

l’application de synthèse d’images 3D. Nous suivons la démarche développée au troisième 

chapitre pour la conception de ces accélérateurs afin d’obtenir des solutions architecturales en 

adéquation avec les caractéristiques algorithmiques de l’application.  

2.2.1.1 Exploration de l’espace des solutions pour l’application synthèse 3D 

Le but de cette tâche est d’identifier les fonctions candidates pour une implémentation 

hardware. Plus une implémentation comporte d’accélérateurs, plus elle sera performante 

(temps d’exécution plus faible) au dépend d’une architecture plus complexe et donc qui 

consomme plus d’énergie électrique.  

Le nombre de solutions possibles correspondant à une application donnée est très élevé. Le 

choix des solutions retenues est très important. Ceci passe à travers une analyse de 

l’application synthèse 3D sous forme de profilage et d’analyse de complexité de chacune de 

ses fonctions. Ce qui permettra d’identifier les fonctions critiques qui nécessitent un 

traitement particulier.   

Le profilage est obtenu grâce à un outil spécifique de NIOS IDE qui utilise un compteur 

matériel précis appelé « Performance Counter». Cet outil détermine le temps d’exécution des 

fonctions, le pourcentage ainsi que le nombre d’appels de chaque fonction, ce qui nous 

permettra d’identifier les fonctions critiques nécessitant des modules matériels pour leur 

exécution. Dans un deuxième temps, nous utilisons  « Design Trotter » afin de mieux analyser 

les fonctions critiques. 

2.2.1.1.1 Résultat de profilage sur Nios-II 
Le Tableau 3 représente les résultats de profilage pour l’application de synthèse 3D décrite 

entièrement en langage C. Ce profilage représente le temps d’exécution pour chaque fonction 

ainsi que son nombre d’itération. 
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Tableau 3: Le résultat de profilage par l’outil «  Performance Counter » 

 

D’après le Tableau 3, nous constatons que les fonctions  «trie_face , dessin_objet, 

transformation, calnormal, Ghline et dessine poly» admettent un  temps d‘exécution 

important. Il est à noter que les valeurs présentées dans ce tableau correspondent à l’exécution 

de l’application dans boucle de 360 itérations. En fait, nous avons appliqué un mouvement de 

rotation à l’objet donc le nombre d’itérations correspond à un déplacement de 1°. 

Bien entendu, la comparaison doit être faite entre les fonctions de l’application avec les 

mêmes paramètres applicatifs (nombre de polygones et algorithme d’ombrage). 

D’après le résultat du profilage, on peut dire que ces fonctions sont candidates à une 

implémentation hardware. Passons maintenant aux résultats de l’outil « Design Trotter » qui 

nous permet de donner des estimations sur l’orientation des fonctions. 
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2.2.1.1.2 Les résultats de Design Trotter 

Le Tableau 4 représente les résultats issus de l’utilisation Design Trotter. Des modifications 

ont été apportées au code de l’application pour tenir compte de la syntaxe utilisée par cet 

outil. 

Tableau 4: Les résultats des métriques par « Design Trotter » 

Fonction Gamma MOM COM 

transformation 3.8750 0.3939 0.000 

Calnormal 3.3244 0.6527 0.0425 

Normalise 3.2149 0.6522 0.0441 

Vectoriel 3.2500 0.5600 0.000 

trie des faces 1.8571 0.6666 0.1818 

Dessin_objet 1.2429 0.8298 0.0038 

 

D’après le Tableau 4, nous constatons que les fonctions transformation, calnormal, normalise, 

ont une valeur relativement élevée de gamma, donc elles ont un parallélisme moyen 

important. Elles sont donc candidates à une implémentation matérielle.  

Combinant les résultats des deux méthodes, nous avons choisi les fonctions suivantes de la 

synthèse 3D :   

- La fonction ombrage permettant de calculer la couleur en un point d’un objet 3D.       

- La fonction Normalisation qui permet de normaliser un vecteur. Cette opération est 

nécessaire avant toute transformation (rotation, homothétie) sur un vecteur. 

- La fonction calcul normal qui permet de calculer la normale à une face ou aux trois 

sommets d’un polygone, elle sert au calcul de l’intensité de la couleur. 

- La fonction transformation elle permet d’appliquer des transformations sur l’objet 

- Une fois les fonctions ont été choisies nous passons à leurs implémentations sous forme 

d’accélérateur en utilisant un langage de bas niveau. 

2.2.1.2 Accélérateur dédié à l’ombrage Plat (ou de Lambert) 

Le schéma bloc de l’accélérateur pour l’ombrage plat est donné sur la Figure 41. Il permet de 

calculer l’intensité de couleur d’un pixel en appliquant l’équation E19 d’illumination : 
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Figure 41: Module de calcul de l’équation d’illumination de Lambert 

  La valeur de la couleur d’un point dépend du signe de cos(θ).   

- Si cos θ < 0 alors la sortie est égale à la valeur de la couleur ambiante. 

- Si cos θ > 0 alors la sortie est calculée suivant l’équation d’illumination. 

2.2.1.2.1 Accélérateur dédié à l’ombrage de Gouraud  

Le module d’ombrage de Gouraud comme la Figure 42 est formé de :  

- Un module pour le calcul des couleurs aux trois sommets du triangle élémentaire (a, b et 

c de la Figure 43), il est formé par trois accélérateurs d’ombrage plat.  

- Deux modules interpolateurs de couleurs qui implémentent les équations E20 et E21.  

- Un module pour le calcul d’incrément de couleur, il implémente l’équation E22.  

 

 

 

 

 

 
 

Figure 42: Ombrage Gouraud 

 

I1 

I3 

I2 

IA IB 

ys 

y 

x XA

  

XB 

y1 

y2 

y3 

a 

b c 

 

´  

 

´  

 

´  

+ Cos θ < 0 

 

´  + 

 
 

MUX 

Ambiante 
 
 
 
 

Diffuse 
 
 
 
 
 

        Nxn 
 
 
 
 

        Lxn 
 

 
 
 
 

        Nyn 
 
 
 

         Lyn 
 
 
 
 

        Nzn       

                         Lzn 
 

Intensité 



Chapitre 5: Expérimentations & Validation  
 

 Approche de gestion de performances/contraintes pour les systèmes embarqués temps réel     

 100 

 

Delta IS 

Interpolateur 
de couleurs 

XA 

I1, I2 

I1 I2 I3 

I1, I3 

 

XB 

y2 

y3 

XA 

XB IB 

IA 

Interpolateur 
de couleurs 

Incrément 
de couleurs 

Module Plat 

Na          Nb         Nc 

 

Figure 43: Le schéma bloc d’un module d’ombrage de Gouraud 

Le 1er interpolateur de couleur calcule les couleurs des points de la ligne [ac], le second 

calcule les couleurs des points de la ligne [ab].  

La Figure 44 représente le schéma bloc du module « interpolateur de couleurs » pour le calcul 

de la couleur au point IA.   
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Figure 44: Interpolateur de couleurs 

La Figure 45 représente le schéma bloc du circuit « incrément de couleurs ». Il s’agit de 

diviser la différence entre les couleurs de deux points par le nombre de pixels qui les séparent. 
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Figure 45: Incrément de couleurs 

2.2.1.2.2 Accélérateur dédié au calcul de normale 

En se référant au système de l'équation E11, le schéma bloc du circuit de la détermination de 

la normale d’une facette triangulaire est représenté par la Figure 46. 

