République Tunisienne Cycle de Formation doctorale dans
Ministére de I'Enseignement Supérieur et la discipline Ingénierie des

de la Recherche Scientifique Q Systémes Informatiques
Université de Sfax AI-S K‘a'l's Loukil
Ecole Nationale d’'Ingénieurs de Sfax £NIX These Doctorat

Département de Génie Informatique N° d’ordre:

THESE

présentée a

L’Ecole Nationale d’Ingénieurs de Sfax

en vue de I'obtention du

DOCTORAT
Dans la discipline
Ingénierie des Systémes Informatiques

par
Kais LOUKIL

Approche de gestion de
performances/contraintes pour les systemes
embarqués temps réel

Soutenu le 06/12/2011, devant la commission d'examen:

M. Mohamed Jmaiel Président
M. Habib Youssef Membre
M. Samir Ben Ahmed Membre
M. Jean Philippe Diguet Membre
M. Mohamed Abid Membre

Remerciements

Remerciements

Cette thése a été réalisée au sein du laboratoire Computer < Embedded System, (CES) dirigé par Pr.

Mohamed AbID.

Il'm ‘est agréable de saisir cette occasion pour adresser mes sincéres remerciements et ma gratitude
la plus profonde a mon directeur de thése Pr. Mohamed AbID, professeur a (ENIS pour son aide
précieuse, ses conseils bienveillants, ses compétences, ses grandes expériences et ses qualités humaines
m’ont été d’'une grande importance et m ‘ont permis de mener a bien ce travail. Qu'il trouve ici [expression

de mes profondes reconnaissances.

Je tiens a remercier chaleureusement mon encadrant et ami Nader Ben_Amor maitre assistant a
CENIS. Merci Nader pour [intérét que tu as porté d mon travail, tes remarques et tes conseils utiles pour

la réussite de cette theése.

Mes remerciements s'adressent a Pr. Samir Ben Ahmed et Pr. Habib Youssef 4 avoir accepté d étres les
rapporteurs de cette thése. Je tiens a remercier également, Pr Mohamed Jmaiel qui a accepté de présider le

jury et Pr Jean Philippe Diguet, qui a bien voulu juger ce travail et pour [attention qu’il m'a accordée.

Je remercie également Mouna Ben Said et Lina Jarboui pour leurs contributions ainsi que tous les membres

du laboratoire CES pour leurs coopérations et encouragements.
Une pensée particuliére a tous mes enseignants qui ont participés a ma formation.

Je n'oublierai jamais tous ceux qui partagent ma vie personnelle et qui m’ont soutenu durant cette

thése, et bien souvent durant les années antérieures. Je pense évidement a mes parents et ma_famille proche.

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel

Table des matiéres

Table des matieres

L] [0 1SEST T - SRS 0
CHAPITRE 1: INtroduCtion QENEIAIEccoviiiiieieieeete ettt sttt sre e 1
Y [0 €A VZ U AT] [OOSR 2
A O a1 (g1 010 o] g Wo [l =T 4 a L=ET =TT 4
3 Organisation AU GOCUIMENTc..iiiiiie ettt et bttt b e bt e e e b e besbesbesbe et e e neane e e ensenbenneas 6
CHAPITRE 2 : Conception de systeme sur puce adaptatif : état de I’art.........ccccccvvvreiiiieiciieiciieeeses 8
R 1011 oo L1 o1 o] o U U RO 9
2 SYSEEIME BIMDATTGUEeiieiiiteiete ettt ettt et e b e e te s b et e besbe e e besbe e etesbe e et e sbe e ebesbe e ebesbe e abesaeseatesteseas 9
2.1D0omaines d’apPliCALIONcivieiieiie et 10
2.2 Caractéristiques des SyStemes eMDANGUEScccorireririnieieeie e 10

2. 2.1 ENCOMDIEBMENT.....ciiiitiiieiie e ettt enes 10
W I 111 (0] 101 1 1= SR 10
2.2.3LETEMPS T ... e 11
2.2. 4 QUANITE 08 SEIVICE ..eevieeie ettt re et e e nra e e enes 11

2. 2.5 COMPIBXILE.oeeiiieie et e re et e e be et e ereesreeneanes 12

3 Conception de SYStEME EMBATGUEciiieiieieitite ettt sttt te st tesbe st tesbe e etesbeeesesbe e 12
3.1Flot de conception LOGICIEI/MALENIE..........ccoveiiiiiiieiieeee e 13
3.1.1 Spécification NAUL NIVEAU...........ccceeiiiiiiciicie e 14
3.1.2 Partitionnement logiciel / matériel ..., 15
T G AV - 1 To F= U1 o] PRSP URT 16
3.2Gestion de 1a CONSOMMEALION........eiiiiieieeie e sre e enes 16
3.3Techniques de réduction de la consOMmMAtioN............ccceiveiieiiiie i 17
3.3.1Technique MALErIEIIEccue e 18
3.3.2Technique [0QICIEIIEc.ooeee s 19
3.3.3TECHNIQUE MIXIE ...ttt bbbt 19

3.4 Approches de codesign faible coNnSOMMALIONccocvveiiiiiii e 20
3.5Limitations des approChes PréeSENTEES.ccuiiieierire e 21
3.5.1Le comportement de la batterie du SYStEMEccceevveiieiiiiccecceee e 21
3.5.2 La variabilité des données et des appliCations............cooeereieiinenine e, 22
3.5.3Préferences de PULHTISALEULcccveieieeece e 22
3.5.4 ChOiX @rChiteCTUIAlcceeeeiee et 22
3.5.51Influence de I’enVirONNEMENTcooiiiiiiiiie e e 23

4 MEthodologies A adAPLAtIONccceieiiiieeie ettt sttt et sttt e sbe e te st et etesbe e etesbeeeresbe e 23
4.1 Adaptation au NIVEAU MALETTELcoiiiiiiiiiiee e 24
4.1.1TeChNIQUE DVS ..ottt e e e e ae e 24
4.1.2 Gestion dynamique de la consommation « DPM »cccccoveieieiiieieie e, 25

4.2 Adaptation au niveau systeme d’eXploitation............cccccveveiiiie e, 25
4.3 Adaptation au Niveau apPliCALIONS..........ccccuriiiiiie e 26
4.4 Approches d’adaptation eXISTANTEScoviiiiieiie i 27
4.4.1 Gestion de la QoS pour assurer une interaction de trames..........ccocevvevereneeiieieennn. 27
4.4.2 Adaptation a base d’affectation de budget de ressource...........cccovvevevieieeiieceenenn, 28
4.4.3 Gestion de la QoS basée sur le partitionnement HW/SWcccciviiiiiininiennn, 30
4.4.4 Approche d’adaptation multicouche « GRACE »cccooveveiicieeiccec e, 30
4.4.5 Approche d’adaptation du Lab-STICC..........ccoiiiiiiiiiiiceee e 31
4.4.6 Approche d’adaptation multi contrainte « Class »cccoceeveivieiiieic i, 32

I TS0t 011 o] o SRR 33

LT O o] 01 [o S 33
CHAPITRE 3 : Approche d’adaptation MUItiCOUCNEccccviiiiiieeee e 35
R 111 oo L1 o1 o] o USSP 36
2 ACHIVITE A7 ODSEIVALION ..ottt bbb s et st e st e be st e s e e be st eresbe st ene st eans 37
2.1 Parametres de 1’activité d’0DServation...........ccccveeiveieiie i 38

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel

Table des matiéres

2.2 Ajustement dynamique de PODS..........ooiiiiiiie i 38
Ao AV | (N0 =T F= o] U [0 HO OSSOSO 39
3.1 Modele d’adaptation niveau appliCation.............cccooiiiiiniiinicee e 39
3.2 Adaptation niveau arChiteCtural..............cccviiii i 40
3.3Modele d’adaptation niveau systéme d’exploitationcccceverereniienininieeees 40

4 Adaptation MUITICOUCREcoiiiiec bbbt sb et b 42
A.1VUE A’8NSEMDIE ...t nae e 42
4.2 Gestionnaire global « GIM »coiiiiii e 43
4.2.1 Formulation mathématique du ProbIEmMEe..........cccooeiiiiiiiie e 44
4.2.2 Quantification de la consommation en énergie €lectrique...........cocevvvvveieeriecreennenn, 46
4.2.3Recherche de 12 SOIULIONccuviieiiiiece e 47
4.2.4 Présentation des méthodes d’optimisationccccccevvveiiivciicce e, 48
4.2.5 AlgOrithme GENELIGUEoveeiiieiieeeeeee e 51
4.2.6 Algorithme du reCUit SIMUIEccviiiiiiceeecee e, 53
4.3Le gestionnaire 10Cal..........ccoiiiiiii s 56
4.3.1Principe de fONCHONNEMENTcoviiiiieiece e 56
4.3.2 Choix de I’algorithme d’ordonnanCement.............coovvvrireeiiienese e 58
4.3.3 Les algorithmes d’ordonnancement pour les systémes temps réel.............c........... 59
4.3.4ChoiX de I’OrdONNANCEUccviiiieiieie et e e see e sneenee e 60

5 Etape de caractérisation des CONFIGQUIAtIONS..........ccoviiiiiiiienieinie e 62
5.1Mise en place des CONFIQUIAtIONS.........cueiiuiiiieiiie e 62
5.2Partitionnement logiciel/matériel............c.oooiiiiiiiiii 62
5.2.1 Profilage de I’application :(Profiling)........cccccoeiiieiiiiiiciece e 63
5.2.2 Analyse par deSign TrOTEuiiiiiiiiee e 63

5.3 Caractérisation des cONfiguIationS...........cccveiieiiiic i 65
5.3.1 CalCUI 0B TBXE ..uviiieiieeie ettt st te s e s e e teaneesraeneennes 65
5.3.2Mesure de 1a CONSOMMELIONccueiiiiiiiiieieee e e 65
5.3.3Quantification de 12 QOSccoiiriieieiiere e 66

T O o111 (o] o S 66
CHAPITRE 4 : Etude de cas & Environnement de validationccccocvvivviiniininicienc e 67
I 0o oo 11 1 o] o SRS 68
2 Apercu sur I'application synthése d’image 3D........ccoviiiiiiiiiiee e e 68
2.1 Différentes étapes du PIPEIINE.. ... 68
2.1 1 TranSfOrMALIONS.......oiuiiieiieitieie ettt enes 69
2.1.2TeSt A VISIDIITE.......cieee e enes 69
2.1.3CalCUIS 0ES TUMIBIES ...ttt 71
2.1. 4 Transformations des tEXIUIESueiveieiierieeie e et nre e enes 73
2.1.5ClIpPINg (FENELIAGE)cviiiecieee ettt ens 73

2. LB PIOJECTION ...ttt bbb bbbt 73

2. 1.7 RASLEIISALIONivieeieiieie ettt ettt ettt st st e ebesreeneene e e enens 74

2.2 Graphe de tches de I’application 3Dcccoeiiiiiiiiiinee e 77
2.3Modification de I’application « SYNtNESE 3D »......ccccccviirieieiierieie e 78
2.3.1Construction des configurations 10giCIEHES...........ccoviiiiiiinii e, 78
2.3.2 Développement d’une version multi-applications............ccccccevveveivieieece e 80

2.4 Intégration des services de MIiCrOC/OS-11 ... 80

3 Environnement de conception des configurations MIXLESccccerviririeiinineiene e 81
3.1Le processeur embarqUE NIOS ..o 83
3.2Etude du DUS AVAION.......cciiieiiee et 83
I O 1 - Tor (=] 5] ([0 U= SO OSR P 84
3.2.2MOAES . TFANSTEIT.veevie et sre e enes 85
3.3Flot de conception de I’environnement d’ Altera...........ccccoovveieiiicce s, 85

4 Etude du systéme d’exploitation temps réel : MicroC/OS-I1.........cccvviiiiiiiiiiie e 86

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel

Table des matiéres

4.1 Capacités et CaraCtEriSTIQUESccveiieiiieie ettt et aeenae e 86
4.2Structure de MICTOC/OS 11 ...ttt e e e e s sbaae e 87
4.3Fonctionnement de MICIOC/OS-1.......oooiiviiiiiiiee e 88
4.3.1Création d UNE TACHEociiceie e e 88
4.3.2FONCLIONS U8 DASE.....cccveiiei et e s erree s 88
4.3.3CommMUNICAtION INEEN TACNESciieeiiee et e s e e s 89

L o o od (V1] o] o 90
Chapitre 5 : Expérimentation et validation ..o e 92
IR | o) (oo [U o3 £ o] o KNS OO OO O U PURRPRRUP 93
2 Construction de la base des CONTIGUIAtIONSouiiiiiiiiiiiee e 93
2.1 Configuration purement I0gICIEHIESccveiveiiie s 93
2.1.1 Etude de I’effet des attributs applicatifs sur le temps d’exécution...............ccoc....... 95

2.2 Conception des configurations mixtes HW/SWcccooiiiiiiiiien e 96
2.2.1 Conception d’accélérateurs dédiés a la synthése 3Dcccccoveveeiieiiece e, 96
2.2.2 Implémentation des aCCEIETAtEUIS.c.ovviriiiireririeee e 102

2.3 Ajout des COProCcesSeUrs NArAWANESc.cccveiieiiiie i 107
2.4Etude de I'effet des parameétres architeCturaux SUr TEXEcceververererenineseeeeieens 108
2.5Mesure de 18 CONSOMMALIONcciiiiiii it s e e e s e ae e e s sbaaeeeaas 109
2.6 Mise en place du modeéle de QOS ..o 110
2.7CONTIGUIrALIONS FELENUEBSveetie ettt ettt st e et e e st e e te e e e abeearee s 112

3 Mise en place d’un systéme d’exploitation tEMPS FEEL..........cocviiiierieiireiicie e 113
3.1Description de I’EDF (Earliest Deadling First).........ccocviiiiiiiiniieniienesceeeeiees 113
3.2Implémentation de ’EDF SOUS UC_OS-1l.......coviiiiiiiieecccecce e 113
3.2.1Gestion de 1a PEMOAICITEcoiiiiiiieee e 114
3.2.2MiSE €N CRUVIE T EDF ...t 116

4 TeSt de ’apProOCNE PrOPOSEEc.vci ittt sttt sttt ettt sttt sttt seebe s beseete st e se et st enesbentene st eens 118
Y o] oJoT i f (3 K=To] o] ool o T- IO OSSOSO R ORI 121
6 Mise en ceuvre des algorithmes d’optimiSatioN...........ccoiiiiiiiiie e 124
I A = =T o= A L o 125
6.2 DEUXIEME SCENANIOccivveieeeitteee e s ettt e e s ettt e e s sttt eesseb et s e sesabeseessbeaeessasbtesesessbeneesssbeeneesas 126
T A 1= (g (oL [1 D (=TT 127

A O] 4 Tod [0 1S{To] o H OO U SO OP RSN 129
(070 o TU R o] g 0 T T 1TSS 130
R ©o] 1 (o] {111 [0 o F USROS USSP OPRRSTPON 131
2 Réponse a la problématique et travail FEAlISEccoviiiiiiiiiiiiei e 131
B T) 0T 1)Y= OO SUS U 133
L] [T (T (oL 134
LT LE] oo = o] =SS 139