 

Figure 46: Schema bloc du circuit de calcul de la normale 

2.2.1.2.3 Accélérateur pour la normalisation des vecteurs  

Les transformations de repères et le calcul des couleurs effectuées dans la synthèse d’image 

3D nécessitent l’utilisation de vecteurs unitaires (dont la norme est égale à 1).  

La Figure 47 illustre le schéma bloc du module de normalisation 
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Figure 47: Schéma de bloc de la normalisation d’une normale 
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2.2.1.2.4 Accélérateur dédié à la transformation 

La fonction « transformation »  permet de passer les coordonnées locales de l’objet 3D dans le 

repère du monde (3D) puis dans le repère de la caméra 2D. Elle  permet également d’animer 

l’objet 3D. Pour ce faire nous appliquons, aux  objets de différentes matrices des translations, 

des rotations, et  une normalisation des vecteurs.   

Remarque 
Les accélérateurs réalisés traitent des valeurs entières alors que dans notre application nous  

avons  besoin de traiter des nombres réels. Comme solution, à chaque fois qu’on a besoin de 

traiter des nombres réels on multiplie la valeur par 10n (n représente le nombre de chiffres 

après la virgule). Bien entendu on tient compte de ces multiplications dans le reste du 

traitement de notre accélérateur et au niveau des résultats fournis. 

Par exemple pour le calcul de la racine carrée d’un nombre avec deux chiffres après la 

virgule. 

Idée : 3 =1.73 et )100003( ´E =173 

 Donc, dans la partie implantation en VHDL, on multiplie le nombre auquel on veut faire 

appliquer la racine carrée, par 1002 pour obtenir une précision de deux chiffres après la 

virgule. 

Or le bloc désiré est (1 ). 

Alors, la structure finale du bloc doit être ( nombre´22 100100 ). 

Par conséquent, les sorties de ce circuit sont des multiples de cent dont on va tenir compte 

dans les modules d’ombrages. 

2.2.2 Implémentation des accélérateurs 

Pour implémenter les accélérateurs hardwares conçus il est nécessaire de passer par un 

langage de programmation de bas niveau tels que VHDL, Verilog ou SystemC. 

L’environnement de conception d’Altera fournit un utilitaire qui permet de réaliser des blocs 

d’une manière graphique à travers l’assemblage d’opérateurs prédéfinis fournis avec 

l’environnement. Il donne aussi la possibilité d’ajouter des blocs écrits en langage de bas 

niveau. Après avoir réalisé le circuit adéquat schématiquement cet environnement peut 

générer directement le fichier correspondant en langage de bas niveau VHDL ou Verilog. La 

Figure 48 illustre l’accélérateur de Lambert réalisé avec cet utilitaire. Après avoir réalisé la 

totalité du circuit nous pouvons regrouper toutes les fonctions utilisées dans un seul circuit 
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sous forme de boite noire qui ne présente que les entrées/sorties du circuit et ce pour 

l’encapsulation du traitement. La Figure 49 présente le schéma bloc de même module. 

 

Figure 48:Circuit de Lambert 

  

Figure 49: Schéma bloc de la fonction Lambert 

2.2.2.1 Simulation des circuits implémentés 

La simulation est une étape primordiale dans la conception des accélérateurs hardwares. Elle 

permet de vérifier le bon fonctionnement du composant réalisé. Cette étape se fait à travers 

des vecteurs de test « waveform  vector» qui permettent d’envoyer des valeurs aux entrées de 

l’accélérateur et de récupérer les résultats fournis. Les figures (Figure 50 et Figure 51)  

présentent les étapes de validation par simulation du fonctionnement du circuit de Lambert. 
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Figure 50:Résultat de simulation du circuit de Lambert avec θ négative 

 

Figure 51:Résultat de simulation du circuit de Lambert avec θ positive 

 

Les deux figures ci-dessus illustrent les deux cas que l’on peut rencontrer dans l’algorithme 

de Lambert.  

· Le premier cas représente un cos θ >0, suite à une vérification de l’application 

numérique, la valeur de l’intensité trouvée est conforme. 

· Le deuxième cas représente un cos θ <0, l’intensité trouvée est égale à la valeur de la 

lumière ambiante. 

  
2.2.2.2 Intégration des accélérateurs au processeur NIOS  

Nous détaillons dans cette section les différentes méthodes d’interfaçage des accélérateurs 

avec le processeur Nios-II. 

2.2.2.2.1 L‘interface de l’accélérateur esclave 

Cette interface est constituée de trois modules. Le processeur NIOS-II avec ses mémoires, le 

bus Avalon, et l’accélérateur. Ce système se compose d’un processeur qui est le seul maître 

connecté au bus Avalon et  un accélérateur matériel esclave. Les spécifications d'accélérateur 
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matériel sont limitées à un port de lecture et d'écriture. Ainsi, le maître « le processeur » doit 

alimenter le module matériel avec des données et attendre le résultat du port esclave.  

2.2.2.2.2    L’interface de l’accélérateur maître 

L’architecture se compose par le processeur NIOS II associé à une mémoire externe, une unité 

de traitement (accélérateur) et le bus avalon.  Le principe de fonctionnement de l’interface 

maître peut être décrit ainsi : le processeur NIOS-II envoie l’adresse de base de la RAM à 

l’accélérateur qui lui aussi peut lire les données directement de la mémoire, effectue le calcul 

et réécrit le résultat dans la mémoire. Une fois achevée une IRQ est générée pour le 

processeur pour lui indiquer l’achèvement du traitement. Dans ce mode, nous évitons la 

sollicitation du processeur et les retards induits. Ainsi le processeur peut effectuer d’autre 

traitement en parallèle avec l’accélérateur.  

2.2.2.2.2.1 Description de l’interface 

Afin d’assurer la communication entre l’accélérateur maitre et les autres composants du 

système, les signaux de l’accélérateur doivent être conformes avec les signaux du bus qui va 

assurer cette communication décrite dans le chapitre 4. La Figure 52 décrit l’interface globale 

avec les signaux. L’entrée « read_master » et la sortie« write_master »sont sur 32 bits et 

synchronisées par l’horloge du système. Le signal « read_master  » prend des entrées à partir 

d’une RAM extérieure Le signal write_master  fournit le résultat qui sera écrit par la suite 

dans la RAM.  

 

Figure 52: Structure de l’interface de l’accélérateur maître 
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2.2.2.2.2.2 Intégration des accélérateurs 

Ayant les fichiers nécessaires à la création d’un périphérique, l’ajout d’un composant au 

SOPC Builder passe par une interface graphique qui gère toutes les étapes nécessaires.  

La première étape, consiste à indiquer les fichiers de description matérielle du périphérique à 

ajouter, puis il va les analyser, voir s’ils sont synthétisables, définir l’entité de haut niveau et 

valider cette étape. 

A la deuxième étape à partir des fichiers de description, l’assistant va déduire les différents 

signaux nécessaires à l’interfaçage de ce composant avec le bus Avalon (Figure 53) et donne 

la main à l’utilisateur pour spécifier leurs types. Cette étape nécessite la connaissance des  

contraintes imposées par le bus Avalon.  

 

Figure 53: Mise au point des signaux Avalon 

Une fois cette étape faite avec succès le composant sera ajouté à la bibliothèque des 

composants préconçus fournis avec l’environnement. Ainsi l’utilisateur peut ajouter autant 

d’instances de ce type d’accélérateur qu’il veut. Bien entendu ces accélérateurs fonctionnent 

d’une manière indépendante. 
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Deux fichiers seront créés automatiquement. Le premier fichier  class.ptf c’est grâce à ce 

fichier, que le logiciel de développement pourra identifier et implanter l’interface dans le 

système. Il contient toutes les informations de connexion.  

Le deuxième fichier system.h à travers lequel se fait la liaison entre les parties matérielles et 

logicielles. Ce fichier  contient l’adresse des registres de notre bloc matériel (IP).  

La dernière étape consiste à modifier le programme de l’application pour qu’il tienne en 

compte les accélérateurs existants dans l’architecture. 

Dans cette section, nous avons détaillé les étapes suivies pour la conception des accélérateurs 

d’ombrage. La 1ère étape consiste à identifier les fonctions à implémenter en matériel à 

travers le profilage de l’application et l’outil « Design Trotter ». La deuxième étape concerne 

l’implémentation des modules hardwares en langage de bas niveau. La dernière étape se 

manifeste à l’interfaçage des modules implémentés sur le bus. Ainsi, nous disposons d’une 

multitude de choix architecturaux pour notre application.  

2.3 Ajout des coprocesseurs hardwares 

Par définition un coprocesseur est un processeur dédié à un traitement particulier. Il décharge 

le processeur principal des opérations qui lui sont dévouées. Le fait d’ajouter des 

coprocesseurs dans l’architecture c’est le fait d’ajouter des instructions spécialisées dans le 

jeu d’instructions du processeur. Contrairement aux accélérateurs hardwares qui peuvent avoir 

0 ou n entrées/sorties un coprocesseur possède au maximum deux entrées et une sortie pour le 

résultat.  

Dans notre travail, nous avons choisi d’ajouter les quatre opérations élémentaires de base 

sous forme de coprocesseur hardware avec virgule flottante. Il est à noter que le code VHDL 

de ces opérations avec virgule flottante est fourni avec l’environnement Figure 54. 

 

Figure 54:Interface d’ajout d’accélérateur 
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Dans la section suivante, nous étudions l’effet de ces implémentations sur le temps 

d’exécution de l’application. 

2.4 Etude de l'effet des paramètres architecturaux sur Texe 

Nous détaillons dans cette section l’impact du changement de l’architecture hardware sur le 

temps d’exécution.  

A noté que : 

- Texe_SW_Flat/gouraud : représente le temps d’exécution de l’application sur le 

processeur.  

- Texe_cop_flat/gouraud : représente le temps d’exécution de l’application en utilisant les 

quatre opérations de base sous forme de coprocesseurs. 

- Acc_normal_flat/gouraud : représente le temps d’exécution de l’application en utilisant 

un accélérateur matériel qui calcule la normale à une face. 

- Cop_normal_flat/gouraud : représente le temps d’exécution de l’application en utilisant 

les coprocesseurs et l’accélérateur de calcule de la normale 

· Cas de l’ombrage plat  

La Figure 55 montre la courbe Texe=f(NbPoly).  

 

Figure 55: Impact du changement de l’architecture sur le temps d’exécution(Plat) 
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· Cas de l’ombrage de Gouraud  

La Figure 56 montre la courbe Texe=f(NbPOly).  

 

Figure 56: Impact du changement de l’architecture sur le temps d’exécution(Gouraud) 

Nous remarquons d’après les figures ci-dessus que plus que nous ajoutons de composants 

hardwares plus qu’on exécute l’application plus rapidement mais sans doute ce gain est 

pénalisé par une augmentation de la consommation du système, thème du paragraphe suivant. 

2.5 Mesure de la consommation 

La quantification de la consommation des configurations passe par plusieurs étapes. Tout 

d'abord, afin de mesurer la consommation statique du système on a exécuté la tâche IDLE 

(tâche d’attente active) sur une architecture composée du processeur et des mémoires 

nécessaires sans utiliser aucun accélérateur HW (configuration SW) et on a pris la valeur 

maximale atteinte sur l’afficheur de la carte. Ensuite, dans le but de quantifier l’impacte de 

chaque accélérateur sur la consommation statique du système on ajoute l’accélérateur 

correspondant tout seul au processeur et on exécute la tâche IDLE. L’impact de cet 

accélérateur sera égal à la différence entre la valeur mesurée et la consommation statique. 

Enfin, l'application cible est exécutée sur chaque type d’architecture pour mesurer la 

consommation dite à l’exécution de l’application. Cette valeur est égale à la différence entre 

la valeur mesurée et la consommation de la tâche IDLE sur la même architecture.  

Le Tableau 5 indique les mesures de consommation de quelques configurations. 

Pour la mesure de la consommation on a utilisé la carte stratix3 qui intègre les circuits 

nécessaires et affiche la consommation d'énergie du noyau FPGA en mW au cours du 

fonctionnement du système. 
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Tableau 5: Caractérisation de la puissance des configurations 

 

Sachant que : 

- CPU + MEM : représente l’architecture standard qui ne contient pas d’accélérateur 

matériel spécifique pour l’application de synthèse d’images 3D 

- Acc_normale : représente l’accélérateur matériel de calcule de la normale 

- Copro(+,-,*,/) : représente l’utilisation des quatre opérations de base sous forme de 

coprocesseurs. 

- Copro + Acc_normale : représente l’utilisation des coprocesseurs et de l’accélérateur 

normale. 

- Scalaire, vectoriel, normalisation et transformation : correspondent à l’accélérateur de 

calcul respectivement du produit scalaire, du produit vectoriel, de la normalisation d’un 

vecteur et du résultat de fonction de transformation. 

Ainsi, en utilisant le tableau ci-dessus on peut calculer la consommation globale du système 

suivant l’architecture hardware utilisée. 

Consommation (mj)= (puissance_idle_task+ ∑ impact_HW_acc)*hyp + ∑ impact_app 櫈 Texe 

La caractérisation complète des configurations nécessite également la mise en place d’un 

modèle capable de caractériser la QoS d’une configuration donnée.  

2.6 Mise en place du modèle de QoS 

Dans cette approche il est nécessaire que chaque type d’application exécuté dans le système 

possède son propre modèle de QoS. Vu qu’on a travaillé avec l’application de synthèse 

d’images 3D on est amené à mettre en place un modèle permettant de quantifier la qualité 

d’un objet 3D affiché à l’utilisateur. Bien entendu la qualité d’une image 3D dépend de 

plusieurs paramètres tels que le nombre de polygones représentants l’objet, le type de 
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l’algorithme d’ombrage utilisé, la taille occupée sur l’écran, la vitesse d’animation etc. 

Puisque dans cette approche on est limité à la variation du nombre de polygones et le type 

d’algorithme d’ombrage, le modèle adopté ne tient compte que de ces deux facteurs. 