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel

Liste des figures

Liste des figures

Figure 1: FIOt de CONCEPLIONccvviiiieiiecciie ettt sree s 13
Figure 2: "Gap" entre I'évolution des batteries et I'évolution des semi-conducteurs [Kan02]. 17
Figure 3: Schéma du systeme d'adaptation [Pha04]...........ccceiiiiiiieiieiecc e, 27
Figure 4: Structure de la couche d'adaptation [Van02].........ccccceumeiiienenc i, 29
Figure 5: Schéma de I’approche Grace [Wan03]ccceevveiieieciiiieieece e 31
Figure 6: Principe de fonctionnement de I’approche du Lab-STICCcccoovvivviiiiniennn, 31
Figure 7: Interface du simulateur « Class »cccveiiiiiiiiiii e 33
Figure 8: Schéma du systeme d’adaptation............cccereiireniiineeiee e, 37
Figure 9: Approche d’adaptationcccoiiioiiiiiic s 43
Figure 10: Le gestionnaire global ..., 44
Figure 11 : ArchiteCture d’Un SOCcooiiiiiiiic et 46
Figure 12 : Modélisation de 1a CONSOMMALIONccveiviiiiiiiiiriee e, 47
Figure 13:Classification des algorithmes d’optimisation.............cccccvvevvieiiieiie e 48
Figure 14: Principe de base d’un algorithme génétique...........ccoovvieieiirenc i, 52
Figure 15: Organigramme de I’algorithme du recuit Simulé..............ccoov i, 55
Figure 16:Schéma de principe du gestionnaire 10Calccocoviieiiiiiincieeee, 57
Figure 17: Graphe de SEquences aveC MICIOC.........cc.coviieiieieciecec et 61
Figure 18: Graphe de Sequences aveC EDF ..ot 62
Figure 19: Approche de partitionnement SW/HW...........cccov i 63
Figure 20: Environnement DeSIGN TIOMENcveiiieriiii et 64
Figure 21: Objets transformés en un ensemble de trianglesccceeveveiieie e, 69
Figure 22: Les différentes étapes du pipeline [I0UO4].........ccoiiiiiiiiiiee e, 69
Figure 23 : Détermination de 1a NOrMaleccooviiiiiicii i 70
Figure 24: Clipping d7UNE FIQUIE.......ccuiiiiiiieeeee e 73
T U= I A T = (0] 1< [PR OPTP 73
Figure 26: Ombrage plat appliqué & un triangle...........cocoveiiiiiiiie e, 74
Figure 27: Ombrage plat appliqUé & UNe SPhETE..........couviiiiiieie e 75
Figure 28: Ombrage de Gouraud appliqué a un triangle..........ccccovveiiiieni i, 76
Figure 29 : Ombrage de Gouraud appliqué @ UNe SPNETE...........coeeieiieiieiic e 77
Figure 30: Graphe de tache de I’application synthese 3D...........ccccceiieieniienineneseeeeeee, 78
Figure 31 : Objets 3D avec qualités differentes..........cccveveiiiiicieiicceee e, 79
Figure 32 : Scénario du fonctionnement de I'application 3D avec les services MicroC/OS.... 80
Figure 33 : Schéma de la carte de développement Stratix Hlcccoooviiiiiiieiicciccecen, 82
FIQUIE 34: CPU NIOS ...ttt ettt et e e et e e teenneeanns 83
Figure 35: Architecture de DUS AVAIONcuiiiiiie e 84
Figure 36: Flot de conception logiciel et Matérielccoovveiiiieiiieie e, 86
Figure 37: Structure de MICIOC/OS-11oouiiiiiiieeee e 87
Figure 38: Procédure d’exécution de I’application synthése d’images 3D.........c.ccccvvevveenennen, 94
Figure 39 : Configuration des composants 10giCIelS ..o, 94
Figure 40: Impact du changement du nombre de polygones et de I’algorithme d’ombrage sur

temps d’exécution de PappliCAtIONccoviiiiiiiie e 95
Figure 41: Module de calcul de I’équation d’illumination de Lambertcccovveiienennn, 99
Figure 42: OmMDBrage GOUFAUDoouiieiiiiiiinieieie ettt bbb 99
Figure 43: Le schéma bloc d’un module d’ombrage de Gouraud............ccccocveeveieiieiieennenne. 100
Figure 44: Interpolateur de COUIBUISoiiiiiiiiie e 100
Figure 45: INCrément de COUIBUIS..........cviiiiie ettt 101
Figure 46: Schema bloc du circuit de calcul de lanormale ... 101
Figure 47: Schéma de bloc de la normalisation d’une normale.............cccccceevveiieecicie e, 101

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel

Liste des figures

Figure 48:Circuit de Lambert.........coo i 103
Figure 49: Schéma bloc de la fonction Lambertcccooeviiiiiiinieie e 103
Figure 50:Résultat de simulation du circuit de Lambert avec 0 négativeccccevvevennnne. 104
Figure 51:Résultat de simulation du circuit de Lambert avec 0 positiveccocvvvvrvevenenn. 104
Figure 52: Structure de I’interface de I’accélérateur maitre............ccccccecveveiveceece e 105
Figure 53: Mise au point des SignauX AVaION...........cccoviiiiiiiiineee e 106
Figure 54:Interface d’ajout d’aCCEIEIAtEUNccceeiveiie i 107
Figure 55: Impact du changement de I’architecture sur le temps d’exécution(Plat).............. 108
Figure 56: Impact du changement de I’architecture sur le temps d’exécution(Gouraud)...... 109
Figure 57 : MOEIE de QOS ...t 111
Figure 58 : Parameétres des taches PErIOdIQUEScc.ecveieeieiiieiieece e 114
Figure 59:Gestion AU TBMPSoviiiieie ittt bbbt 115
Figure 60: Structure étendue du TCB pour le support de la périodicité des taches............... 116
Figure 61: Structure du deadline dans la zone d’extension du TCB pour le support d’EDF. 117
Figure 62 : Démarrage de I’approche d’adaptation.............cccccvevieieiiiiiecie s 119
Figure 63: Appel de la fonction d’adaptation 10Cale...........c.cooovvviiiiiiiene 119
Figure 64: Modification du nombre de tAChESccceiieiiiiccecc e 120
Figure 65: Activation du gestionnaire global par le gestionnaire localcc.ccoovvviiennne. 121
Figure 66: Durée de vie du systéme version minimale...........c.cccovvvviiiieieie s 122
Figure 67: Variation de QoS pour une version minimale/Approchecccovevviviiiennenn. 123
Figure 68: Durée de vie du systéme version maximalecccceevveiiiieieiic s 123
Figure 69: Variation QoS pour une version maximale/Approcheccccoeevvnininnniennenn, 124
Figure 70: Variation nbr_objet/QoS pour I’algorithme génétique (nb_it=50) et le recuit simulé
(FACET0.8) ..ttt bbb bbbttt bbbt 125
Figure 71: Variation nbr_objet/Texe pour I’algorithme génétique (nb_it=50) et le recuit
SIMUIE (FACTT0.8) ...ttt bbbt 125
Figure 72: Variation nbr_objet/QoS pour I’algorithme génétique (nb_it=200) et le recuit
SIMUIE (TACTT0.95) ...t bbb bbb 126
Figure 73: Variation nbr_objet/Texe pour I’algorithme génétique (nb_it=200) et le recuit
SIMUIE (FACLT0.95) ...t bbb bbb 127
Figure 74: Variation nbr_objet/QoS pour la méthode mMixteccccccvvveviiieieeie e 128
Figure 75 : Variation nbr_objet/QoS pour la méthode miXtecccoovveiiiiiininince 128

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel

Liste des tableaux

Liste des tableaux

Tableau 1 : Résultat de la fonction objectif avec la fonction F1.............cccoooeeiiiiiiiccieeee 45
Tableau 2 : Résultat de la fonction objectif avec la fonction F2...........cccoeiiiiiiniiiiicicn, 46
Tableau 3: Le résultat de profilage par I’outil « Performance Counter »ccccceevveveennne. 97
Tableau 4: Les résultats des métriques par « Design Trotter »cccceveveiievesnsiecie e 98
Tableau 5: Caractérisation de la puissance des configurations............ccccccevvveveeieiicce e, 110
Tableau 6: Exemple de configurations reteNUESccooereririnieiieiee e 112

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel

Glossaire

Glossaire

SoC System-On-a-chip

ASIC Application Specific Integrated Circuit
ASIP Application Specific Integrated Processor
FPGA Field programmable gate array
DSP Digital Signal Processing

MIPS Million d’instructions par seconde
QoS Quality of service

3D Trois dimensions

PDA Personal Digital Assistant

RTOS Real time operating system
VHDL Very High Description language
OS Operating System

SW software

HW hardware

Texe Temps d’exécution

IP Intellectual Properties

VSIA Virtual Identification Soft IP
TTM Time To Market

SOPC System on programmable chip
DDV Durée de vie

ISR Interrupt Service Request

EDF Earliest deadline first

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel

Chapitrel : Introduction générale

CHAPITRE 1: Introduction générale

R AV, 1o (1771 1 (o] o PO 2
2 CONTEIDULION 0B 18 ThESEeeeeeee ettt e e e et e e e ettt e s st ee s sttt e e sasaeeessaseeeesasbeeesasseaessareeessanrenes 4
3 Organisation AU OCUMIBNTcuiiiiiieieiiet ettt b ettt b bbb bbb e st et benenes 6

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 1

Chapitrel : Introduction générale

1 Motivation

Depuis longtemps, on assiste a un fort accroissement du rythme des innovations technologiques
dans le domaine des systémes électroniques. Ce progrés technologique permet de répondre aux
exigences des applications de plus en plus complexes de traitement de I’information (notamment
dans le domaine multimédia). Il rend possible I’utilisation de ces applications non seulement sur
les ordinateurs de bureau, mais aussi sur des systémes embarqués nomades de faible
encombrement. La conception de ce type de systemes trés populaire est actuellement au coeur
d'enjeux économiques tres importants, liés a I’expansion du marché des applications « maobiles »
(téléphones portables, tablette, terminaux vidéos, etc.), a la réduction des délais de mise sur le

marché et la concurrence farouche du domaine.

Jouissant des progrés scientifiques dans les domaines du traitement multimédia, et du
traitement du signal, les fonctionnalités offertes par ces systémes sont devenues de plus en
plus variées et complexes. Elles demandent par conséquent des capacités de calcul de plus en
plus importantes. Cet accroissement persistant en complexité est également justifié par
I’évolution de la technologie qui permet de réaliser de tels systemes sur une seule puce de
silicium. En effet, selon la loi de Moore [Moo65], la densité d’intégration augmente de 50%
chaque année. Ce qui permet de créer des systemes mixtes (logiciel/materiel) hétérogénes
comportant divers modules (comme des processeurs, des DSP, des ASIP, etc) sur une méme
puce (SoC).

Ces nouvelles générations de systémes posent néanmoins de nouveaux défis aux concepteurs.
Avec un tel niveau de complexité, les phases de conception de ces systémes sur puce deviennent
de plus en plus ardus (spécification initiale, simulation, fabrication, tests ...) vu le nombre et la
nature des applications a gérer, la nature hétérogene de I’architecture et surtout les délais courts de

temps de mise sur le marché (time to market) avec toujours la nécessité d’un « zero default ».

Afin de mettre en place un systéme informatique, les concepteurs ont longtemps dispose d’un
choix restreint a deux alternatives. La premiére consiste a mettre en place un systeme
multiprogrammé via un microprocesseur [Zhi08]. Cette solution est moins couteuse mais elle
n’arrive pas assurer I’exécution de toutes les fonctionnalités du systéme avec la qualité requise.
La seconde, se base sur la réalisation d’un circuit spécifique a I’application développée (ASIC)
[Kri09]. De méme cette solution souffre de quelques handicaps tels que la complexité de la phase
de conception et le temps de fabrication du produit final. Comme solution la technologie

programmable offre plus de flexibilité au produit final avec un temps de conception et un codt

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 2

Chapitrel : Introduction générale

assez réduit.

Les circuits reconfigurables correspondent a des circuits matériels dont I'architecture peut étre
modifiée en fonction de I'application a développer [Gan10, Kon05]. Les plus populaires sont les
circuits FPGA. Ces circuits permettent de faciliter la phase de mise en place d’un nouveau
systeme multimédia (de la spécification au prototypage). En effet, leur architecture est riche et
répond aux besoins des applications actuelles. De plus, leur nature reconfigurable réduit les
phases de test, le colt associé aux erreurs de conception et le temps de mise sur le marché. Ces
architectures se présentent comme une solution intéressante au défi des systemes sur puce. Elles
ont permis la conception de nouvelles applications bénéficiant de leurs caractéristiques propres
telles qu’un fort parallélisme matériel et des possibilites de reconfiguration statique et/ou

dynamique.

Malgreé toutes ces améliorations technologiques, I'implémentation d'applications multimédia sur
un systeme embarqué reste une tache compliquée qui doit répondre a un ensemble de

contraintes antagonistes.

L’une des contraintes est la complexité des applications supportées. En effet, ces nouvelles
fonctionnalités sont exigeantes aussi bien au niveau puissance de calcul que capacité mémoire.
Elles sont en méme temps tres consommatrices d’énergie. La norme de compression MPEG4
par exemple est d'une complexité beaucoup plus importante que ses deux prédecesseurs
MPEG1 ou MPEG2 puisqu'elle est destinée a couvrir un ensemble plus vaste d'applications
[Tou00]. A titre d’exemple, I'encodage (profil simple) de la séquence "Weather" a 10 image/s
au format QCIF (qualité moyenne de vidéo) demande un total de 1500 MIPS avec plus de 250
millions d'acces mémoire [Kim03]. Cette augmentation de la complexité implique aussi une

consommation en énergie plus importante, ce qui limite I’autonomie des systemes embarques.

Une autre contrainte est la gestion de la consommation. C’est une tache tres difficile compte
tenu le nombre de facteurs favorisant son augmentation. D’une part, le nombre et la nature des
fonctionnalités multimédia supportées par un systéme embarqué ne cessent d’évoluer. D’autre
part, le progrés technologique n’a pas apporté de solutions acceptables a ce probléeme. En effet,
si la technologie autorise la réduction de la taille des transistors permettant ainsi de diminuer les
tensions d'alimentation et donc la consommation dynamique, elle entrainera une augmentation
relative des courants de fuite et donc de la consommation statique negligee auparavant. En plus
I’augmentation de la densité d’intégration sur la méme puce permet de réaliser des architectures

assez complexes ; ce qui favorise la consommation [Kuh98].

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 3

Chapitrel : Introduction générale

L’execution temps réel est une contrainte pour les systemes temps réel. Diverses applications
nécessitent une exéecution en un temps limité et continu dans le temps pour des raisons de
sécurité (dans le cas par exemple d’un systéme de navigation aérien) ou pour des raisons de
confort visuel (dans le cas de la compression vidéo par exemple, il faut assurer une cadence de

25 image/s soit un temps de traitement de 40 ms/image).

Une autre contrainte des systemes embarqués est liée a la nature mobile des systemes
électroniques actuels. |l est nécessaire de tenir en compte un autre parameétre externe cette fois
qui est I’environnement ou évolue le systeme mobile. Perturbations atmosphériques, liaison
radio variable, flux de données changeant sont des exemples de parametres qui peuvent
influencer de fagon importante sur le fonctionnement du systeme et la qualité des services
offerts (QoS).

De ce fait, ces systemes doivent étre d’une part performants pour pouvoir traiter les applications
multimedia complexes et d’autre part flexibles pour s’adapter a I’environnement externe
variable non seulement pour respecter les contraintes temps réel, mais aussi afin de préserver
les ressources d’énergie du systéme et respecter ainsi la contrainte de durée de vie [Lic06,
Kri08]. Le challenge consiste a concevoir des systemes qui donnent une bonne qualité de
service avec une consommation limitée d’énergie. Mais ce but de conception est difficile a
atteindre puisque pour avoir une meilleure qualité de service il faut utiliser au maximum les
ressources du systéeme ce qui augmente la consommation du systeme. Il apparait ainsi important
de pouvoir moduler I’utilisation des ressources matérielles selon les besoins de I’application

d’une part et également en tenant compte des parametres externes au systéme d’autre part.

Tirant partie de ce fait, les concepteurs des systemes embarqués se trouvent devant un
compromis entre la QoS a fournir et I’utilisation des ressources d’énergie et de calcul. 1l est
alors nécessaire de définir des systémes adaptatifs qui permettent d’adapter leur fonctionnement
non seulement suivant les contraintes du systéme mais aussi suivant les préférences de

I’utilisateur et I’état de I’environnement externe.

2 Contribution de la these

Le but de la thése est de definir un systeme multimédia adaptatif capable de gérer de fagon
autonome et efficace ces ressources d’energie et de calcul pour produire un maximum de QoS

tout en respectant les contraintes d’énergie et performance.

Notre approche prend en compte un certain nombre de contraintes qui agissent sur les

performances d'un systéme multimédia embarqué pendant son exécution. Elles se situent a

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 4

Chapitrel : Introduction générale

différents niveaux:

» Type de données traitees. Une tache peut voir ces caractéristiques (temps
d'exécution, occupation mémoire, consommation) changer en fonction des

données traitées (valeur, quantité, type).

» Influence du contexte dans lequel évolue le systéme embarqué. L augmentation
du taux d’erreur de transmission par exemple des données peut imposer le
changement de l'algorithme de décodage et de correction utilisé et donc une

augmentation de la consommation.