Dans ce travail on a utilisé le modèle de QoS proposé dans [Pan05]. Ce modèle est représenté 

par l’équation E23  il dépend uniquement du nombre de polygones constituant l’objet. ψ5P퓈揸ސar5l’ሻ� 100 櫈 ଴,퓈ƼǴ̊଴,퓈ƼǴ̊ା퓈,Ƽ퓈଺ହ櫈揸퓈ିಿ ್ು೚೗೤భబబబሻర,ఱ3 
Ce modèle a été amélioré dans [Ben07] pour qu’il tienne en compte du type d’algorithme 

d’ombrage utilisé. D’où la nouvelle formule de calcul de la valeur de QoS : 

QoS=α(ombrage)*QoS1(Nbpoly) 

La valeur de α(ombrage) est calculée par l’équation E24.  α揸ombrageሻ� 퓈ஒexp 揸 ୒ppି ଶ�ƅ匐౮._ౢ匐úĖt.ౢ౤揸ಊሻ ሻ 
où : 

- Npixel_image : nombre total de pixels de l’image 

- NPP : nombre moyen de pixels par polygone 

- β : coefficient qui caractérise l’apport de l’algorithme Gouraud par rapport à celui du 

plat. 

Ainsi la formule de QoS de l’algorithme de Gouraud est donnée par l’équation E 25 ψ5P � 100 櫈 퓈ஒexp൭ ୒ppି ଶ�ƅ匐౮.匐ౢúĖt.ౢ౤揸ಊሻ ൱櫈 ଴,퓈ƼǴ̊଴,퓈ƼǴ̊ା퓈,Ƽ퓈଺ହ櫈揸퓈ିಿ ್ು೚೗೤భబబబሻర,ఱ3 
La Figure 57 permet de déterminer la valeur de QoS en connaissant le nombre de polygones 

et le type d’algorithme d’ombrage utilisé avec une valeur de β=500.  
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2.7 Configurations retenues  

Suite aux différentes mesures déjà présentées on a pu mettre en place la base des 

configurations qui contient les informations suivantes (la période, l’échéance, le temps 

d’exécution, le niveau de qualité de service, le type d’algorithme d’ombrage utilisé, la 

puissance statique de l’architecture, l’impact de l’exécution de l’application et la référence de 

l’architecture hardware). 

Le Tableau 6 représente un exemple de configuration pour deux objets, le cube et le cylindre. 

Pour des raisons de simplicité et afin qu’on puisse vérifier les résultats fournis par l’approche 

on s’est limité à dix configurations pour chaque objet. 

Chaque configuration contient les informations suivantes : 

- Period : période de l’application 

- Deadline : échéance 

- Texe : temps d’exécution au pire cas 

- QoS level : niveau de la qualité de service fourni à l’utilisateur 

- Shade_algo : l’algorithme d’ombrage utilisé 

- Puis_conf : la puissance consommée par l’accélérateur 

- Puis_app : puissance dite à l’exécution de l’application 

- Ref_HW : le numéro de l’architecture (CPU+ ensemble d’accélérateurs). Dans notre 

cas 1 représente une configuration purement software et 2 c’est une architecture qui 

contient l’accélérateur de calcul de la normale, produit scalaire et vectoriel. Il est à 

noté qu’on n’a pas utilisé les coprocesseurs déjà implémentés à cause d’un problème 

lié à la plateforme qui ne permet pas d’activer et désactiver les coprocesseurs pour une 

tâche donnée. Donc si on active les coprocesseurs pour une application ils seront 

activés pour toutes les applications en cours d’exécution. 

Tableau 6: Exemple de configurations retenues 
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3 Mise en place d’un système d’exploitation temps réel 

Suite à l’étude faite dans le chapitre trois nous avons choisi de travailler avec un système 

d’exploitation qui utilise un ordonnanceur de type EDF. Donc le problème consiste à trouver 

un système d’exploitation qui répond à nos besoins en premier lieu, et qui peut être « porté » 

sur notre plateforme de travail. 

Puisque nous travaillons avec l’environnement d’Altera qui comporte le système 

d’exploitation temps réel MicroC_OS-II, deux solutions ont été envisageables. La première 

consiste à chercher un RTOS avec un ordonnanceur EDF et ensuite à se lancer dans la 

complexe tâche de modification de la couche HAL (hardware abstraction Layer) pour le 

configurer et le porter sur notre plateforme de travail. La deuxième solution, était de modifier 

l’ordonnanceur du MicroC_OS-II puisque son code source est ouvert et disponible avec toute 

la documentation. 

Nous avons choisi dans notre travail la deuxième solution. Pour ceci, nous détaillerons les 

étapes nécessaires qui ont conduit à la mise en place d’une part de la notion de périodicité des 

tâches et d’autre part de l’implémentation de l’ordonnanceur EDF. 

3.1 Description de l’EDF (Earliest Deadline First) 

Earliest deadline first est un algorithme d'ordonnancement préemptif utilisé dans les systèmes 

temps réel. Il appartient à la classe des algorithmes à priorité dynamique, où une instance de 

tâche change de priorité durant son exécution. Cette politique d’ordonnancement permet 

d'exécuter les instances dans l'ordre de leur urgence où le degré d'urgence est mesuré par la 

proximité de leur échéance. Cela implique qu'une instance ne peut utiliser la ressource que si 

toutes les instances d'échéances plus petites ont terminé leur exécution ou ne sont pas encore 

actives. 

Dans le cadre de l’ordonnancement préemptif des tâches, EDF a le très grand avantage d'être 

optimal vis-à-vis de la faisabilité du système dans des contextes variés, c’est à dire que tout 

ensemble de tâches faisable sous une politique autre qu’EDF sera nécessairement faisable 

sous EDF. 

3.2 Implémentation de l’EDF sous µC_OS-II 

Notre politique EDF a été introduite dans les fonctions internes de µC_OS-II de manière à 

pouvoir commuter entre elles et la politique déjà existante (à priorité fixe).  
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Deux étapes étaient nécessaires pour l’implémenter : l’implémentation de la périodicité des 

tâches, ensuite, la gestion des échéances.  

3.2.1 Gestion de la périodicité 

Les tâches périodiques lancent leurs instances dans des intervalles de temps réguliers appelés 

périodes (se réveillent toutes les p unités de temps). Une tâche périodique est alors 

caractérisée par (Figure 58) :  

- sa période p, 

- son échéance d. L’échéance est le temps séparant l’instant de mise à l’état prêt de 

l’instance de tâche et celui au bout duquel cette instance doit terminer son exécution, 

- son temps d’exécution c, 

- son temps d’exécution au pire cas wcet.  

 

Figure 58 : Paramètres des tâches périodiques 

Comme il est illustré dans la Figure 58, la tâche périodique doit s’exécuter une fois par 

période. Elle peut commencer son exécution à divers instants et avoir différents temps 

d’exécution, mais elle doit terminer avant son échéance. Les paramètres relatifs à cette tâche 

doivent être définis tout en respectant l’ordre suivant : 0 ≤ c ≤ wcet ≤ d ≤ p. 