» Influence des choix d'applications. L'utilisateur peut privilégier I'exécution de
certaines fonctionnalités de son systéme mobile aux dépends d'autres qu'il peut
désactiver. Ceci engendre des changements de la consommation d'énergie a une

sollicitation plus importante des ressources du systéme.

» Influence du niveau d’énergie de la batterie. La quantité d’énergie disponible
dans le systéme peut imposer un mode de fonctionnement particulier ayant un

niveau de performance limité.

Diverses techniques ont été proposées [Kanll, PhaO4, Yua06] pour le respect des contraintes du
systéme tout en donnant une meilleure qualité de service. Ces techniques peuvent intervenir dans
I’une des couches application, systeme d’exploitation ou architecturale telles que I’ajustement de
la tension d’alimentation ou la fréquence de fonctionnement du systéme, la gestion optimisée des
accés mémoires, I’utilisation des techniques d’ordonnancement de basse consommation et la

modification de I’apparence d’un objet 3D sur I’écran.

Nous proposons dans cette these une nouvelle approche multi couches combinant I’adaptation au

niveau RTOS, applicatif et architectural.

Le modéle d’adaptation proposé doit étre performant sans pour autant étre trop complexe pour ne
pas contribuer a dégrader les performances du systeme et ses ressources d’énergie.

Dans ce contexte se situe notre travail qui consiste a ajouter une couche middleware (couche
intergiciel entre la couche systeme exploitation et application) permettant I’auto adaptation du
systeme. Nous proposons une approche originale et générique d’adaptation qui comporte
essentiellement deux gestionnaires (global manager and local manager). Le gestionnaire global
peut intervenir dans les trois couches afin de répondre aux grandes variations des contraintes du
systeme (QoS et energie). Le gestionnaire local intervient seulement dans les couches application

et systeme d’exploitation. Il est mis en place pour contréler le respect de la contrainte temps réel

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 5

Chapitrel : Introduction générale

du systéeme. En cas de besoin ce dernier peut interroger le gestionnaire global pour reconfigurer la
totalité du systeme s’il ne peut plus modifier les parametres applicatifs de I’application pour
résoudre le probleme localement.

Le principe de fonctionnement de cette approche se base sur I’utilisation d’un jeu de
configurations pour chaque application, pré-caractérisées hors ligne. A chaque fois que cette
approche détecte un non respect des contraintes du systeme, elle intervient pour choisir une
nouvelle configuration pour chaque application présente sur le systéme. Compte tenu du nombre
croissant d’applications que les systemes actuels peuvent exécuter simultanément et la présence
de plusieurs configurations pour chaque application notre approche doit résoudre un probleme
NP-complet pour trouver une combinaison de configuration qui lui permet de respecter ses
contraintes. Partant du fait que la tAche d’adaptation ne doit pas dégrader les performances du
systeme on a eu recours a des méthodes d’optimisation (algorithme génétique et recuit simulé)

pour résoudre ce probléeme NP-complet.

3 Organisation du document
Le manuscrit de cette thése est organisé en six chapitres :
Chapitre 2: conception des systéemes sur puce adaptatifs : état de I’art

La premiére partie du deuxiéme chapitre est consacrée a la présentation du flot de conception
traditionnel des systemes sur puce ainsi que les facteurs qui ont favorisé I’ajout de I’aspect
adaptatif. Dans la deuxiéme partie de ce chapitre, une étude sur les approches d’adaptations
existantes dans la littérature sera présentée ; nous présentons aussi I’apport et les limites de
chacune d’entre elles. Nous cloturons cette partie par une synthese des travaux existants et

I’introduction de I’approche d’adaptation multicouche proposée.
Chapitre 3 : approche d’adaptation multicouche

Ce chapitre est consacré a la description des étapes et les différentes techniques qui ont conduit a
la mise en place de I'approche d’adaptation. A ce niveau, nous détaillons les trois étapes
(observation, adaptation et mise en place de la base des configurations) necessaires pour la mise
en place de I’approche d’adaptation proposée. Au niveau de la tdche d’observation, une nouvelle
technique de contréle du respect de la contrainte temps réel est proposée. Pour la réalisation de
I’étape d’adaptation, on a présenté quelques méthodes d’optimisation pour le choix des
configurations adequates du systeme. Afin de mettre en place la base des configurations, une
approche de partitionnement hardware software a été proposée ainsi qu’un ensemble de modeles

qui permet de caractériser chaque configuration en termes de consommation, temps d’exécution et

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 6

Chapitrel : Introduction générale

niveau de qualité de service qui ont éte développés.
Chapitre 4 : etude de cas

Le quatrieme chapitre présente les éléments nécessaires de notre étude de cas faite a travers
I’application de synthese d’images 3D et I’environnement de conception Hardware/software
d’Altera. Nous cloturons ce chapitre par la présentation du systeme d’exploitation temps réel
MicroC_QOS-II.

Chapitre 5 : expérimentation et validation

Le cinquiéme chapitre illustre, dans sa premiére partie, les étapes nécessaires pour la mise en
place de I’approche décrite dans le troisieme chapitre sur la plateforme de conception. La
deuxiéme partie illustre les résultats expérimentaux de I’exécution de I’application de synthese

d’images 3D sur la plateforme concue.
Chapitre 6 : conclusions et perspectives

Nous concluons cette thése par le bilan des travaux effectués et nous détaillons les contributions
apportees ainsi que la réponse a la problématique abordée avant de proposer quelques

perspectives a nos travaux.

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 7

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

-

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

CHAPITRE 2 : Conception de systeme sur
puce adaptatif : état de I'art

1 oo L1 [od o] o EEO O ST RURRSURPRRN 9
SYSEEIME BMDATGUEeuieiieiitiietiete ettt s et s bt s et et e s be st e st e b et e st e s et e st e b e e be st e sesbe s eresbe st enenteens 9
2.1 D0omaines d’aPPlCALIONcivieiiie it 10
2.2 Caractéristiques des SyStemes EMDAIGUES...........ccoiireririnieiee e 10
Conception de SYStEME EMBDANTUEc..oiiiiiiiiti ettt ettt e s b e e b neenes 12
3.1Flot de conception LOGiCIel/MAtEriel............cccoevviiiiiiiiice e, 13
3.2Gestion de 1a CONSOMMALION........cuiiiiiieieie et sre e enne e 16
3.3Techniques de réduction de la coNSOMMALION...........ccoceeiiiieii e, 17
3.4 Approches de codesign faible CONSOMMALIONc.oiiiiiiniiieieee e, 20
3.5Limitations des approChes PréSENLEES.c.ciieieiiieiiece et 21
MEthodologies d”adapPLationcccciiiieiiiie ittt sttt re e e 23
4.1 Adaptation au NIVEaU MALEITEIooiiiiiiieee e 24
4.2 Adaptation au niveau systeme d’eXploitation............c.ccceviiiiiecie s, 25
4.3 Adaptation au Niveau apPliCALIONScccviiiiiieieie e 26
4.4 Approches d’adaptation eXISTANTEScceevveiiiieiie e 27
LY B 1T o070 o IR 33
(070 o111 o o SRS 33

-

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

1 Introduction

La complexité croissante des applications actuelles nécessite des performances de
plus en plus importantes, par ailleurs, afin de répondre a la contrainte imposée par le
marché (time to market), la conception des systéemes embarqués multimédia impose
I”utilisation des méthodes de conception specifiques et performantes. Ces méthodes

s'intégrent dans les méthodes de conception mixte logiciel/matériel (codesign).

Par ailleurs la diversité des contraintes auxquelles doivent répondre les systemes
embarqués (augmentation de la puissance de calcul, diminution de la consommation
d'énergie, réduction des codts, flexibilité), I’utilisation des méthodes de conception
traditionnelle ne répond plus aux besoins des concepteurs. Des travaux de recherche
sont menés afin de combler les limites en ajoutant de nouveaux facteurs dans les

méthodes de conception traditionnelle.

Le but de ce chapitre est de présenter les notions de base reliées au domaine de
conception des systémes sur puce. Nous enumérons également, les limites du flot de
conception traditionnelle. Nous terminons la premiéere partie de ce chapitre par la
présentation de nouvelles tendances pour la conception des systemes embarqués. La
deuxieme partie de ce chapitre sera consacrée a la présentation des différents niveaux
d’adaptation ainsi que quelques approches existantes qui traitent la notion

d’adaptation dans les systemes embarqués.
2 Systéme embarqué

Tout d’abord nous définissons I’élément de base de notre travail qui est le systéme
embarqué (plus spécifiquement un systéme sur puce « SoC en anglais System-on-
Chip »).

Un SoC est un systéeme complexe et indépendant sur une seule puce. Il contient au
moins un processeur (partie SW), de la mémoire sur puce, des composants spécifiques
pour un traitement donné (accélérateur ou coprocesseur matériel HW), des périphériques
externes (clavier, écran, interface d’entrées, sorties) peuvent compléter le fonctionnement du
systeme [Hen99]. Il integre dans la plupart des cas une interface homme/machine et il est
geré par un systeme d’exploitation puisqu’un SOC peut étre interfacé avec le monde

réel. 1l peut souvent incorporer des composants analogiques.

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 9 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

2.1 Domaines d’application

Actuellement, les systémes embarqués ont envahi beaucoup de domaines tels que
I'astronautique (satellite artificiel, fusée, sonde spatiale), le militaire (fusée), le
transport (aéronautique, automobile, avionique) et surtout la télécommunication
(téléphonie, routeur, pare-feu, serveur de temps, téléphone portable). Cette large
gamme de domaine d’utilisation englobe aussi les produits d'électroménager
(télévision, four a micro-ondes), d'impression (imprimante multifonctions,
photocopieur), d'informatique (disque dur, lecteur de disquette), le multimédia
(console de jeux vidéo, tablette). D’autres domaines d’application prosperent de
I’évolution des systéemes embarqués dont on peut citer les guichets automatiques
bancaires, I'équipement médical, I'automate programmable industriel ou la métrologie
[Fré00].

2.2 Caractéristiques des systemes embarqués

2.2.1 Encombrement

La plupart des systemes embarqués actuels sont congus pour répondre a une contrainte
d’encombrement (petite taille et faible poids) tels que les téléphones portables les PDA
etc). La fabrication de ces systemes fait appel a une technologie d’électronique et de
logiciel portable qui favorise la réduction aussi bien de I’encombrement que de la
consommation. Par conséquent, la mise en place d’un systeme embarqué de faible
surface qui englobe de I’électronique numérique, analogique et des composants radio

fréquence est une tache assez complexe [BenQ7].

Cette caracteristique peut limiter les fonctionnalités offertes vu que les composants
doivent étre d’une taille assez petite. Par exemple on ne peut pas utiliser un ventilateur

pour le refroidissement des composants.

2.2.2 L’autonomie

On dit qu’un systeme est autonome lorsqu’il dispose de toutes les ressources qui
assurent son fonctionnement. Il s’agit de ressources mateérielles (processeur, mémoire,
etc), de ressources logicielles (OS, applications) et de ressources d’énergie qui
peuvent étre continues ou rechargeables a travers des cumulateurs d’énergie pour

pouvoir fonctionner [Fré00, Jal09].

Un grand nombre de systémes sur puce actuels sont mobiles et fonctionnent avec des

ressources d’énergie limitées, il est donc extrémement important de réduire au

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 10 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

maximum leur consommation afin d’augmenter leur durée de vie.

2.2.3 Le temps réel

La plupart des systémes sur puce actuels communiquent avec leur environnement
externe afin de recevoir les données a traiter ou d’envoyer des consignes suite a un
traitement effectué. Dans certains cas, la validité d’un résultat dépend de I’instant de
son arrivée (échéance). Ce type de systéme est appelé systéeme temps réel [Aud 04,
Bru06].

On distingue le temps réel dur qui correspond a un résultat catastrophique lors du non
respect des échéances comme dans le cas des systemes de transport. On parle de temps
réel mou si le non respect des échéances s’accompagne par une dégradation de la
qualité du service fourni par le systéeme. Par exemple un GSM fait un retard a chaque
décodage de trame le systeme devient inexploitable et les paroles des utilisateurs ne

peuvent pas étre synchrones.

Deux techniques peuvent étre distinguées [Fré00]: le développement monolithique et
I’utilisation d’un systeme d’exploitation temps réel. Le développement monolithique
est fait dans un langage de bas niveau. Il consiste a écrire un seul programme dans le
systeme qui aura la totalit¢ de la charge de travail du systéme. Les contraintes
temporelles sont prises en compte lors de I’écriture du programme. L’utilisation des
systemes d’exploitation temps réel vient pour combler les défauts de la premiéere
technique. Elle permet I’exécution de plusieurs applications dans le systeme et elle
offre les mécanismes nécessaires pour garantir le respect des contraintes du systeme.
Cette deuxieme methode souffre aussi de quelques limites car la plupart des RTOS

existants sont spécifiques et avec un code source fermé et non extensible.

2.2.4 Qualité de service

Les systemes embarqués évoluent généralement dans des conditions
environnementales imprévisibles et souvent non maitrisables vu qu’ils sont portables.
La plupart d’entre eux sont incorporés dans des systémes mobiles. Ils sont donc,
soumis a des variations et a d’autres contraintes environnementales qui peuvent causer
des défaillances : radiation, vibration, corrosion, chocs, variation d’alimentation,
interférences radio fréquence, humidité, température etc. Il est donc nécessaire de
prendre en compte I’impact de la variation des conditions environnementales lors de la

conception de ces systemes.

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 1 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

Les systemes embarqués sont de plus en plus sophistiqués et utilisés dans des
domaines assez critiques dans lesquels un disfonctionnement peut causer des
nuisances, des pertes économiques et voir méme des catastrophes sur la vie de I’étre
humain et I’environnement notamment dans le domaine médical, ou le nucléaire ou le

domaine de transport.

Généralement, les utilisateurs des systemes embarqués sont tres exigeants en termes de
fiabilité, de robustesse et de QoS. La plupart des utilisateurs acceptent un temps de
disfonctionnement de I’ordinateur par exemple pour quelques heures a cause d’une
panne ou de coupure de tension électrique. Par contre, ils sont généralement beaucoup
moins patients vis-a-vis du disfonctionnement des systemes incorporés sous forme de

systéme embarqué et surtout dans le domaine de télécommunication par exemple.

2.2.5 Complexité

Grace a I’augmentation du taux d’integration, les systémes embarqués peuvent avoir
des architectures matérielles trop complexes suivant les besoins de I’application. Un
systeme embarqué peut contenir un processeur, de la mémoire et d’autres composants
pour assurer les performances exigées par les applications. Il peut contenir plus qu’un
processeur dans une seule puce voire des dizaines de processeurs. Toutes ces
évolutions ont pousse les concepteurs a mettre en place des outils de conception plus

sophistiqués pour pouvoir mettre en place ce type d’architecture assez complexe.

3 Conception de systeme embarqué

La conception des systemes embarqués necessite généralement une tres grande
quantité de travail manuel et une grande expertise pour choisir I’architecture
adéquate, écrire les modules de gestion de périphériques, concevoir les interfaces de
communication et/ou configurer les systemes d’exploitation commerciaux. A ce stade,
le concepteur se trouve face a la tache la plus difficile qui consiste a faire fonctionner
I’ensemble de ces éléments qui sont congus sur mesure pour repondre aux exigences

d’une application.

Afin de réduire I’effort de conception et les risques d’erreurs de conception, une des
techniques adoptées est I’utilisation des composants predefinis (IP). L’organisation
VSIA (VSI Alliance) a proposé une méthodologie basée sur I’assemblage d’IPs
préconcus [Seo0l0]. Malgre les inconvénients de ce type d’approche un grand nombre

de méthodologies adopte ce concept en utilisant des IP et des interfaces de communication

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 12 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

standard de HW et de SW standard et paramétrables. Les pénalités de performances de cette
solution architecturale sont acceptables et ce afin de répondre a une autre contrainte plus
importante qui est bien évidemment le temps de mise sur le marché TTM et le prix final

du produit.

Dans le but d’accélérer le flot de conception des systéemes embarqués, plusieurs
travaux ont été menés. Ces travaux se basent sur I’utilisation de nouveaux outils
capables d’automatiser le processus de conception. Ces outils se concentrent sur
I’automatisation du raffinement de la communication et la réutilisation de blocs
préconcus avec la génération automatique des interfaces. Ces outils utilisent différents

flots de conception. On se contente ici de présenter le flot traditionnel.

Le flot de conception traditionnel est généralement constitué de trois étapes
principales: (1) la spécification, (2) le partitionnement, et (3) la validation conjointe
HW/SW.

3.1 Flot de conception Logiciel/Matériel

Le flot de conception SOPC traditionnelle est représenté par la Figure 1. Il admet
comme entrée une spécification fonctionnelle de I’application et fournit en sortie une

architecture adéquate qui répond aux différentes contraintes de I’application.

Spécification
Systeme

\ 4

Partitionnement
logiciel/matériel

Synthése du Synthése du

logiciel / matériel
Synthése de la
communication

v v

Processeur — Primitives de
communication
RAM PROM I
: : Accélérateur +—
Validation 5

Figure 1: Flot de conception

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 13 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

Le flot de conception des SOPCs de la Figure 1 regroupe essentiellement trois étapes :

1. En partant d’une speécification fonctionnelle compléte du design, le concepteur partitionne
I’application en utilisant les outils adéquats ou manuellement en une partie logicielle et une
autre matérielle. L’optimisation des techniques de partitionnement constitue un theme de
recherche trés sollicité par les scientifiques [Ara05, Cat01l]. Ces activités de recherche

s’intéressent surtout a I’automatisation de cette étape.

2. Une fois le partitionnement effectué, on implémente la partie matérielle en utilisant un
langage de description matérielle telle que VHDL, VERILOG ou SystemC. La synthése de la
partie matérielle est réalisée par des outils de conception assistée par ordinateur (CAO) tels que
Design Compiler de Synopsys [Syn], Allegro de Cadence [Cad] et Agility Compiler de
Celoxica [Cel]. La partie logicielle en revanche, sera implémentée en langage évolué par
exemple C/C++. La compilation de la partie logicielle dépend du processeur cible. Ensuite, on
passe a la synthese de la communication des différents blocs du systéme. La plus part des
systemes sont congus a base d’IP qui sont des composants mateériels et logiciels deja existants dans
la bibliothéque d’IPs de I’environnement de conception il est donc nécessaire de mettre en place
les mécanismes de communication entre eux. La synthése des communications permet de
raffiner les interfaces des sous-systémes communicants. Ce raffinement se fait d’une maniere

interactive jusqu’a figer les mécanismes de communication (protocole, contréleur, interface).

3. Dans la phase finale du flot, on injecte le SOPC sur une plateforme adaptée de type FPGA.
Cette plateforme représente un environnement idéal pour I’implémentation des SOPC contenant
un ou plusieurs processeurs qui supportent la partie logicielle, une surface de portes logiques
(pour supporter la partie matérielle et les bus de communication), des blocs mémoires et des

interfaces de communication.

Dans les paragraphes qui suivent, nous allons détailler les différentes étapes du flot de

conception comme présentées dans la Figure 1.
3.1.1 Spécification haut niveau

La spécification d’un systeme fixe les fonctions principales exigées par I’utilisateur. En
specifiant le systéeme, le concepteur doit tenir compte des performances techniques (parametres
architecturales) et economiques (codt de fabrication) du systéme sur puce. L’objectif de I’étape
de spécification est de fixer un modéle fonctionnel et de le tester tout en vérifiant les contraintes

d’implémentation de I’application. La création d’un modéle fonctionnel s’intéresse a la

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 14 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

structuration ou I’organisation du comportement du systéme au cours du temps. La spécification

de I’application depend des parametres imposes par la plateforme d’implémentation.

Divers types de modeles de spécification fonctionnelle existent dans la littérature tels que
Statechart, les réseaux de pétri et UML (Unified Modeling Language). Ces modeles de
spécification, restent inadaptés pour exprimer les contraintes non fonctionnelles de I’application
telles que les performances temporelles (durée, latence et débit) et les ressources d’implémentation
nécessaires (énergie, mémoire et surface d’implémentation). La Vérification de I’intégrité
fonctionnelle de I’application nécessite I’utilisation d’un langage de description de haut niveau

associé a un noyau de simulation comme SystemC [Sys].
3.1.2 Partitionnement logiciel / matériel

L’étape de partitionnement logiciel/matériel détermine les taches qui vont étre implémentées sur
un ou plusieurs processeurs et les taches de traitement effectuées par des accelérateurs
mateériels. Durant cette étape de partitionnement, le concepteur fixe également les interfaces
entre la partie HW et SW [Ara05, Ana05].

L’ étape de partitionnement automatique d’une spécification est un probleme complexe (un
probléme NP-complet). Afin de décomposer ce probleme, on peut subdiviser ce processus en

trois parties principales :

- Une partie qui effectue I’allocation des différentes ressources matérielles et logicielles
en fixant leurs types et nombres. Dans le cas d’un processus d’allocation statique, le
concepteur dimensionne a un niveau d’abstraction trés haut I’architecture globale de
I’application embarquee. Le concepteur fixe ainsi la limite de performance du design qui

dépend des composants déployés dans I’architecture.

- Une autre partie qui effectue le partitionnement spatial ou temporel en affectant les
taches qui constituent I’application sur la partie matérielle ou logicielle. Dans les
architectures statiquement reconfigurables, cette partie se limite souvent a un probléme
de partitionnement spatial dans lequel on affecte les différentes taches aux différents
composants fonctionnels. Cependant, dans le cas des architectures reconfigurables
dynamiquement, le partitionnement temporel est devenu une étape indispensable dans la

conception du systéme.

- Une troisieme partie qui effectue I’ordonnancement de I’exécution et de la
reconfiguration des différentes taches ainsi que la communication entre elles. A ce

niveau, le concepteur doit explorer I’espace de solution afin de sélectionner une

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 15 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

architecture qui respecte les contraintes de traitement temps réel imposées.
3.1.3 Validation

Une fois qu'un partitionnement satisfaisant a été trouvé et que l'architecture a été définie,
I'étape de synthése post-exploratoire permet de générer le systeme. Il y a ici deux étapes,
d'une part la synthese matérielle dont le but est de générer soit un « netlist » pour la création
d'un ASIC soit le code a télécharger « bitstream » dans un composant programmable de type
FPGA, et d'autre part la synthese logicielle (compilation) dont le but est de génerer le code

qui sera exécuté par un ou plusieurs microprocesseurs du systeme.

ﬁ)ans cette partie, nous avons presenté les étapes essentielles du flot de conceptich
mixte typique. Le but des approches de conception existantes est de proposer des
architectures le mieux adaptées au traitement requis afin d’optimiser la surface des
architectures et leur temps de développement. Toutefois, avec I’apparition des
systémes embarqués, avec des ressources d’énergie limitées, la consommation est

devenue une contrainte prioritaire qui doit étre prise en compte dans la conception

\des systéemes multimédia. Ce sera I’objet du paragraphe suivant. /

3.2 Gestion de la consommation

La maitrise de la consommation de puissance et d'énergie est un probléme souvent rencontré
dans le domaine des systemes embarqués autonomes. Elle est devenue, ces dernieres années,
un facteur essentiel dans I’étape de conception. Ceci est di au fait que les nouvelles
applications deviennent de plus en plus complexes, et requiérent des architectures trés

complexes et par conséquent un nombre croissant de transistors sur la puce.

L’augmentation des puissances consommeées rend I’amélioration de I’autonomie du systeme
embarqué un objectif principal dés sa conception. Elle est aussi un facteur déterminant pour

son succes commercial. Cet objectif peut étre atteint par diverses techniques :

- Augmentation de la capacité de stockage d’énergie des piles : cet objectif est trés difficile
a atteindre et I’évolution dans ce domaine ne suit pas le progres des besoins des systemes
actuels. Ceci a causé un « gap » entre I’évolution de la complexité des applications et
I’évolution de la densité d'énergie des piles (exprimée en Wh/kg) comme le montre la
Figure 2. En effet, la loi d’Eveready prévoit une lente évolution de la capacité des piles

ne dépassant pas 40 %, évolution 4 fois moins élevée que celle de la capacité

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 16 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

d'intégration des circuits prédite par la loi de Moore [Tur03]. Cette évolution ne permet
plus de suivre la complexite croissante des applications prédite par la loi de Shannon
[Kar03].

- Diminution de la consommation du systétme embarqué. Diverses méthodes situées a
différents niveaux d’abstraction peuvent étre investiguées : au niveau algorithmique et au

niveau architectural.

Comme il reste toujours difficile d'augmenter la capacité de stockage d'une batterie sans en
augmenter le poids, le volume et le prix, il est donc nécessaire d'investir d'avantage dans la
deuxiéme solution. Par conséquent, des méthodes de gestion d'énergie efficaces doivent étre

définies et incluses dans les différentes phases de conception des systemes [Ben07].

35 400
30 /- 350 ©
25 300 S
£ 20 250 Z
g o :
Z 15 200 8
o
10 P 150 3
Y g
5 - =] 100 5
0 | 50

1986 1990 1994 1998 2002
|- Power (W) -+-Energy Denslty (Whikg)]

Figure 2: "Gap" entre I'évolution des batteries et I'évolution des semi-conducteurs [Kan02]

3.3 Techniques de réduction de la consommation

Cette partie présente quelques techniques utilisées pour concevoir un systéme embarqué a
faible consommation. Ces techniques peuvent étre réparties en trois catégories: des
techniques matérielles, d’autres logicielles et celles qui combinent les deux techniques
précédentes, logicielles et matérielles.

Diverses techniques ont été proposées pour mettre en place un systeme a faible
consommation. La plus répandue est celle qui congoit des composants spécifiques qui
consomment le moins possible. La seconde méthode consiste a fournir la partie logicielle qui
consomme la faible quantité d’énergie et ce a travers des méthodes d’optimisation du code de

I’application & exécuter. La derniére méethode consiste a combiner les deux techniques

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 1 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

précédentes c'est-a-dire, utiliser des composants qui consomment le moins et adapter le code

de I’application suivant I’architecture utilisée.

3.3.1 Technique matérielle

3.3.1.1 Au niveau composant

Actuellement, on assiste a une tres forte évolution dans le domaine de fabrication des circuits

électroniques. Ceci est d0 a I’augmentation du taux d’integration et de la fréquence de

fonctionnement des circuits actuels. Ce qui implique une augmentation au niveau de la

consommation du systeme.

Il est & noter que la consommation du systéme est la somme de deux types [Nab10] :

- la consommation statique qui est proportionnelle au nombre de transistors et au courant
de fuite

- la consommation dynamique qui est proportionnelle a la fréquence de fonctionnement et
la tension d’alimentation du systéeme

Diverses techniques ont été proposees pour remedier a ce probleme, telles que la diminution

de la tension d’alimentation, I’activation séparee des blocs logiques et le contréle du taux de

basculement des bits.

- Diminution de la tension d’alimentation

La tension d’alimentation est un facteur qui a un impact trés important sur la puissance

dissipée par un circuit qui peut étre calculé par la formule suivante:

Pdyn= a.C.£V?

Avec :

C : la capacité équivalente

F : la fréquence de fonctionnement

V : la tension d’alimentation

Ces derniéres années, la tension d’alimentation des circuits intégrés n’a cessé de diminuer. Au

début, cette valeur était fixée a 5v ; alors que, actuellement, la plupart des circuits travaillent

avec une valeur de 3.3v ou 1.1v. Il est a noter qu’il y a des composants qui utilisent 0.5v et

ceci est d0 non seulement aux progrés de la conception des circuits intégrés mais aussi a la

maitrise des techniques de fabrication ; on parle maintenant de la technologie 45nm [Mat0Q9].

- Activation separée de composants

La deuxiéme technique proposée consiste a activer séparément les composants d’un circuit

suivant les besoins de I’application [Koi06]. Cette technique n’est pas toujours réalisable et

peut envisager des traitements supplémentaires pour I’activation des parties nécessaires au

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 18 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

bon moment. Cette technique a été utilisée pour diminuer la consommation de la mémoire
cache. Elle consiste a diviser la mémoire en un ensemble de blocs qui peuvent étre activés
indépendamment les uns des autres.

- Diminution du basculement des bits

La troisieme technique consiste a diminuer le nombre de basculements des bits entre 0 et 1, et
ce, a travers la réutilisation des informations existantes sur le bus. Il est a noter que ce nombre

intervient dans le facteur a déja cité pour le calcul de la puissance dissipée par un circuit.

3.3.1.2 Au niveau systeme

La réduction de la consommation d’un systéme n’intervient pas seulement aux niveaux des
composants mais aussi au niveau du choix de I’architecture du systéme complet [Jul04].
Parfois, la ou la consommation du systéme colte cher, on sera obligé a choisir des
composants moins performants que d’autres et qui consomment bien entendu beaucoup moins
d’énergie. Par exemple la plupart des systemes actuels utilisent des supports de stockage de
type mémoire flash bien que leur capacité de stockage soit beaucoup plus faible que celle d’un
disque dur. Ce choix est notamment fait a cause de la faible consommation qui peut atteindre

jusgu’a 90% de gain par rapport au disque dur [Lor98].
3.3.2 Technique logicielle

Cette technique consiste a modifier le code susceptible d’étre exécuté sur le systéeme dans le
but de diminuer la consommation induite a son exécution. Cette technique s’avere facile, mais
en pratique, c’est tres difficile de mettre en place des outils qui permettent I’automatisation de
cette technique car elle demande une connaissance tres précise de I’application ainsi que les
spécificités de I’architecture du systeme [Mat07].

Cependant, des travaux d’optimisation du code de I’application peuvent avoir lieu
manuellement pour minimiser la consommation du systeme ; le programmeur peut utiliser des
langages de bas niveau tel que I’assembleur pour faire des instructions spécifiques d’une
maniére précise qui consomme moins. Une deuxiéme technique a été proposée ; elle consiste

a remplacer I’appel des fonctions par des fonctions en lignes.

3.3.3 Technique mixte

Cette technique est basée sur la collaboration entre les composants matériels et logiciels. Les
mécanismes utilisés pour la réduction de la consommation proviennent aussi bien du mateériel
que du logiciel. Ce dernier prend en charge la prise de décision d’activation des mécanismes

matériels nécessaires pour la réduction de la consommation [Chr11].

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 19 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

@es techniques de réduction de la consommation sont tres efficaces et permettent uh
gain tres important au niveau d’énergie. Le probléme avec ces techniques est que le
concepteur se trouve parfois devant un compromis performance/consommation d’ou
la nécessité d’intégrer la gestion de la consommation dans le flot de conception afin

de guider le concepteur dans son choix. Dans le paragraphe suivant nous présentons

/

quelques approches classiques de codesign faible consommation.

3.4 Approches de codesign faible consommation

Les methodes de réduction de puissance et d’énergie sont plus efficaces, plus qu’elles sont
adressées le plus t6t possible dans le processus de conception (globalement au niveau
systéeme). Cependant, la majorité des travaux existants sur I’optimisation de puissance adresse
séparément les parties matérielles, logicielles et de communications aprés avoir fixé
I’architecture du systéeme. Seules quelques approches de codesign tiennent compte de la
gestion de la consommation a un niveau d’abstraction plus élevée. Ces approches commencent
en général par une étape d’estimation de la consommation des parties du systéme (taches,
fonctions, communications etc.) [Mou03a] pour déterminer ensuite, et le plut6t possible, la

consommation totale du systeme. Parmi ces méthodes, on trouve:

1. Dave et Al. lls ont présenté I’environnement COSYN-LP [Dav97], qui est I’extension de
I’environnement COSYN pour faire I’optimisation de la consommation au niveau systéme.
Leur méthode inclut une premiere étape d’estimation de la consommation et des temps
d’exécution des taches du systéme. Ensuite, un algorithme de type heuristique fait le
partitionnement/ordonnancement des taches du systétme sur [I’architecture cible
multiprocesseur. Cette approche permet de réduire la consommation dans le systéme jusqu’a
25%.

2. Fornaciari et Al dans [For98] présentent des métriques de consommation efficaces pour
guider le partitionnement Hw/Sw au niveau systeme. Les métriques d’evaluation de la
consommation ont été définies pour explorer largement I’espace de solutions au niveau élevé

d’abstraction.

3. Dans [Jal09] les auteurs s’intéressent a [I’exploration d’architecture basse
consommation. Pour ceci ils ont proposé un flot de conception qui dispose d’une librairie d’IP

modélisés en consommation a I’aide de parameétres de haut niveau. Par ailleurs des modéles

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 20 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

de performances riches et une technique d’exploration basse consommation est proposée.
Cette approche permet de considérer un certain nombre de paramétres algorithmiques et
architecturaux sur la consommation. Un modele complet est propose afin de déduire les
performances globales du systéme qui seront utilisées lors de I’exploration a travers une

technique basée sur le recuit simulé.
3.5 Limitations des approches présentées

Le codesign faible consommation permet la création de systemes a basse consommation en
tenant compte des caractéristiques de I’application et de I’architecture cible. Cependant, ces
approches ne tiennent pas compte d’un ensemble de parameétres « dynamiques » imprévisibles

a I’avance et donc difficilement analysables hors ligne.