Il est vrai que µC/OS-II ne gère pas la périodicité des tâches, mais il offre des services de 

gestion du temps fonctionnant selon l’horloge système qui déclenche une interruption 

périodique à une fréquence fixée au départ. En effet, lorsqu’une tâche se suspend, elle spécifie 

un délai en nombre de tics d’horloge pour s’endormir. A chaque tic, la routine d’interruption 

de l’horloge système OSTimeTick() s’exécute. Elle doit vérifier les délais de toutes les tâches 
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pour en détecter ceux qui sont expirés. Dans ce cas, les tâches concernées seront remises à 

l’état prêt. A la fin de la routine, l’ordonnanceur est appelé. Il décide qu’une commutation de 

contexte s’avère nécessaire s’il y a une tâche, parmi celles remises à l’état prêt, qui a une 

priorité plus élevée que celle de la tâche ayant été interrompue. Dans ce cas, l’ordonnanceur 

interrompt cette dernière et retourne à la tâche de plus haute priorité. La Figure 59 illustre 

l’ensemble de ces étapes. 

 

 
 

Figure 59:Gestion du temps 

 
Le temps s’écoule de gauche à droite. En (1) la tâche idle est en exécution. L’interruption 

d’horloge arrive en (2) et le contrôle du CPU passe à la routine correspondante (3). Cette 

routine met la tâche HPTask à l’état prêt. Puisque cette dernière à une priorité plus haute que 

la tâche idle, l’ISR fait appel à une commutation vers le contexte de HPTask à la sortie de 

l’ISR (4) et la tâche commence à s’exécuter (5). 

Afin d’intégrer la gestion de la périodicité dans le noyau de µC/OSII, l’idée était de profiter 

des services de gestion du temps qu’il offre et de la routine d’interruption d’horloge qui 

permettent de manipuler les tâches à des instants bien spécifiques puis obtenir des 

informations sur leurs contraintes temporelles. 

L’idée était d’étendre la structure du contexte des tâches définies par µC/OS-II pour supporter 

la gestion de la périodicité. On a ajouté une nouvelle structure de données  dans la zone de 

données utilisateur additionnelle du bloc de contrôle des tâches (TCB, Task Control Block). 

La Figure 60 illustre la structure étendue de ce bloc. 
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Figure 60: Structure étendue du TCB pour le support de la périodicité des tâches 

La zone d’extension du TCB, TASK_USER_DATA, est pointée par OSTCBExtPtr. L’utilisation 

de ce pointeur permet d’étendre le TCB tout en réduisant les modifications apportées aux 

fonctions internes du noyau existant.  

OSTCBExtPeriod est la période de la tâche qui doit être définie en offline.  

OSTCBExtDly est le compteur de délai associé à la période. Il est chargé par la valeur de 

période à la création de la tâche et il est décrémenté à chaque tic d’horloge. Lorsque la tâche 

termine son travail, elle se met en attente de sa prochaine période en utilisant la fonction 

OSTimeDly().  Dès que le délai de période expire, il est rechargé automatiquement et la 

remise à l’état prêt de la tâche est forcée par la fonction OSTimeDlyResume(). La gestion de la 

période est implémentée dans la fonction interne OSTimeTick() qui est déclenchée 

périodiquement par l’interruption de l’horloge système (System Ticker ISR). 

Les TCBs sont placés dans une liste chaînée pointée par la tête de liste OSTCBList et triée par 

priorité. 

La création d’une tâche avec cette structure étendue n’est possible qu’avec la fonction 

OSTaskCreateExt() et que si le flag OS_TASK_CREATE_EXT_EN est activé.  

3.2.2 Mise en œuvre de EDF 

Après avoir implémenté la périodicité des tâches, on a ajouté une autre structure de données 

dans la même zone d’extension permettant la gestion d’échéance. La Figure 61 montre cette 

structure de deadline qui est placée dans une liste chainée.  
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Figure 61: Structure du deadline dans la zone d’extension du TCB pour le support d’EDF 

Le troisième champ de la zone d’extension, OSTCBExtDln, est de type structure deadline. Il 

est formé de 5 champs. 

OSDeadLn stocke la valeur d’échéance de la tâche qui doit être inférieure ou égale à la  

période.  

Tout comme pour la période, OSDlnDly est le compteur de délai associé à l’échéance. Il est 

chargé par la valeur de celle-ci à la création de la tâche et il est décrémenté à chaque tic 

d’horloge. La recharge d’OSDlnDly est faite au moment d’expiration de la période. 

Comme l’algorithme EDF attribue la plus haute priorité à la tâche d’échéance la plus proche, 

il était nécessaire de rechercher le Min des échéances à chaque évènement de commutation. 

Deux solutions ont été envisagées :  

- Parcourir toutes les échéances à chaque évènement de commutation pour en 

déterminer la plus petite. 

- Arranger les structures des deadlines dans une liste chainée triée par ordre croissant 

d’échéance. La plus petite échéance sera en tête de liste. 

On a opté pour la 2ème solution vu qu’elle est plus optimisée du point de vue temps 

d’exécution. En effet, la mise à jour de la liste triée des échéances ne sera réalisée que 

lorsqu’une nouvelle tâche prête à rouler arrive ou un délai d’une période expire. D’où le 
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nombre de mises à jour de cette liste sera toujours inférieur au nombre d’évènements de 

commutation qui arrivent à chaque tic d’horloge.  

Si une nouvelle tâche prête arrive et est insérée en tête de liste, la tâche courante sera 

immédiatement interrompue, et la première sera élue pour exécution. Si deux tâches ont la 

même échéance, on en choisira une au hasard 

4 Test de l’approche proposée 

Pour valider le bon fonctionnement de l'approche complète, nous avons testé une série de 

scénarios en modifiant certaines contraintes du système tels que le niveau d'énergie disponible 

dans la batterie, le nombre de tâches en cours dans le système ou en changeant les préférences 

de l'utilisateur. 

Il est à noter que: 

- DlnDly représente : l’échéance de la tâche 

- ExecTime représente : le temps d’exécution effectué sur le processeur 

- TotExecTime représente : le temps écoulé entre le démarrage de la tâche et la fin de 

l’exécution  

- TaskOver représente : 1si la tâche a terminé son exécution 0 si non 

- En_model représente : la quantité d’énergie consommée par la configuration actuelle 

- En_av  représente : la quantité d’énergie disponible dans la batterie 

- Life_time représente : durée de vie restante pour le système 

- Task10, 11,12… représentent respectivement l’objet numéro 1,2,3… 

- Task3 représente la tâche d’assemblage 

Comme premier scénario nous avons choisi une scène 3D composée de deux objets un cube 

et un cylindre qui font une animation toutes les 2.5 s (période). Les contraintes de départ sont 

fixées comme suit: Lt_constraint: 240 secondes QoS_constraint 10, En_av = 105 joules (1). 

La Figure 62 montre le démarrage du système. Le module d'adaptation choisi pour le cube 

une configuration SW avec l'algorithme d’ombrage plat et pour le cylindre une configuration 

SW avec un ombrage Gouraud (2). Toutes les configurations choisies répondent aux 

contraintes du système. 
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Figure 62 : Démarrage de l’approche d’adaptation 

Dans la deuxième étape de ce scénario, on constate que  la tâche 10 (1), dépasse son 

échéance, perturbe le fonctionnement du système (Figure 63) et cause un dépassement de 

l’hyper-période (2). Notez que le LM a activé la tâche d'adaptation locale (3), qui a consulté la 

base de configuration et a choisi une nouvelle configuration (4) de la tâche qui a provoqué le 

dépassement. 