En effet, un certain nombre de paramétres peuvent modifier les performances d'un systeme
multimédia embarqué pendant son exécution. lls se situent a différents niveaux, certains étant

aléatoires et non liés a une application cible :

- Le comportement de la batterie du systéeme

- Lavariabilité des données et des applications

- Préferences de I’utilisateur

- Adéquation algorithme architecture

- Influence de I’environnement

3.5.1 Le comportement de la batterie du systeme

La plupart des systemes multimédia mobiles opérent avec des batteries. Leur évolution reste
lente par rapport a la demande des nouvelles applications. Il est en effet toujours difficile
d’augmenter la capacité de stockage d’une batterie sans en augmenter le poids, le volume et
essentiellement le prix [Azz04]. Ceci a poussé les chercheurs a opter pour I’optimisation de
I’utilisation de I’énergie de ces batteries puisque la durée de vie du systéeme en dépend
directement. Dans ce contexte, les travaux de [kan02] ont montré que I’augmentation de la
durée de vie de la batterie du systeme n’est pas en liaison directe avec la réduction de la
puissance moyenne consommeée. En effet, le profil de courant instantané influe sur la capacité
de la batterie. Ainsi I’exploration basse consommation est insuffisante pour augmenter la
durée de vie du systéeme. Il faudrait plutdét suivre en ligne I’évolution des ressources

disponibles et agir en conséquence sur les éléments (architecture, application...) du systéme.

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 21 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

3.5.2 La variabilité des données et des applications

Le progrés des systemes informatiques mobiles et embarqués (téléphones mobiles et les
PDAs) impose I’utilisation de plusieurs applications multimedia complexes [Ram05]. Ces
applications, traitent un nombre variable de données, et la premiére source de variabilité de la
performance de tels systemes. En effet, la diversité des applications exécutées sur la méme
plateforme produit une variabilité au niveau de la charge de travail du systéme complet. La
caractérisation de I’évolution instantanée de la charge de travail des différentes applications
est une étape nécessaire pour estimer les performances d’exécution du systeme implémente
sur la plateforme. Par ailleurs, la variabilité des performances de traitement associée a une
application dépend largement de la nature du flux de données traitées [Rut02]. Une
architecture embarquee qui implémente une application traitant des donnees multimédias,
comme les applications de vision artificielle, d’imagerie 3D et de codage audio, représente un
exemple significatif qui illustre cette variabilité temporelle. Dans le cas des applications
multimédias, I’origine principale de cette variabilité de performance est I’instabilité au niveau

des propriétes des donneées traitées (images ou sequence vidéo) [Var04].
3.5.3 Préférences de l'utilisateur

L utilisateur, maitre de cet environnement, peut donner ses consignes au systeme, tels que la
durée de vie souhaitée du systeme et le niveau de qualité de service acceptable pour le
fonctionnement du systéme. Ces exigences peuvent étre modifiées a n’importe quel moment.
Par ailleurs, l'utilisateur peut privilégier I'exécution de certaines fonctionnalités de son
systéeme mobile au dépend d'autres qu'il peut desactiver ou dégrader leur qualité de service.
Ceci engendre des changements de la consommation d'énergie et de I’allocation des charges

de travail des différentes applications du systeme.
3.5.4 Choix architectural

Une architecture systeme typique qui traite des données multimédias comporte des accélérateurs
materiels spécifiques, un ou plusieurs composants programmables (processeurs, DSP ou
controleurs) et de la mémoire [Sof07]. Une telle architecture permet d’améliorer les
performances du systeme en termes de temps d’exécution et par conséquent en termes de
qualité de service. Mais cette amélioration est pénalisée par I’augmentation de la consommation
du systeme. D’une part, puisque ces composants ont des consommations dites statiques cad
puisqu’ils consomment de I’énergie méme s’ils ne sont pas en cours d’utilisation. D autre part,

il est évident qu’une tache implémentée en hardware s’exécute plus rapidement que celle en

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 22 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

software. Mais il faut tenir en compte qu’ils consomment aussi plus que la tache software
[BenO7]. Par conséquent, le concepteur se trouve devant plusieurs choix architecturaux qui
peuvent étre utiles pour le systeme dans un contexte de fonctionnement, mais lorsque les
exigences du systéme changent au cours du fonctionnement I’utilisation de ces composants

devient inutile compte tenu de leur influence sur la consommation du systéme.
3.5.5 Influence de I'’environnement

Le fonctionnement d’un systeme embarqué peut changer d’un emplacement a un autre si les
caractéristiques de I’environnement change [Fre02]. Par exemple I’utilisation d’un caméscope
dans un emplacement lumineux consomme beaucoup plus moins d’énergie que son utilisation
dans un milieu sombre car il nécessite I’utilisation d’une source d’éclairage. Méme chose
pour les applications exécutées pouvant dépendre des contraintes imposées par
I’environnement. Par exemple I’utilisation d’un téléphone dans un endroit bruité peut imposer

I’exécution des algorithmes pour I’élimination des bruits de fonds.

ﬂ‘in de répondre a ces nouvelles exigences dictées par la prolifération de Q
nouveaux systéemes embarqués, de nouvelles méthodes de conception doivent étre

mises en place. Ces méthodes doivent d’une part tenir compte des propriétés des
applications multimédia pour générer I’architecture adéquate. Ainsi I’architecture
générée est optimisée pour I’application ciblée ce qui permet de réduire les codts et
d’augmenter les performances. D’autre part, ces nouvelles méthodes de conception

doivent permettre d’obtenir des systémes qui peuvent s’adapter efficacement a leur

environnement externe (contraintes de fonctionnement, énergie disponible...).

4 Méthodologies d’adaptation

L’adaptation est une caractéristique nécessaire aux systemes que nous venons de présenter, afin
de maintenir leur fonctionnalité face a des modifications de leur environnement. Laddaga
présente la notion de logiciel auto-adaptatif, c’est-a-dire « capable de surveiller, comprendre et
modifier sa fonction a I’exécution » [Lad0l1]. L’objectif est de permettre de réagir au
dynamisme de I’environnement d’exécution afin de fournir une nouvelle fonctionnalité ou
d’améliorer la qualité de celles déja rendues. Bien entendu, elle nécessite de la part du systéme

une connaissance de cet environnement qui I’entoure.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 23 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

La tendance actuelle au niveau de la conception des systémes sur puce est de générer des
architectures réactives qui s’adaptent en lignes pour mieux satisfaire les besoins de
I’application. Ces besoins s’expriment en termes de performance, de qualité de service ou de
consommation d’énergie. lls sont fixés, d’une part, suivant des parametres fonctionnels telle que
la charge de travail affecté a chaque application pour le respect de la contrainte temps réel et
d’autre part, ils sont liés a des parametres non fonctionnels telles que I’énergie disponible dans
la batterie et les préférences de [I’utilisateur (QoS et DDV). Le besoin d’adapter le
comportement d’un systeme est une conséquence de la variabilité des ressources ou des

contraintes d’un systéme sur puce fluctuant dans un environnement variable.

Récemment, il y a eu de nombreuses contributions de recherches sur lI'auto adaptation pour les
systémes autonomes dans plusieurs couches: couche matérielle, couche du systéme
d’exploitation (OS), et couche applicative. Dans cette section, nous allons présenter les
différents niveaux d’adaptation ainsi que les techniques utilisées; ensuite nous citons
quelques approches d’adaptation; nous présentons également leurs apports et leurs

limitations.

4.1 Adaptation au niveau matériel

Diverses techniques ont été proposées dans la couche matérielle pour I’adapter suivant les
exigences du systéeme. Parmi ces techniques on peut citer en premier lieu, la graduation
dynamique de tension (DVS) qui est employée pour ajuster la vitesse et la puissance du CPU.
En second lieu, nous citons la technique de gestion de la consommation dynamigquement
« DPM » cette technique se base sur I’arrét des composants inutilisables dans le systéeme. En
troisieme lieu, pour les plateformes reconfigurables, le changement de I’architecture du

systéme est fait suivant les besoins de I’application et les contraintes du systéeme

4.1.1 Technique DVS

Beaucoup de méthodes d’adaptation [Luo02, Man03, Shi04, Mar05,Yutll, Muh11] reposent
sur le changement dynamique de la tension d’alimentation «Vdd » et de la fréguence de
fonctionnement « F» pendant le fonctionnement du systéme. Ces méthodes sont motivées par
I’apparition de circuits électroniques a tension d’alimentation et fréquences variables
[Oku01]. On peut citer par exemple la technologie PowerNow ! d’AMD et les technologies
SpeedStep et XScale d’Intel. L’ordonnancement temps réel dans ce cas consiste non
seulement a déterminer I’ordre d’exécution des taches mais également a fixer la fréquence de
fonctionnement ainsi que la tension d’alimentation. Beaucoup de techniques qui sont

développées pour des taches périodiques ou apériodiques reposent sur deux approches

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 24 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

d’ordonnancement : un ordonnancement dynamique (on-line) [Lee00, Qua0l] ou un
ordonnancement statique (off-line) [BamO01, Gru01, Shi0O4]. L’approche dynamique recalcule
a chaque fois les priorités des taches et la tension d’alimentation pendant I’exécution du
systéeme. Pour I’approche statique, I’ordonnancement des taches et le voltage sont calculés
avant que le systeme n’entre en fonctionnement pour éviter I’overhead dd au calcul
dynamique. Dans [Shi0O1] deux algorithmes sont présentés: I’un statique, basé sur un
ordonnancement RM avec un gain en consommation d’énergie de 12%, et I’autre dynamique,
basé sur un ordonnancement EDF avec un gain en énergie de 32%. Dans [Ouh03] les auteurs

proposent une méthode de DVS dans le cadre de codesign logiciel/matériel.

4.1.2 Gestion dynamique de la consommation « DPM »

La gestion dynamique de la consommation DPM (Dynamique Power Management) est une
approche efficace pour la gestion de la consommation sans dégradation des performances du
systéme. Elle consiste a arréter des parties du systeme pendant qu’elles sont inoccupées (idle)
[Hua06, Xin07, Muhl10]. Les algorithmes DPM observent I’arrivée des éveénements dans le
systéme et prévoient les périodes d’inoccupation qui peuvent étre déterminées par plusieurs
méthodes. Cette technique est omniprésente dans les ordinateurs portables et les PDA : elle
consiste a arréter les composants aprés un temps fixe d’inactivité ; par exemple I’écran et le

disque dur.

Dans [Swa01] les auteurs présentent leur algorithme en lignes de DPM, qui s’appelle LEDS
(Low Energy Device Scheduler), qui fait I’ordonnancement a faible consommation pour les
périphériques d’entrée/sortie des systemes temps réel strictes. Il prend en entrée un
ordonnancement prédétermine des taches et une liste d’usage des péripheriques d’E/S pour
chaque tache et il produit une séquence d’états de type actif/inactif pour chaque périphérique
d’E/S. 1l garantit la non violation des contraintes temps réel et la réduction au minimum de
I’énergie consommeée par les unités d’E/S utilisées par I’ensemble des taches. Il présente aussi
un exemple ou la consommation d’énergie est réduite de 50% avec un ordonnancement EDF

des taches.
4.2 Adaptation au niveau systeme d’exploitation

Vu la complexité des systemes actuels, la complexité et la diversité des applications et la
présence de fortes contraintes, I’utilisation des systéemes d’exploitation temps reel dans les

systémes sur puce est devenue indispensable.

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 25 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

Un systeme d'exploitation offre divers types de services de communication et de
synchronisation entre les taches du systéeme. Il propose aussi un ensemble de routines de
gestion des ressources matérielles. Mais le service le plus important d’un systéme
d’exploitation est I’ordonnancement et I’affectation de la charge de travail aux différents

processus présents dans le systéme afin qu’il soit ordonnancable.

Puisqu’on travaille dans un contexte variable au niveau de I’application exeécutée et de
données traitees les systémes d’exploitation actuels doivent prendre en compte ces variations

en modifiant la charge de travail CPU affectée a chaque tache.

Beaucoup de travaux ont été effectués dans le systéeme d'exploitation et la couche middleware
pour fournir I’allocation prévisible de l'unité centrale de traitement et I’adaptation des services
[Bav00, Ban02, Kan11]. Dans [Fli01, Cor01, Wan03]. Les gestionnaires de ressources d'unité
centrale de traitement, fournissent des garanties de performances en temps réel. D’autres
travaux se sont focalisés sur le changement de la politique d’ordonnancement (ordonnanceur
basse consommation) parmi ces travaux on peut citer [Bav00, Ban02]. Les auteurs de
[Wan03, Fli01, Bra02] utilisent une couche middleware qui est une couche intermédiaire
située entre la couche applicative et le systeme d’exploitation pour faciliter aux applications

I’adaptation de leur QoS.
4.3 Adaptation au niveau applications

Beaucoup de projets préconisent I'économie d'énergie dans la couche application. Par
exemple, les auteurs de [FIi99] explorent comment adapter le comportement d'application
suivant I'énergie. Mesarina et autres [Mes02] discutent comment réduire I'énergie dans le
décodage de MPEG. Dans [Van02, Pha04] deux approches sont proposées pour la
dégradation de la qualité d’un objet 3D pour satisfaire des contraintes de ressources et
d’environnement. Notre modele prend en compte la modification des paramétres de
I’application pour économiser de I’énergie et par conséquent augmenter la durée de vie du

systeme.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

ﬁfin de bénéficier des avantages des méthodes citées ci-dessus et d’en réduire IQ
limites, des travaux ont été faits en se basant sur des méthodes qui travaillent sur les
différentes couches du systeme tel que le modele GRACE [Wan03]. Ces approches,
cependant, supposent que la couche de matériel soit statique. La seule modification
prise en compte est au niveau de la fréquence et de la tension du CPU. A la suite de
cette section on présentera le principe de fonctionnement de quelques méthodologies

\d’adaptation. /

4.4 Approches d’adaptation existantes

Différentes approches d’adaptation ont été proposées dans la littérature. Elles exploitent un ou
plusieurs niveaux d’adaptation et gerent différents types de contraintes comme |’énergie

consommeée, la qualité percue (QoS), le temps réel etc.

Dans la suite de ce chapitre nous présenterons quelques approches existantes. Nous traiterons

également I’apport et les limites de chacune d’elles.

4.4.1 Gestion de la QoS pour assurer une interaction de trames

L’auteur de [Pha04] présente un travail de gestion de QoS pour garantir une interaction de
trame par dégradation de la QoS de I’objet 3D sous des contraintes de ressources et

d’environnement.

Service User
provider Termunal
User
)
I

Qcﬁpmﬁ] 3G'hJ \ |I |

.ata.ba;e 1t¢basi/ I| le

T| .
-' ,. W 'QG' [e
0| #Resourdd
ezo F\;*J‘ R| '\\E‘.Eoua’tf:;l { E:ﬂﬁ:ﬂ{'
- ' o — \ -—’/

Ead Rendering Pipeline

Figure 3: Schéma du systéme d'adaptation [Pha04]

Le but de ce travail Figure 3 est de mettre en place une approche qui permet de faire une
interaction entre un émetteur et un récepteur d’une scéne formée par plusieurs objets 3D. Afin

de réduire la quantité d’informations échangées entre les deux, le traitement des objets 3D est

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 27 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

fait chez le récepteur. La contrainte a prendre en considération est que le temps de traitement
de la scene chez le récepteur ne doit pas dépasser le temps d’envoi d’une trame sur le réseau.

Puisque dans le cas contraire le récepteur n’arrive pas a afficher toutes les trames recues.

Comme solution il a proposé de modifier la qualité des objets 3D suivant leur profondeur dans

I’écran dans le but de réduire le temps de traitement chez le récepteur.

En premier lieu une étude sur les differents facteurs qui influent sur la qualité des objets 3D a
été menée. En second lieu ils ont présenté leur probleme comme étant un probléme
d’optimisation qui cherche a choisir les meilleurs paramétres applicatifs pour chaque objet
permettant de fournir la meilleure QoS possible sous contrainte que le temps de traitement

chez le récepteur ne dépasse pas le temps d’envoi d’une trame sur le réseau.

Comme solution ils ont présenté un algorithme qui définit pour chaque objet une liste de
(bénéfice, colt) puis commence des itérations pour trouver une solution qui présente un
bénéfice maximum pour tous les objets tout en respectant la contrainte temporelle. La
complexité de I'algorithme proposé dans le pire cas est O (N.L.logL.) ou L est le nombre de
niveaux de qualité de l'objet et N représente le nombre d’objets visibles pour un point de

vision considéré.

Cette approche s’avére étre utile dans des cas bien spécifiques mais elle ne peut pas étre
appliquée dans plusieurs systémes ou le traitement se fait aussi bien sur I’émetteur que sur le
récepteur. De plus on constate bien qu’elle ne tient en compte que d’une seule contrainte qui
est le temps d’envoi d’une trame sur le réseau et abandonne les autres, surtout la
consommation et les préférences de I’utilisateur. En plus I’algorithme proposé nécessite un
traitement assez complexe par conséquent il consomme beaucoup de ressources du systeme;

ce qui influe sur les performances du systeme.

4.4.2 Adaptation a base d’affectation de budget de ressource

L auteur de [Van02] présente une approche de gestion de ressources du systeme entre les
différentes applications présentes. Le principe se base sur I’affectation d’un budget de chaque
type de ressource a chaque application. Les applications ne doivent pas dépasser leur budget.
Dans le cas contraire cette approche peut modifier les parametres applicatifs en dégradant la

QoS de I’application pour respecter le budget, la prochaine itération.

Cette approche peut étre utilisée pour I’adaptation de la qualité dans le cas ou le systéeme

exécute plusieurs applications simultanément, elle se compose essentiellement d’un

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 28 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

Ressource Manager (RM), plusieurs « Ressource Consuming Entities » (RCE), plusieurs
« Domain Quality Manager » (DQM) et d’un « Global Quality Manager » (GQM) Figure 4.

La gestion de ressource est basée sur des budgets de ressource fournis par le RCE et alloues
par le gestionnaire global de qualité (GQM). Dans ce travail, ils considerent une ressource, le
CPU, et deux RCE, 3D et vidéo. Les budgets sont exprimés en pourcentage de temps de
traitement CPU avec une granularité donnée, par exemple 70% du temps de processeur toute
les 20 ms. Le depassement du budget pour une période donnée peut causer un retard de RCE
jusgu’a la période du budget suivante. Le contrleur de RCE s’assure que le RCE s’exécute

acceptablement dans les limitations de son budget.

Le gestionnaire de qualite détermine les parametres de qualité preféréee et le budget du RCE.
Le Global Quality Manager (GQM) est indépendant du domaine (3D, vidéo) et prend des
décisions dans de multiples domaines. Le GQM coopére avec un ou plusieurs Domaine
Quality Manager (DQM) qui a la connaissance de détail de domaine. Pour un systeme donneé,

il peut y avoir plusieurs DQM, un par domaine sémantique.

Puisque 3D et vidéo sont deux domaines sémantiques sépareés, les systémes avec 3D et vidéo
exigeront un 3D Quality Manager (3D_QM) et un Vidéo Quality Manager (VQM)

En cas de surcharge, si un contrbleur de RCE ne peut pas maintenir un niveau de qualité
acceptable dans les limitations de son budget, les gestionnaires de qualité doivent renégocier
les budgets de tous les RCE.

RCE RCE

Operating System & Platform

Figure 4: Structure de la couche d'adaptation [Van02]

Cette méthode traite le cas de plusieurs applications et peut étre utile dans le cas ou on connait

auparavant les besoins en termes de ressources pour chaque type d’application. Or comme on

Approche de gestion de performances/contraintes pour les systémes embargués temps réel 29 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

I’a déja mentionné au début de ce chapitre les besoins des systemes actuels différent d’une

situation a une autre.

Par ailleurs cette approche ne tient pas compte de la possibilité d’adaptation au niveau de la

couche hardware.

4.4.3 Gestion de la QoS basée sur le partitionnement HW/SW

L’auteur de [Pha03] présente un travail de gestion de la qualité de service pour des
plateformes reconfigurables a base de FPGA. Le changement de I’architecture est fait suivant
le type de I’application exécutée (MPEG ou 3D) et en fonction des ressources disponibles
(capacité de I’FPGA, temps d’exécution). Pour ce faire, il propose d’ajouter une couche
Middleware de gestion de la qualité de service dont la fonction principale est de décider
quelles sont les taches qui vont étre implémentées en hardware et celles en software de telle

maniere que I’utilisateur regoive la meilleure qualité possible.

L’ objectif de la gestion de la QoS basée sur le partitionnement HW/SW est de trouver une
solution de partitionnement qui permettrait de maximiser la qualité de I’application sous des

contraintes de ressource.

Cette méthode est utilisée pour les plateformes reconfigurables, mais, elle aussi, ne prend pas
en charge la consommation qui est une contrainte tres importante surtout pour les systémes
embarqués. D’autre part, les algorithmes de partitionnement presentés ont une grande

complexité ; ce qui influe sur les performances du systéme.

Cette approche peut étre étendue afin qu’elle intervienne aussi sur la couche applicative et

systéme d’exploitation pour en bénéficier de I’apport de chacune d’entre elles.

4.4.4 Approche d’adaptation multicouche « GRACE »

L’approche GRACE présentée dans [Yua06], intervient dans les trois couches du systeme
pour assurer a I’utilisateur la meilleure QoS possible tout en respectant la contrainte temps
réel et la durée de vie souhaitée du systeme. Au niveau architectural ils ont utilisé la technique
de variation de la fréquence de fonctionnement du systeme. Au niveau systéme d’exploitation
elle intervient dans la charge de travail affectée a chaque tache et au niveau applicatif ils ont
proposé de modifier les paramétres applicatifs de I’application pour réduire les ressources

consommeées.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

0

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

| adapt = .
Task Adaptors Multimedia Tasks

A Application Laver

A

coordinated
quality level

quality levels schedule

User’s ' di i . E
dinati coordmnated Task Scheduler
cocnfhnatlou 2 i : - . 0S Laver
preferences allocation (with scheduling adaptor)
. . hN

labl coordinated adjusted

available - 2

bt performance performance
energy

demand demand

N
{ Battery CPU adapt it
| Monitor || Adaptor

Figure 5: Schéma de I’approche Grace [Wan03]

Hardware Laver

Le modéle GRACE présentée par la Figure 5 permet de faire une adaptation sur trois couches.
En plus, il prend en considération la gestion de la consommation du systéme. Mais ce modéle
présente quelques inconveénients puisque la plupart des processeurs embarqués ne permettent
pas de changer dynamiquement la fréquence de fonctionnement. De plus cette approche ne
tient pas en considération la possibilité de modifier I’architecture du systeme suivant les

besoin des applications exécutées.

4.4.5 Approche d’adaptation du Lab-STICC

Une approche d’auto-adaptation multicouche a été mise en place [Jphll]. Cette approche se
base sur I’utilisation d’une base de configurations pré-caractérisées dans une étape qui se fait
hors ligne. Au cours du fonctionnement, I’approche décide les prochaines configurations du
systéme. La décision se base sur un algorithme de vote multidimensionnel mis a jour par des

mesures et des estimations. Son principe de fonctionnement est illustré par la Figure 6 :

Diagnostique

Perturbations internes Actionneur,

Capteur, Interface graphique,

Utilisateur, etc. N N etc.
Systéme embarqué
configurable
Perturbations
environnementales

Figure 6: Principe de fonctionnement de I’approche du Lab-STICC

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 31 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

Cette approche est focalisée essentiellement sur la migration des taches software en hardware
et la prise en compte de ce changement dans le systeme d’exploitation. Cependant, elle ne
contient pas les mécanismes nécessaires pour le contrdle du respect de la contrainte temps

réel.

4.4.6 Approche d’adaptation multi contrainte « class »

Dans le cadre de la these de Nader BEN AMOR, une approche d’adaptation a contraintes
multiples « class » (Cross Layer Adaptation Simulator System) Figure 7 a été établie [Ben07].
Il a proposé une méthode reposant sur la régulation du compromis durée de vie / Temps réel /
Qualité de service. Cette méthode suppose d'une part I’existence de divers modes de
fonctionnements du systéme et d'autre part que celui-ci est capable de passer d’un mode a un

autre suivant I’évolution des paramétres durée de vie, temps d’exécution et QoS.

Cette méthode a été validée a travers un environnement de prototypage virtuel. Cet
environnement émule le fonctionnement d’un systéme embarqué réel exécutant une

application test. Le simulateur utilise plusieurs modules.
Le premier module indique le scénario que le simulateur doit exécuter.

Le second module est un modele de batterie qui permet de déterminer la durée de vie du
systéme connaissant la puissance que le systeme consomme. Une procédure de suivi de
I’évolution des ressources d’énergie du systeme est utilisee. La fréquence utilisee pour le suivi
de I'application est variable. Cela permet d’adapter d'une part le compromis entre le codt
d'adaptation et le gain d'adaptation, et d'autre part, de suivre la vitesse d’évolution de

I'utilisation des ressources du systeme.

Le module suivant est un modéle de consommation du systeme. Il permet, en connaissant le
scénario, de prévoir la consommation du systeme. Ce modele tient compte aussi de I’effet de

la variation des données sur la consommation du systeme.

Le dernier module est la procédure de choix des configurations. Ce choix suit la priorité des
trois contraintes. L’ algorithme de choix assure la contrainte prioritaire tout en faisant du

mieux possible pour les deux autres.

L’environnement utilise aussi une base de configurations pré caractérisées et mise a jour au
cours du fonctionnement du systéme. Cet environnement a été développé pour la validation de
la méthode d’adaptation générale ainsi que pour le test de différents algorithmes et techniques
d’adaptation.

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 32 }

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

File Configuration Scenarioimage Options Help

] ;|| gtos £
» AT X @ W R
/) O iy,
Application parametars Rame scenstep_9
[Hame il TR [Quality o veuvice X3
[hade] Pl ehod lictime 41040
M L [Execution time 40.0
Buality of serviee: s Fr———— =
al parameters Cylinders number []
Execution time 2.0 T = 0
nes numbe
[Pover concumplion 975.0
Pk T Spheres numbes ?

[Hax reconfig. power [X]

config_? | scenStep_9| Tmesz | Tprec |00 00 . 00]

W5 S0 B 1149 1428 17

4 o000 T 2l 27 3143 949 Se14 00
nime

51 0w 1B 149 174 00 me 2571 13 WA 348 S1e 0 28 BT1 087D M0 42000 2208 25T ZERT VAT 4m0. AT Ann
Time Time

Figure 7: Interface du simulateur « class »

Cette approche présente un nouvel apport. Elle consiste a utiliser une base de configurations et a
ce que le systeme puisse passer d’un mode a un autre au cours de son fonctionnement. En
revanche, elle présente quelques limites puisqu’elle est validée a travers un démonstrateur et
non pas un systeme reel d’une part. D’autre part, elle ne prend pas en considération I’utilisation

d’un RTOS et les contraintes temps reel.

4.5 Discussion

Suite a I’étude faite sur les approches d’adaptation existantes on a remarqué que ces méthodes
souffrent de quelques « handicaps ». Afin de surmonter quelques limites nous proposons dans le
cadre de notre travail une approche d’adaptation multicouche qui permet de maximiser la QoS
fournie pour I"utilisateur tout en respectant les contraintes du systeme (Ddv/Texe/QoS). Elle
intervient dans la couche applicative en agissant sur les parameétres applicatifs pour modifier les
ressources utilisées. Dans la couche systéme d’exploitation elle utilise la technique d’affectation
des charges de travail pour chaque application et pour la couche hardware elle se base sur la

modification de I’architecture du systéme en cours de fonctionnement.
5 Conclusion

La consommation est devenue un facteur important et limitatif dans la conception des systemes
embarqués par consequent le flot de conception traditionnelle ne répond plus a leurs exigences.

Pour surmonter ce probléme, différentes méthodes de réduction de la consommation ont vu le

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel 33 ~

Chapitre2 : Conception de systéme sur puce adaptatif : état de [art

jour. Ces Méthodes sont d’un apport inestimable dans la conception des systémes sur puce mais
elles restent limitées puisque les systemes embarqués ne cessent d’évoluer ; ce qui est traduit
par I’apparition de nouvelles contraintes qui sont imprévisibles et de natures fluctuantes. De
nouvelles approches d’adaptation ont été proposées pour répondre a ces nouvelles exigences.
Dans la derniere partie de ce chapitre nous avons présenté quelques approches d’adaptation.

Nous avons également présenté leurs apports et leurs limites.

Dans ce contexte les travaux menés dans cette thése portent essentiellement sur la proposition et
la mise en place d’une approche d’adaptation pour les systemes embarqués temps réel. Le
chapitre suivant sera consacré a la présentation de I’approche d’adaptation multicouche

proposée. Nous présenterons également les différentes étapes qui ont conduit a sa mise en place.

Approche de gestion de performances/contraintes pour les systemes embarqués temps réel 34 }

Chapitre3 : Approche d adaptation multicouche proposée

CHAPITRE 3 : Approche d’adaptation

multicouche
R 1o oo (8 [o{ { To] o KRS RO RR T 36
2 ACLIVITE 070DSEIVALIONvoviiiiiie ettt ettt b et sttt e sbe e e besbe e ebesbe e ebesae e etesbe e 37
2.1Parametres de I’activité d’0obSErvation...........ccccceveiiieiinieieee e 38
2.2 Ajustement dynamique de PODS.........ccoviiiiiiie e 38
3 ACHIVITE A’AAAPLALION.iviiiiieeieie bbb et b ettt b ettt b ettt sb ettt st e et b 39
3.1 Modele d’adaptation niveau application............ccccevieiiiic i, 39
3.2 Adaptation niveau architeCturalccooeiiiiiiie i, 40
3.3Modele d’adaptation niveau systéme d’exploitationccccceeveiieiiiie s, 40
4 Adaptation MUITICOUCNEc.iiiiiieee e bbbttt bbb bt et e e s e e e b e nbenne 42
A.1VUE A’8NSEMDIE ... e ne e 42
4.2 Gestionnaire global « GIM »........coiiiiiiiic e 43
4.2.1 Formulation mathématique du problEme..........cccoiiiiiiii e 44
4.2.2 Quantification de la consommation en énergie électrique...........ccoevevvieieeieciennn, 46
4.2.3Recherche de 1a SOIULIONc.ociiie i 47
4.2.4 Présentation des méthodes d’optimisation..............cccceevieieeiiiie v 48
4.2.5 Algorithme GENETIGUEooviiuiriiiieieee e 51
4.2.6 Algorithme du reCUit SIMUIEoooieiieceee e 53
4.3 e gestionNAIre 10CAl...........couiiiiiieie s 56
4.3.1Principe de fFONCLONNEMENTooiiiiiieiiiecie e 56
4.3.2 Choix de I"algorithme d’ordonnanCement.............ccovvieieieneie e 58
4.3.3 Les algorithmes d’ordonnancement pour les systemes temps réel...........c..cc.co.... 59
4.3.4ChoiX de IPOrdONNaNCEUc.eeieiieieeiesee e steesee e e see e e e saeeneesrees 60
5 Etape de caractérisation des CONFIGQUIALIONS.couviiiiiineieeie ettt 62
5.1 Mise en place des CONFIQUIALIONS.........ccuveiuieiiieeiie it 62
5.2 Partitionnement logiciel/materiel.............ccoiiiiiiii e, 62
5.2.1Profilage de I’application :(Profiling)........cccccovviiieiiiiiiice e, 63
5.2.2 Analyse par deSign trOTETccueiiiiiiiieiee e 63
5.3 Caractérisation des configurationS...........cccciiiiiiie i, 65
5.3.1 CalCUI U TEXE .eveeieeieeie ettt te e e te e esneenteeneesneenseens 65
5.3.2Mesure de 1a CONSOMMALIONocueiiiiiiiiie e 65
5.3.3 Quantification de 12 QOScoeiiiiieii e 66
LT O] o[0T (oo S 66

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁSS

Chapitre3 : Approche d adaptation multicouche proposée

1 Introduction

Avec I’évolution des systemes embarqués actuels, différents facteurs interviennent dans leur
conception. Ces facteurs peuvent étre de deux types prédictibles ou aléatoires au cours du
temps. Nous avons montré dans le chapitre précedent I’importance d’avoir un systéme
performant, flexible et adaptatif qui puisse gérer ses ressources selon des contraintes externes
reliées a I’énergie disponible, la bande passante, les choix de I’utilisateur, etc. Dans ce
contexte, nous avons présenté différentes méthodologies d’adaptation qui ont été mises en
place pour permettre au systéme d’assurer un fonctionnement satisfaisant en milieu
perturbateur et en présence de ressources d’énergie et de calcul réduites. Afin de combler les
limites des approches existantes dans ce chapitre nous proposons une approche d’adaptation
multicouche ainsi que les étapes qui ont conduit a sa mise en place. Cette approche intervient

dans les trois couches du systeme (application, systéme d’exploitation et architecture).
Le principe du systeme d’adaptation proposé est illustré par la Figure 8. Il comporte :

- Une activité d’observation qui permet de suivre I’évolution et le respect des différents

parameétres Texe, QoS et Ddv.