 

 

Figure 63: Appel de la fonction d’adaptation locale 
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Dans cette étape, un nouvel objet (deuxième cube) doit être rendu dans le système (1). La 

Figure 64 montre les différentes actions du module d'adaptation. Le système d’adaptation 

choisit de nouvelles configurations pour les tâches existantes dans le système. 

 

 

Figure 64: Modification du nombre de tâches 

 

La dernière étape de ce scénario représente une situation où le gestionnaire local ne trouve 

pas de solution dans la base qui surmonte le dépassement d’échéance sans changer 

l'architecture du système. Ainsi, il demande au gestionnaire global de reconfigurer la totalité 

du système Figure 65. 

En premier lieu le système détecte un dépassement de l’hyper période (1). Pour remédier à ce 

problème il fait appel à la fonction d’adaptation locale (2). Cette dernière n’arrive pas à 

2 
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résoudre le problème localement elle active alors la fonction d’adaptation globale(3). De 

nouvelles configurations seront alors, choisies pour toutes les tâches (4).  

Nous constatons, que la tâche 10 à été migrée vers une implémentation hardware pour 

accélérer le traitement et résoudre ainsi le problème de dépassement d’échéance (5). 

 

Figure 65: Activation du gestionnaire global par le gestionnaire local 

5 Apport de l’approche 

Le but de cette partie est de comparer le fonctionnement du système avec ou sans l’approche 

d’adaptation proposée. On rappelle que sans avoir utilisé l’approche de conception 

l’utilisateur ne peut choisir ni la durée de vie du système ni le niveau de qualité minimale pour 

chaque application.  Toutes les applications s’exécutent sur une même architecture et avec  les 

mêmes paramètres applicatifs fixés par le concepteur lors de la phase de conception. 
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Afin de valoriser l’apport de l’approche on 

système offerte par l’approche d’adaptation 

fournit la plus basse qualité sur une architecture purement software 

fournit avec la configuration de meilleure qualité sur une architecture qui contient tous les 

modules hardware implémentés. 

1er Cas : qualité minimale 

Pour ce premier cas on a choisi une quantité d’énergie disponible égale à 

durée de vie de 70 minutes. 

La Figure 66 montre la différence entre la durée de vie du système et celle offerte par le 

système avec une version purement software qui fourni

nombre d’objets présents dans le système.

Figure 66: Durée de vie du système version minimale

La Figure 67 illustre la différence en termes de qualité de service 

par les deux versions en variant le nombre d’objets dans le système.
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Afin de valoriser l’apport de l’approche on a choisi de comparer la qualité de service du 

système offerte par l’approche d’adaptation et celle fournie par la version minimale qui 

la plus basse qualité sur une architecture purement software d’une part et 

meilleure qualité sur une architecture qui contient tous les 

on a choisi une quantité d’énergie disponible égale à 1800000

montre la différence entre la durée de vie du système et celle offerte par le 

système avec une version purement software qui fournit la plus basse qualité en modifiant le 

nombre d’objets présents dans le système. 
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Figure 67: Variation de 

Nous constatons d’après les deux graphes ci

l’approche est meilleure que la version minimale et que la différence peut atteindre 5 dans la 

fonction objectif  alors que la différence dans la durée de vie du système ne dépasse pas

minute. 

2ème cas Meilleure qualité 
Pour le deuxième cas on a choisi une quantité d’énergie disponible égale à 

durée de vie égale dans les deux cas.

La Figure 68 montre la différence entre la durée de vie du système et celle offerte par le 

système avec une architecture qui contient tous les accélérateurs implémentés. Elle fourni

plus haute qualité de service. 

Figure 68: Durée de vie du système
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de QoS pour une version minimale/Approche 

’après les deux graphes ci-dessus que la qualité de service fournie par 

l’approche est meilleure que la version minimale et que la différence peut atteindre 5 dans la 

fonction objectif  alors que la différence dans la durée de vie du système ne dépasse pas

Pour le deuxième cas on a choisi une quantité d’énergie disponible égale à 1800000

durée de vie égale dans les deux cas. 

montre la différence entre la durée de vie du système et celle offerte par le 

système avec une architecture qui contient tous les accélérateurs implémentés. Elle fourni
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dessus que la qualité de service fournie par 

l’approche est meilleure que la version minimale et que la différence peut atteindre 5 dans la 

fonction objectif  alors que la différence dans la durée de vie du système ne dépasse pas 1 

1800000mj et une 

montre la différence entre la durée de vie du système et celle offerte par le 

système avec une architecture qui contient tous les accélérateurs implémentés. Elle fournit la 
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La Figure 69 illustre la différence en termes de qualité de service fourni

par les deux versions maximale/approche 

 

Figure 69: Variation QoS pour une version maximale/Approche

Indique que le temps d’exécution dépasse 
 

Nous remarquons que la version maximale fourni

mais en contre partie le système ne respecte plus ses contrainte

d’exécution de toutes les tâches dépasse

6 Mise en œuvre des algorithmes d’optimisation

Dans cette étude nous mettons en œuvre deux algorithmes

simulé afin de comparer leurs performances et de choisir le plus approprié pour notre 

approche. 

Comme nous l’avons déjà mentionné les algorithmes d’optimisation permettent de résoudre 

un problème et de fournir une solution au problème sans garantie d’optimalité. Toutefois, ces 

algorithmes possèdent des facteurs paramétrables qui influent sur l

solution optimale ou une solution très proche d’elle. Cependant, pour augmenter cette 
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illustre la différence en termes de qualité de service fournie (fonction objectif) 

maximale/approche en variant le nombre d’objets dans le système.

 

Variation QoS pour une version maximale/Approche 

Indique que le temps d’exécution dépasse l’hyper période du système 

Nous remarquons que la version maximale fournit une qualité meilleure à celle de l’approche 

mais en contre partie le système ne respecte plus ses contraintes temporelles puisque le temps 

outes les tâches dépasse l’hyper période du système. 

des algorithmes d’optimisation 

Dans cette étude nous mettons en œuvre deux algorithmes : l’algorithme génétique et le recuit 
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solution optimale ou une solution très proche d’elle. Cependant, pour augmenter cette 

probabilité il y a toujours un prix à payer en termes de temps d’exécution. Nous sommes 

à choisir l’algorithme adéquat pour notre système. 

, nous avons utilisé deux types d’algorithmes d’optimisation. Le premier est 
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en variant le nombre d’objets dans le système. 
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(chaque nouvelle population = 20). Le deuxième est celui du recuit simulé dont on a choisi de 

travailler sur le facteur de dégradation de la température. 

Nous rappelons que ces tests sont faits avec la même table de configurations décrite dans le 

tableau 6. 

6.1 Premier scénario 

Nous utilisons, dans ce scénario, une valeur faible pour le nombre d'itérations de l'algorithme 

génétique « GEN» (50 itérations) et un facteur élevé de la réduction de la température pour 

l'algorithme du recuit simulé « SA» (facteur = 0,8). 

 

Figure 70: Variation nbr_objet/QoS pour l’algorithme génétique (nb_it=50) et le recuit simulé 

(fact=0.8) 

 

Figure 71: Variation nbr_objet/Texe pour l’algorithme génétique (nb_it=50) et le recuit 

simulé (fact=0.8) 
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Nous voyons pour ce premier essai (Figure 70 et Figure 71) que la méthode exacte pourra être 

utile si le nombre de tâches dans le système ne dépasse pas deux (t <0,13). Au-delà de ce 

nombre, le temps d'exécution de cette méthode est inacceptable (t = 1,32) pour 3 applications. 

Pour la méthode génétique nous notons que les valeurs de la fonction objectif sont très 

proches de la méthode exacte si le nombre de tâches est inférieur à quatre. Si nous dépassons 

cette valeur avec le même nombre d'itérations, nous ne trouverons pas les bonnes solutions. 

Nous notons également que le recuit simulé avec les solutions proposées est proche des 

résultats obtenus avec la méthode exacte et nous constatons aussi qu'il n'y a pas de solution 

inacceptable et que le temps est assez réduit dans tous les cas testés. 

6.2 Deuxième scénario 

Nous utilisons dans ce scénario une valeur élevée pour le nombre d'itérations de l'algorithme 

génétique (200 itérations) et un faible facteur de diminution de la température pour 

l'algorithme du recuit simulé (facteur = 0,95). 

 

Figure 72: Variation nbr_objet/QoS pour l’algorithme génétique (nb_it=200) et le recuit 

simulé (fact=0.95) 
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Figure 73: Variation nbr_objet/Texe pour l’algorithme génétique (nb_it=200) et le recuit 

simulé (fact=0.95) 

Nous constatons pour le deuxième scénario (Figure 72 et Figure 73) que les valeurs fournies 

par l'algorithme génétique sont plus proches à la méthode exacte que le recuit simulé lorsque 

le nombre de tâches est inférieur à quatre. Nous notons une augmentation du temps 

d'exécution plus importante pour la méthode génétique. 

6.3 Méthode mixte 

Suite à cette expérience nous avons mené une étude visant à choisir la méthode à utiliser dans 

notre approche. Nous avons constaté que chacune peut être utile dans certains cas. Ainsi, nous 

proposons la méthode Mixte qui sélectionne l'une des trois méthodes en fonction des 

contraintes du système. Elle conduit à l'algorithme suivant: 

- La méthode exacte si le système effectue au moins trois tâches. 

- La méthode génétique avec un nombre d'itérations égal à 20 si le nombre de tâches est 

égal à 3 

- La méthode génétique avec un nombre d'itérations égal à 200 si le nombre de tâches 

est égal à 4 

- La méthode du recuit simulé si l’on a plus de quatre applications avec un facteur qui 

commence avec la valeur 0,8  et qui augmente suivant le nombre de tâches. 
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Figure 74: Variation nbr_objet/QoS pour la méthode mixte 

 

Figure 75 : Variation nbr_objet/QoS pour la méthode mixte 

Nous notons que la qualité du service offert par cette méthode est très proche de la méthode 

exacte (Figure 74) avec un temps de réponse acceptable (Figure 75) et un taux d'erreur très 

faible. 
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7 Conclusion  

Dans ce chapitre, nous avons détaillé les différentes étapes de la mise en œuvre du 

démonstrateur de l’approche d’adaptation à contraintes multiples. Cette validation a été faite à 

travers l’application de synthèse d’images 3D et l’environnement de conception d’altera. La 

première étape a consisté à la mise en place de la base des configurations HW/SW pour notre 

application. Cette partie englobe les étapes de partitionnement hardware/software de mise en 

place des architectures matérielles nécessaires ainsi que la caractérisation de chaque 

configuration (temps d’exécution au pire cas, énergie consommée pour une période, niveau de 

qualité fourni). Nous avons détaillé par la suite la mise en place du système d’exploitation 

temps réel avec l’ordonnanceur EDF et l’implémentation du gestionnaire global et local. 

Finalement nous avons présenté quelques scénarios pour la validation du fonctionnement de 

l’approche proposée. Ce chapitre est clôturé par une comparaison entre les différentes 

méthodes d’optimisation implémentées.  
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1 Conclusion 

Actuellement on assiste à une émergence de systèmes multimédias électroniques embarqués 

destinés à un large public d’utilisateurs. Leurs fonctionnalités sont de plus en plus complexes 

et diversifiés. Les concepteurs de ces systèmes sont soumis envers une contrainte fastidieuse 

qui est le temps de mise sous le marché « Time To Market ». Pour gagner ce défi des 

méthodes de conception logicielle matérielle ont été développées. Elles tiennent en compte 

uniquement des caractéristiques des applications pour définir une architecture en adéquation. 

Cependant, les systèmes sur puce doivent fonctionner dans des conditions souvent difficiles 

fluctuation des conditions de transmission en réseau, ressources d’énergie limitée, contraintes 

imposées par l’utilisateur etc. Tous ces paramètres « dynamiques » ne sont pas tenus en 

compte dans les méthodes classiques de codesign existantes. 

De ce fait, les méthodes de conception classiques ne permettent plus de répondre aux 

exigences des systèmes actuels et doivent être améliorées par d’autres techniques afin de 

surmonter ces problèmes. En effet, elles doivent permettre la conception de systèmes 

performants pour pouvoir traiter les applications multimédia complexes et d’autre part 

flexibles pour s’adapter à l’environnement externe variable pour respecter les contraintes 

imposées par les ressources du système, l’environnement externe et l’utilisateur. 

2 Réponse à la problématique et travail réalisé 

Une bonne conception d’un système multimédia embarqué doit tenir compte non seulement 

de la consommation du système mais aussi du comportement du système envers le 

changement dynamiquement de ses contraintes. 

Ces contraintes sont d’autant plus difficiles à réaliser qu’elles sont sous l’influence de 

paramètres externes souvent aléatoires et imprévisibles (influence de la variation des données 

sur la consommation, influence des choix de l’utilisateur…). Nous avons proposé donc une 

approche d’adaptation pour répondre aux contraintes durée de vie / Temps réel / Qualité de 

service. Cette méthode suppose d'une part l’existence de divers modes de fonctionnements du 

système et d'autre part que celui-ci est capable de passer d’un mode à un autre suivant 

l’évolution des paramètres durée de vie, temps d’exécution et QoS.  

Cette méthode se compose de trois activités principales qu’on a classées en deux étapes : 

l’une se fait hors ligne lors de la conception du système et l’autre en ligne, elle intervient au 

cours du fonctionnement du système: 
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- Etape de caractérisation hors ligne : elle permet de déterminer les différents modes de 

fonctionnement du système (configurations). Cette étape nécessite :  

· Le choix d’un modèle d’architecture et une cible technologique.  

· L’étude de l’application afin de déterminer les attributs qui peuvent influencer le 

compromis Ddv/Texe/QoS. Ces attributs sont de deux natures : applicatifs et 

architecturaux. Les attributs applicatifs regroupent les valeurs des différents 

algorithmes (ou leurs paramètres associés) et dont le changement a un impact direct 

sur le compromis Ddv/Texe/QoS. Les attributs architecturaux concernent le type 

d’implémentation des configurations. Dans cette étape, nous utilisons une approche de 

partitionnement qui se base sur l’utilisation de l’outil Design Trotter et le résultat de 

profilage de l’application sur l’architecture cible afin d’obtenir des implémentations en 

adéquation avec l’application cible. À chaque couple d’attributs 

applicatif/architectural correspond une configuration, elle est caractérisée par un triplet 

{Energie_consommée, Texe, QoS}. Pour ceci il a fallu mettre en place des méthodes  

de quantification de la consommation d’une configuration en termes d’énergie et de 

temps d’exécution et de la qualité de service fourni à l’utilisateur.   