- Une activité d’adaptation qui permet de choisir une configuration pour le systéeme afin

qu’il puisse satisfaire les différentes contraintes de fonctionnement.
- Lamise en place de la base des configurations pré-caractérisees.

- Nous supposons que le systeme possede divers modes de fonctionnement et qu’il est
capable de passer d’un mode a un autre selon les consignes du systeme d’adaptation au
cours de son fonctionnement. Une configuration (mode fonctionnement) du systéme
représente une version de I’application multimédia et un type d’implémentation HW/SW.
L activité d’adaptation utilise la base de configurations mise en place et caractérisée hors
ligne pour choisir une configuration pour le systeme qui fournit la meilleure QoS possible

tout en respectant les contraintes du systeme.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

0

Chapitre3 : Approche d adaptation multicouche proposée

Consignes de I’utilisateur

(Ddv,QoS)
Energie
disponible
\ Observation > Adaptation
Demande de
reconfiguration
Seuils de la Seuils des
configuration actuelle configurations

Mise en place de la
base des
confi tions

Figure 8: Schéma du systeme d’adaptation

Dans la suite de ce chapitre, nous détaillerons chacune de ces trois taches. Dans la section (2),
nous présenterons la tache d’observation. Dans la section (3) nous présenterons la tache
d’adaptation développée, ses composants ainsi que leur principe de fonctionnement. Nous

cléturerons ce chapitre par la présentation et la mise en place de la base des configurations.
2 Activité d’observation

L’activité d’observation permet, d’informer la tdche d’adaptation globale de tout type de
changement qui apparait dans le systéeme tel que I’apparition ou la disparition d’une tache ou
bien le changement des preférences de I’utilisateur.

Par ailleurs, I’activité d’observation, doit suivre en lignes I’évolution et le respect des trois
parameétres Ddv, QoS est le respect des contraintes temps réel (noté Texe). Au cas ou elle
trouve des anomalies elle devra activer la tache d’adaptation adéquate (global

manager « GM » ou local manager « LM ») pour remédier au probléme.

Le suivi de ces parametres en ligne nécessite d’ajouter au systeme les routines logicielles et
les structures matérielles adéquates. La Ddv d’un systeme dépend de la quantité d’énergie

résidante dans sa source d’alimentation.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ?ﬂ

Chapitre3 : Approche d adaptation multicouche proposée

Le suivi de la Ddv d’une batterie nécessite I’utilisation d’un estimateur de I’état de charge de
la batterie (gas gauge). Connaissant la puissance en cours de consommation et les parameétres

de notre batterie, nous pouvons déterminer la durée de vie de notre systeme.

Le suivi de la contrainte temps réel se fait au niveau du systeme d’exploitation a I’aide de la

technique du watchdog qui permet de détecter tout dépassement d’échéance.

Le suivi de la QoS se fait egalement au niveau du systeme d’exploitation. 1l est déterminé a

I’aide du modeéle de la QoS.
2.1 Parametres de l'activité d’observation

L’observation est une activité périodique. Nous notons dans la suite du document « Pobs » sa
période. Une valeur faible de «Pobs» permet un suivi fin des différents paramétres a
contréler ce qui permet au systéeme de réagir rapidement aux changements de consignes (ou
de données a traiter). Cette rapidité de réaction est obtenue au dépend d’une augmentation de
la consommation de I’activité d’observation due a une sollicitation plus importante de la jauge
batterie. Pour remedier a ce probleme nous avons proposé de faire varier la valeur de Pobs
suivant la stabilité du systéme. Nous avons défini pour ceci deux valeurs limites pour

« Pobs » :

- Une borne inférieure a Pobs notée Pobs_lim_inf: ce paramétre est introduit afin de
limiter les codts associés a I’activité d’observation (due a une valeur trop faible de Pobs).

Elle est déterminée apres la construction des différentes configurations du systeme.

- Une borne supérieure de Pobs notée Pobs_lim_sup, elle est spécifiée par I’utilisateur.
Cette borne garantit que Pobs ne devienne pas trop importante ce qui empécherait le

systéme d’adaptation de suivre I’évolution des parametres Ddv et QoS.
Durant le fonctionnement du systéeme embarqué, Pobs doit satisfaire la condition suivante :
Pobs_lim_inf <Pobs< Pobs_lim_sup

Au cours du fonctionnement du systeme, la valeur de Pobs est ajustée selon la stabilité du

systeme. Nous détaillons dans la suite I’ajustement dynamique de Pobs.
2.2 Ajustement dynamique de Pobs

Le principe de la mise a jour de Pobs se base sur le principe suivant :

- Pobs commence toujours a partir de la valeur initiale Pobs_lim_inf

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

0

Chapitre3 : Approche d adaptation multicouche proposée

- A chaque période de I’activité d’observation Pobs si la quantité d’énergie qui reste
dans la batterie assure la durée de vie souhaitée par I’utilisateur et que la période
Pobs est inférieure Pobs_lim_sup. la valeur de Pobs sera ajustée suivant la formule
de I’équation E1. Dans le cas contraire (c'est-a-dire a chaque fois que la tache

d’adaptation globale est activée) la période Pobs est remise a sa valeur initiale E2.

Pobs=Pobs+a*Pobs avec 0<a<l E1l

Pobs=Pobs_lim_inf. E2

3 Activité d’adaptation

Dans cette section, nous etalons I’intervention du modele d’adaptation dans les couches
hardware, OS et application. Nous montrons également I’interaction entre les différentes
couches afin de bénéficier d’une meilleure qualité de service tout en respectant les
contraintes. Notre technique d’adaptation peut étre appliquée a trois niveaux : niveau
architectural (hardware), niveau OS et niveau application.

3.1 Modele d’adaptation niveau application

Nous considérons des applications multimédia telles que la synthése d’images 3D le
codage/décodage vidéo qui sont exécutés pour une longue durée et qui consomment un temps
CPU elevé. Chaque tache consomme un temps CPU et fournit un résultat de sortie.
L’adaptation au niveau applicatif est faite en changeant les parametres et le type de traitement
pour fournir en sortie une qualité de service proportionnelle aux ressources consommeées. Plus
on accroit la consommation des ressources plus la qualité s’améliore. Par exemple, pour
I’application de synthése d’images 3D, on peut changer le nombre de polygones représentant
I’objet. En effet, I’augmentation du nombre de polygones entraine systématiquement une
amélioration de QoS et vice versa. La modification du type d’algorithme d’ombrage utilisé
(gouraud, plat, phong) modifie également la qualité observée puisque le modéle Gouraud par
exemple permet de cacher I’apparence des polygones contrairement au modele plat. Cette
caractéristique (existante dans plusieurs autres applications multimédia comme MPEG,
codage audio, etc...) peut étre exploitée pour réduire la QoS au profit d’une réduction de la
consommation de ressources (si par exemple les ressources d’énergie atteignent un niveau
bas).

Le changement de I’'un de ces parameétres entraine une intervention au niveau de la couche
systeme d’exploitation et parfois elle peut imposer une modification au niveau de

I’architecture du systeme (si on change le type de traitement par exemple).

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ39

Chapitre3 : Approche d adaptation multicouche proposée

3.2 Adaptation niveau architectural

Une application peut avoir différentes implémentations. Une implémentation logicielle pure
correspond a I’exécution de toutes les fonctions de I’application par le microprocesseur. Une
implémentation mixte correspond a I’utilisation de composants matériels dédiés qui vont
exécuter les taches de I’application les plus complexes a la place du microprocesseur. Une
implémentation mixte est généralement plus performante qu’une implémentation logicielle
pure mais plus gourmande en ressources d’énergie. Comme les applications multimédia ont
des besoins variables en terme capacité de calcul (du a leur variabilité), I’utilisation d’une
seule implémentation peut causer des performances trop dégradées (cas ou on utilise
uniquement une implémentation logicielle) ou étre trop gourmande (cas ou on utilise

uniquement une implémentation matérielle).

Afin de remédier a ce probleme de choix de I’architecture, notre approche vise la possibilité
de la modification de I’architecture du systéme au cours de son fonctionnement. Bien
entendu, le changement du type de I’architecture hardware doit étre signalé a la couche
application pour qu’elle en tienne compte dans le code des applications exécutées. De méme,
la couche systeme d’exploitation doit étre informée de ce changement pour qu’elle recalcule

la nouvelle charge de travail affectée a chaque tache.

Cette technique est plus performante que le changement dynamique de la tension
d’alimentation pour diverses raisons. D’une part, cette technique peut étre appliquée a tout
type de processeur embarqué puisqu’elle n’exige pas qu’il supporte le changement dynamique
de la tension d’alimentation. D’autre part, la technique DVS est de moins en moins utile

compte tenu de la baisse des tensions d’alimentation des circuits actuels.
3.3 Modele d’adaptation niveau systeme d’exploitation

Actuellement, les systémes sur puce peuvent exécuter différentes applications simultanément.
Afin de respecter la contrainte temps réel, il faut que toutes les taches du systeme s’exécutent
a leurs échéances. Le dépassement de I’echéance par I’une des taches peut entrainer un retard

de toutes les taches ce qui perturbe le fonctionnement du systeme.

Nous travaillons avec des applications multimédia nous parlons donc de temps réel mou, par

concequent les dépassements d’échéances sont acceptables mais dans une certaine limite.

Puisque le systéeme execute plusieurs applications a la fois, et que chaque application possede
difféerents modes de fonctionnement (temps d’exécution différents) nous avons adopté la

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *”0

Chapitre3 : Approche d adaptation multicouche proposée

notion d’affectation de budget de charge de travail (CPU_workload) a chaque tache. En fait,
I’exécution d’une tache nécessite un certain nombre de cycles CPU (charge de travail). Afin
de respecter la contrainte temps réeel, nous allons allouer pour chaque tdche un nombre de
cycles CPU suivant le nombre de taches présentées sur le systeme. Lors de son exécution une

tache ne doit pas dépasser son budget pour terminer son traitement.

Cependant, une méme tache peut consommer différents nombres de cycles CPU selon
différents parametres (nombre et type de données, type de I'implémentation de la tache
HWI/SW, ...). C’est pourquoi il est nécessaire d’allouer a chaque fois a une tdche un nombre
de cycles bien déterminé suivant les parametres applicatifs et architecturaux. Cette
réaffectation aura lieu dans deux cas. Le premier cas est lorsqu’il y a un changement au
niveau architectural ou applicatif qui correspond a une modification de I’algorithme utilisé ou
de I’implémentation. Dans sa nouvelle configuration, la tdche a besoin d’une nouvelle valeur
du (CPU_workload) qu’il est nécessaire de recalculer et de réaffecter. Le second cas
correspond a un dépassement d’échéance qui oblige le systeme d’adaptation a faire des
ajustements qui peuvent imposer pour une tache de changer d’implémentation. La détection
du dépassement d’échéance est faite a travers la technique du « watchdog » qui sera expliquée

dans la section(4).

La coordination de [I’adaptation dans les trois couches hardware, systéme
d’exploitation et application nous offre un modele d’adaptation multicouche
« cross layer » dont les capacités d’adaptation sont plus performantes que les
adaptations monocouches comme nous I’avons montré au chapitre 1. Cette
technique multicouche nécessite la coopération entre les différentes couches du
systeme puisque le changement des paramétres de I’'une peut entrainer des
changements dans les autres couches. Spécifiqguement, pour avoir une qualité de
service pour une application donnée et qui consomme une quantité d’énergie bien
fixe, nous avons besoin de configurer I’architecture adéquate dans la couche
hardware, allouer un nombre de cycles processeur pour chaque tache dans la

couche systeme d’exploitation et modifier les paramétres applicatifs dans la

couche application.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitre3 : Approche d adaptation multicouche proposée

4 Adaptation multicouche

Le but du systéeme d’adaptation est de satisfaire les consignes de I’utilisateur tout en tenant
compte des données a traiter et des opportunités d’adaptation offertes par I’application et

I’architecture cible. Les entrées pour le systéme d’adaptation sont :

- Les consignes de I’utilisateur : elles sont données par ce dernier ; la durée de vie « Ddv »

souhaitée et le niveau de qualité de service minimale acceptable « QoSmin ».

- Les données a traiter : elles dépendent des contraintes imposées par I’environnement

externe (type de données, type d’applications exécutées sur le systeme)

Cette section présente la conception de I’approche d’adaptation multi couche. Nous décrivons
ainsi I’architecture et le mode de fonctionnement de cette approche.

4.1 Vue d’ensemble

L’approche d’adaptation proposée combine I’adaptation dans les trois couches, hardware, OS
et application. La Figure 9 présente I’architecture globale de notre approche. Elle est

composée essentiellement de :

- Un gestionnaire global qui coordonne entre les trois couches en se basant sur I’énergie
disponible et les préférences de I’utilisateur (niveau minimal de la qualité de service et

durée de vie souhaitée) pour donner la meilleure qualité de service possible.

- Un gestionnaire local qui coordonne entre la couche application et systeme d’exploitation

afin de garantir le respect de la contrainte temps réel
- Un adaptateur de taches qui permet d’ajuster les parameétres et les opérations de la tache.

- Un adaptateur d’OS qui permet d’ajuster le nombre de cycles CPU et I’échéance affectée

pour chaque tache.
- Un adaptateur d’architecture qui s’occupe du changement de I’architecture du systeme

- Un moniteur de batterie qui donne une indication sur le niveau d’énergie restant dans la

batterie.

- Une base de configuration qui contient des configurations pour chaque type d’application.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitre3 : Approche d adaptation multicouche proposée

Adaptateur J Adapte Tathe
de Tache
T 'y
Paramétres Application parameters Couche applicatif
applicative | e e P S T e S e 5 o e

Uzer

GRS ERES Gestionnaire |Contraintetemps == Gestionnaire

(Durée de vie Global L Local Ordonne
' A ' - Execute .
s 1 ™ : 1 E,'-ZECLItiDI'I.:I
___________ O ___4____time ! _ | CoucheMiddleware
12 Adapt !
Liste Adaptateur Systeme
Config de SE d'exploitation
Energie Couche SE
- Base de Adaptateur Adapte Architecture
: ; e
Batterie Configurations d'architecture

Couche matérielle

Figure 9: Approche d’adaptation

L approche d’adaptation doit étre assez performante et pas trop complexe. Le défi est donc de
fournir la meilleure qualité possible pour un systeme tout en respectant les contraintes du

systéme et sans étre trop complexe pour ne pas consommer les ressources du systeme.
4.2 Gestionnaire global « GM »

Le gestionnaire global peut étre activé par la tdche d’adaptation ou pour répondre a une
demande du gestionnaire local. Dans de telles situations, le GM coordonne entre les trois
couches (application, OS, hardware) pour choisir la meilleure configuration du systéeme, a
partir d’une base de configurations pré-caracterisées. La configuration choisie doit fournir a
I’utilisateur la meilleure qualité de service possible tout en respectant les préférences de

I’utilisateur et les contraintes du systéeme (Ddv/Texe/QoS).