- Etape « en ligne » qui consiste à mettre en place un modèle d'adaptation qui permet de 

suivre en ligne l’évolution des contraintes  Ddv, Texe et QoS et de reconfigurer le 

système selon les consignes imposées par l’utilisateur. Cette étape est formée par deux 

activités : une activité d’observation et une activité d’adaptation  

· L’activité d’observation permet le suivi des trois paramètres Ddv, Texe et QoS.  

· Une activité d’adaptation qui permet de choisir les configurations adéquates pour 

toutes les applications présentes sur le système afin de satisfaire les consignes de 

l’utilisateur. Vu que cette tâche ne doit pas dégrader les performances du système on a 

eu recourt à trois méthodes d’optimisation pour le choix d’une combinaison à partir de 

la base des configurations déterminées lors de caractérisation hors ligne.  

Cette méthode a été validée à travers un environnement de prototypage des systèmes sur puce 

reconfigurable d’Altera. Nous avons retenu la fonction de rendu d’image 3D comme 

application cible. 
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3 Perspectives 

Le travail effectué dans cette thèse peut être étendu et amélioré dans plusieurs axes. Nous 

présentons quelques uns dans la suite. 

Le premier thème que nous proposons, est la validation de l’approche sur une architecture 

reconfigurable dynamiquement (tel que les FPGA de type Xilinx). Bien entendu de nouveaux 

facteurs doivent être pris en compte tel que le coût de la reconfiguration du système en termes 

de temps d’exécution et de consommation. Nous proposons aussi d’ajouter d’autres 

applications multimédia telles que l’application H264. Il est à noter que ces travaux ont déjà 

commencé au sein de notre équipe dans le cadre du projet CMCU « CESAME ». 

Le deuxième thème concerne l’extension de cette approche pour quelle supporte les 

architectures multiprocesseurs. Beaucoup de problèmes sont à surmonter pour que cette 

approche puisse supporter les architectures multiprocesseurs telles que l’affectation de la 

charge de travail à chaque application, l’affectation des tâches à un processeur, la 

reconfiguration de l’architecture du système et bien évidemment le problème 

d’ordonnancement puisque le EDF n’est plus optimal pour une architecture multiprocesseurs. 

Le troisième axe touche l’utilisation des modules d’accélérations hardware existants dans 

l’architecture par plusieurs applications en même temps. Dans notre travail nous avons 

supposé que chaque accélérateur ne peut être utilisé que par une seule application mais rien 

n’empêche que ce dernier soit utilisé par d’autres applications puisqu’il est présent sur le 

système. Bien entendu, ce partage nécessite l’utilisation des mécanismes nécessaires pour 

l’ordonnancement des tâches sur l’accélérateur. 

En dernier lieu nous proposons de faire une étude exacte pour choisir la méthode 

d’optimisation adéquate à utiliser dans l’approche d’adaptation. 
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Résumé 
Actuellement on assiste à une émergence de systèmes multimédias électroniques embarqués destinés à 
un large public d’utilisateurs. Leurs fonctionnalités sont de plus en plus complexes et diversifiés. 
Cependant, les systèmes sur puce doivent fonctionner dans des conditions souvent difficiles 
fluctuation des conditions de transmission en réseau, ressources d’énergie limitée, contraintes 
imposées par l’utilisateur etc. Tous ces paramètres « dynamiques » ne sont pas tenus en compte dans 
les méthodes classiques de co-design existantes. 
Dans cette thèse une nouvelle approche  multi-niveaux  combinant l’adaptation au niveau système 
d’exploitation, applicatif et architectural a été proposée. En fait, c’est une approche originale et 
générique d’adaptation qui comporte essentiellement deux gestionnaires (global manager and local 
manager). Le gestionnaire global peut intervenir dans les trois couches afin de répondre aux grandes 
variations des contraintes du système (QoS et énergie). Le gestionnaire local intervient seulement dans 
les couches application et système d’exploitation. Il est mis en place pour contrôler le respect de la 
contrainte temps réel du système.  Une étude de cas à été présentée sur un système réel en utilisant 
l’environnement de conception d’Altera et l’application de synthèse d’images 3D. 
 
Mots clefs : système embarqué, qualité de service, auto-adaptation, énergie, temps réel  
 

Abstract 

The emergence of mobile and battery operated multimedia systems as well as the diversity of 
supported applications put new challenges in term of design efficiency. These systems must provide a 
maximum application quality of service (QoS) in the presence of a dynamically varying environment 
such as video streaming and multimedia conferencing and multiple resources constraints (e.g. battery 
level). These problems cannot be solved at design time and some efficiency gains can be obtained at 
run-time using an adaptive architecture.   

In this thesis we propose a new cross layer adaptation solution for embedded mobile systems. It 
supports application QoS under real time and lifetime constraints via coordinated adaptation in the 
hardware, OS, and application layers. Our method relies on an original middleware solution 
implemented on a global and a local manager. The global manager (GM) handles large and long-term 
variations whereas the local manager (LM) is used to guarantee real time constraints. The GM acts in 
three layers, whereas the LM manages application and OS layers only. The main role of GM is to 
select the best configuration for each application to meet system constraints and respect user 
preferences. The approach has been applied to a 3D graphics application and successfully 
implemented on an Altera FPGA. 

 

Key words: embedded system, quality of service, auto-adaptation, power, real time 

 

 الخلاصة
 .من المستخدمینجمھور واسع الوسائط  جزءا لا یتجزأ من الحیاة الیومیة ل متعددةالمدمجة و نظمة الإلكترونیةالأ أصبح استعمال حالیا

، وموارد المتقلبةشبكة الاتصالات غالبا ما تكون صعبة ك العمل في ظروف ومع ذلك، یجب علیھا .تنوعاأكثر تعقیدا و وباتت وظائفھا
سالیب التخطیط التقلیدیة لھذه في أ لیست مدروسة "الدینامیكیة" كل ھذه المعاییر .من قبل المستخدم المفروضة، والقیود محدودةالطاقة ال
 .الأنظمة

ھذا المنھج الجدید . موھندسة النظاالبرنامج  نظام التشغیل، :یجمع التكیف الذاتي على عدة مستویات نھجا جدیدا ھذه الأطروحة قدمنا في
 تباین الواسعال لتلبیة في جل الطبقات التدخل یمكن للمتصرف العام ).متصرف عام و متصرف محلي(یعتمد على استعمال متصرفین 

 لرصد ونظام التشغیل ولقد تم إعداده طبقة البرامج فقط في التغییر یمكن للمتصرف المحلي. والطاقةجودة الخدمة النظام ك من قیود
 .وبرنامج ثلاثي الأبعاد ألتیرا بیئة تصمیم باستخدام نظام حقیقي دراسة حالة عن وقد تمت .لنظامل الوقت الآنيقیود متثال لالا
 

  الوقت الآني, الطاقة, التكیف الذاتي, جودة الخدمة, المدمجةنظمة الأ: الكلمات المفاتیح
 