La Figure 10 montre le schéma du GM [Lou09c]. Ces entrées sont les préférences de
I’utilisateur. Pour le moment, nous considérons deux parameétres, la durée de vie souhaitée et
le niveau de qualité de service minimum accepté. Le gestionnaire global cherche a maximiser
le niveau de qualité de service des applications multimédia exécutées tout en assurant les

préférences de I’utilisateur.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ43

Chapitre3 : Approche d adaptation multicouche proposée

(Tachel,Pl)..cccoieiiiiii i (Téachei, Pi)

Ddv

A 4

Gestionnaire global Configurations

| |

Energie disponible (Ed(t) Base des configurations

A 4

NQoSmin

Figure 10: Le gestionnaire global

4.2.1 Formulation mathématique du probléeme

Plus formellement, on suppose que notre systeme exécute n taches concurrentes
”S17={A,.....,Ac}. Chaque application « Ax» , 1<k<n, posséde m différents modes de
fonctionnement A'y e "S27={ Al ... A™ }. Chaque mode A'y, correspond & une version
algorithmique d'une application A,. Chaque A'c peut avoir des configurations
hardware/software différentes en fonction de la mise en ceuvre de ses différentes fonctions
(taches): Al p, oli p e "S3".

Chaque Aik,p est caractérisé par un temps d’exécution au pire cas noté Texe_Aik,p pour une

période « Py » et consomme au cours de cette periode une énergie « Ecy »

On cherche a fournir une qualité de service « QoS », pour une durée de vie « Ddv» et avec un
niveau de QoS minimum « QoS_ming». Sachant que la quantité d’énergie disponible dans la

batterie est « Ed». Ce probléeme peut étre représenté par les équations suivantes :

Maximiser F1 =3"_ QoS, E3

L4

Sous contraintes :

QoS >=QoS_miny E4
= Ddv
S'Ec, * «=Ed E5
= P,
n e Al
rexe Ay E6
Py P,
) K

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitre3 : Approche d adaptation multicouche proposée

Les équations E3 et E4 permettent de fournir a I’utilisateur la meilleure qualité de service
possible qui doit étre supérieure au niveau de QoS minimum fixé par I’utilisateur pour chaque

application.

L’équation E5 permet de garantir la contrainte de durée de vie. La quantité d’énergie
consommeée par toutes les taches ne devra pas dépasser la quantité d’énergie disponible si le

systéme fonctionne avec I’état actuel tout au long de la durée de vie.

L équation E6 représente la condition suffisante d’ordonnancabilité du systeme selon
I’algorithme d’ordonnancement EDF. Cette contrainte nécessite que le temps d’exécution de

toutes les taches ne doit pas dépasser 1.

Le probleme de ce modéle est qu’il accepte la substitution d’une QoS d’une application par
rapport a une autre ce qui peut conduire a avoir une tache avec une excellente QoS et une
autre tache avec une faible QoS (vidéo excellente avec qualité audio médiocre par exemple).
Ainsi, il est important d’homogénéiser la distribution de la QoS a toutes les applications du
systéme. Ceci peut étre assuré par une repartition equitable des ressources disponibles aux

differentes applications.

Le Tableau 1 montre, avec un exemple simple, que deux solutions différentes avec des sorties

de qualité de service tres distinctes peuvent avoir les mémes valeurs de la fonction objectif.

Tableau 1 : Résultat de la fonction objectif avec la fonction F1

Solutions Qos QoS Qos Objective
apphbcation 1 Application 1 Application 3 fonction

first 0 =0 100 :"15 I
solution 1 i
1 1

Second 50 50 50 | 1501
solution il

Afin d’éviter ce probléme et afin de garantir I’obtention d’une bonne qualité de service a

chaque application notre fonction d’évaluation doit avoir la forme F2=Max (). Qos~ qui
consiste @ maximiser la fonction somme des qualites en exposant (1/k) (avec k un entier

supérieur a 1).

Le Tableau 2 illustre un exemple du résultat de la fonction objectif en appliquant la deuxieme

formule.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *”5

Chapitre3 : Approche d adaptation multicouche proposée

Tableau 2 : Résultat de la fonction objectif avec la fonction F2

Solutions Qo5 Qos Qo5 Objective
applicatizn 1 Application 1 Application 3 Fonetion (l=1)
First] =0 100 17.07
solution
Second 50 50 50 2121

e

solution

Pour démontrer que si nous avons n valeurs qui ont la méme qualité de service totale, la
recherche du maximum de la fonction somme des valeurs en exposant (1/k) (avec k un entier
supérieur a 1) va nous donner un résultat ou toutes les valeurs sont similaires. Nous avons
utilisé la méthode de multiplicateur de Lagrange [Hif07] qui propose une stratégie pour
trouver I’optimum d'une fonction sous contraintes. Néanmoins afin de vérifier que I’optimum
trouvé est un maximum global nous avons appliqué la méthode Hessienne [Stel0]. Une

démonstration complete de cette formule existe dans [lin10a].

4.2.2 Quantification de la consommation en énergie électrique

Nous considérons un systeme formé par un {CPU, mémoire, des accélérateurs matériels}

Figure 11 :

Coprocessors \

“4——p Accelerator2

4——p Acceleratorl

Processor Core

Main Mermory
—p et e oo

On chip Avalon Bus

Flash Memory

i
[
L
&
a

-
L%

Figure 11 : Architecture d’un SoC
La consommation du systéme dépend de :

e La puissance statique du processeur et de la mémoire associée. Cette valeur est notée
Pow_idl

e L’impact de chaque accélérateur sur la puissance statique noté Pow_conf

e La puissance consommée dynamiquement du systéme qui est due a I’exécution de

chaque application. Cette valeur est notée Pow_app

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *”6

Chapitre3 : Approche d adaptation multicouche proposée

La Figure 12 montre ces différentes puissances

Consommation du systéme
oL un guantum

Impact ex App3

Impact =x Appl

impact =x Appl

Impact de la conf de hw3 sur la conso standard sans exécution Consommation du
systéme sans exécution
{IDLE task) pour
I"architecture compléte

Impact de |la conf de hwl sur |a conso standard sans exécution

Consommation version standard IDLE

Applhwl 5! Applhwl App3 hw3 IDLE

Figure 12 : Modélisation de la consommation

Ainsi avec ce modele de consommation, I’équation E5 peut étre reformulée selon I’équation
E7

Pow_ i [x Y. 1 Pow_con _ix i Pow_ _ix 5 X [E7

Avec le budget affecté pour un quantum Beq = et h est I’hyper-period du systeme

_V
Donc notre probléme d’optimisation peut étre formulé de la maniére suivante :

Maximiser (), ;Qos "~ E3

Sous contraintes:

(Qi QoS_ in E4
Pow_i KX Y 1 Pow_con _iX i Pow_ i X = X i E7
. .
L a Pi

4.2.3 Recherche de la solution

Le gestionnaire global devra sélectionner la configuration adéquate pour chaque tache

(architecture+parameétres applicatifs) a partir de la base de configuration qui devra contenir

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ“

L7

Chapitre3 : Approche d adaptation multicouche proposée

des informations relatives a chaque configuration telle que les niveaux de QoS, le nombre de
cycles CPU requis, la quantité d’energie consommée pour une période. Donc afin de choisir la
meilleure configuration de chaque tache, le GM se trouve devant un probleme NP-complet,
puisqu’il devra extraire toutes les combinaisons possibles qui peuvent répondre aux
contraintes déja citées. Par exemple, si on considére que notre systeme exécute trois taches
concurrentes et que I’on a « n » configurations possibles pour chaque tache les GM devront
vérifier n® solutions possibles pour extraire toutes les combinaisons possibles afin de répondre

aux exigences du systeme.

Partant du fait que la tache d’adaptation doit avoir un overhead minimum et pour réduire la
complexité de la tdche d’adaptation, nous avons étudié différentes méthodes d’optimisation de
résolution de ce type de probléme.

4.2.4 Présentation des méthodes d’optimisation

L’optimisation est un ensemble de techniques permettant de trouver les valeurs des variables

qui rendent optimale une fonction de réponse, appelée aussi fonction objectif.

Il existe deux classes d’algorithmes d’optimisation qui sont les algorithmes exacts et les

algorithmes approchés (Figure 13).

Meéthodes
d’optimisation

Méthodes exactes MWS
Branchand Programmatio =~ Méthodes Méta heuristiques Heuristiques
bound n dynamique polyédrales

N

Trajectoire Evolutionnaire

Figure 13:Classification des algorithmes d’optimisation

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

.

Chapitre3 : Approche d adaptation multicouche proposée

4.2.4.1 Méthodes exactes

Diverses méthodes de résolution exactes existent dans la littérature. Elles se caractérisent par

le fait qu'elles permettent d'obtenir une ou plusieurs solutions dont I'optimalité est garantie.

Parmi ces méthodes on cite :

. la programmation dynamique

. les méthodes polyédrales

. le Branch & Bound

. la méthode de recherche par énumération explicite de toutes les solutions

Ces méthodes permettent de trouver des solutions optimales pour des probléemes de petite
taille. Mais malgré les progrés réalisés en termes de technologie, le temps de calcul nécessaire
pour trouver une solution risque d'étre tres grand puisqu’il dépend de la taille du probléme.
Les méthodes exactes rencontrent généralement des difficultés avec les problemes de taille

importante dans notre travail on va opter pour la derniére méthode « full enumeration».

Cependant dans certains cas nous pouvons nous contenter des solutions de bonne qualité, sans
garantie d’optimalite, mais au profit d’un temps de calcul réduit. Nous utilisons pour cela une
méthode approximative avec I’inconvénient de ne disposer en retour d’aucune information sur

la qualité des solutions obtenues.
4.2.4.2 Les méthodes approximatives

Dans certaines situations, telles que la limite des ressources disponibles pour le systeme, cas
de la plupart des systéemes embarqués actuels, il est nécessaire de disposer d'une solution qui
permette de fournir une bonne qualité (assez proche de I’optimale). Nous parlons ainsi des

approches approximatives.

Dans ce cas l'optimalité de la solution ne sera pas garantie, ni méme I'écart avec la valeur
optimale. Cependant, le temps nécessaire pour obtenir la solution sera beaucoup plus faible et
pourra méme étre fixe. Typiquement ce type de méthodes, est particulierement utile pour les
problémes nécessitant une solution dans un laps de temps tres court ou pour résoudre des

problémes difficiles sur des instances numériques de grande taille.

Parmi ces méthodes, on distingue les heuristiques qui concernent un probléme bien spécifique

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *”9

Chapitre3 : Approche d adaptation multicouche proposée

et les méta-heuristiques qui sont plus puissantes et qui peuvent résoudre un grand nombre de

problemes.
- Les heuristiques

Dans le but d’améliorer le fonctionnement d’un algorithme dans sa recherche dans I’espace
des solutions d’un probleme donné, le recours a une méthode heuristique permet d’améliorer
les performances dans le processus de recherche des solutions optimales.

Feignebaum et Feldman définissent une heuristique comme une régle d’estimation, une
stratégie, une astuce, une simplification, ou toute autre sorte de systéme qui limite la

recherche des solutions dans I’espace des configurations possibles[Bap06].
- Les métaheuristiques

Les métaheuristiques se placent a un niveau plus géneral encore, et peuvent étre utilisées dans
toutes les situations ou le concepteur ne connait pas d’heuristique efficace pour résoudre un
probléme donné.

En 1996, I.H. Osman et G. Laporte définissaient la méta-heuristique comme « un processus
itératif qui subordonne et qui guide une heuristique, en combinant intelligemment plusieurs
concepts pour explorer et exploiter tout I’espace de recherche. Des stratégies d’apprentissage
sont utilisées pour structurer I’information afin de trouver efficacement des solutions

optimales, ou presque-optimales » [Bap06].

Les méta-heuristiques sont souvent inspirées par des systemes naturels, qu’ils soient pris en
physique (cas du recuit simulé), en biologie de I’évolution (cas des algorithmes génétiques)
ou encore en éthologie (cas des algorithmes de colonies de fourmis ou de I’optimisation par

essaims particulaires).
e Méta-heuristique trajectoire

Comme point de départ, ces algorithmes partent d’une solution initiale proposée par le
concepteur ou aléatoirement et commencent des itérations dans le but de I’améliorer ; ce qui
construit une trajectoire des solutions choisies. Dans cette catégorie d’algorithmes on peut

citer:

- la méthode Tabou
- la méthode de descente

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁSO

Chapitre3 : Approche d adaptation multicouche proposée

- le recuit simulé

- la recherche par voisinage variable
e Méta-heuristique évolutionnaire

Contrairement a la méthode trajectoire, celle-ci travaille avec un ensemble de solutions
simultanément, qui évoluent au cours du temps: ce qui permet en conséquence une

amélioration de I’espace des solutions. Dans cette seconde catégorie, on recense :

- I’optimisation par essaim particulaire

- les algorithmes genétiques

- les algorithmes a estimation de distribution
- les algorithmes par colonies de fourmis

- le path relinking (ou chemin de liaison)

Dans la section suivante nous nous intéressons a la description détaillée du mode de

fonctionnement d’un algorithme de chaque catégorie I’algorithme génétique et recuit simule.

4.2.5 Algorithme génétique

4.2.5.1 Définition

Les algorithmes génétiques font partis des algorithmes d'optimisations évolutionnaires.
L’utilisation de la théorie de I'évolution comme un modéle informatique pour trouver une
solution optimale peut étre justifiée par le fait qu’elle permet de trouver une solution parmi un
grand nombre de possibilités dans un délai raisonnable. De ce fait, les algorithmes génétiques
ont été inspirés du concept de la sélection naturelle développée par Charles Darwin et des
méthodes de combinaison des génes introduites par Mendel pour traiter des problémes

d'optimisation [Lay09].

Les premiers travaux realises dans ce domaine ont débuté dans les années cinquante, lorsque
certains biologistes américains ont simulé des structures biologiques sur un ordinateur, puis
dans les années soixante, sur la base des travaux antérieurs, John Holland a développé les
principes de base des algorithmes génétiques dans le cadre de l'optimisation mathématique
[Lac04].

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ51

Chapitre3 : Approche d adaptation multicouche proposée

4.2.5.2 Caractéristiques principales

Puisque ces algorithmes sont inspirés de la génétique classique, le vocabulaire employé est le
méme que celui de la génétique. Ainsi pour décrire un algorithme génétique les termes utilisés
sont :

e Geéne : Le plus petit élément d’une solution potentielle au probléme posé.

e Chromosome / Individu: un chromosome (parfois aussi appelé un génome) est un
ensemble fini de genes. Il définit une proposition de solution au probleme que
I'algorithme génétique essaie de résoudre. Dans la plupart des cas un individu est

présenté par un seul chromosome.

e Population : elle est formée par I’ensemble des individus utilisés par I’algorithme

génétique.
e Génération : c’est I’évolution de la population a un instant t donné.

e Fonction de performance (fitness) : c’est un type particulier de fonction objectif qui
prescrit I'optimalité d'une solution. Elle est utilisée pour calculer le co(t d'un point de
I'espace de recherche.

4.2.5.3 Principe

Pour un probléme d’optimisation, les étapes de I’algorithme génétique sont les suivantes
(Figure 14) :

Population initiale

Evaluation > Sélection

l

Croisement et
mutation

Meilleur(s)
individu(s)

Figure 14: Principe de base d’un algorithme génétique

Approche de gestion de performances/contraintes pour les systémes embargués temps réel

52

Chapitre3 : Approche d adaptation multicouche proposée

1. Générer aléatoirement une population de n chromosomes x
2. Evaluer I’adaptabilité f(x) de chaque chromosome

3. Créer une nouvelle population

o

Sélectionner 2 parents chromosomes
b. Croiser les 2 parents pour obtenir 2 enfants
c. Muter les enfants obtenus
d. Placer les enfants dans la population
4. Itérer a partir de I’étape (2) jusqu’a ce qu’a attendre le critere d’arrét [Lac04].
Le critére d’arrét peut étre choisi :

- Aléatoirement : le nombre d’itérations qui correspond au nombre de genérations.

- Basé sur le critére de convergence : valeur de fitness incluse dans un intervalle désigné au

paravent.

Dans notre cas le critére d’arrét est atteint aprés un nombre de générations choisies d’avance

par I’utilisateur du systéeme selon la précision attendue.

4.2.6 Algorithme du recuit simulé

4.2.6.1 Historique

La structure complexe de I’espace des configurations d’un probleme d’optimisation difficile a
conduit trois chercheurs de la société IBM S.Kirkpatrich, C.D.Gelatt et M.P. Vecchi a
proposer en 1983 une nouvelle méthode itérative en s’inspirant de la technique expérimentale
du recuit utilisée par les métallurgistes pour simuler I’évolution d’un systéme physique vers

son équilibre thermodynamique [Sia03].

La technique du recuit consiste a chauffer préalablement le matériau pour lui conférer une
énergie élevée puis a le refroidir lentement en marquant des paliers de température de durée
suffisante. Cette stratégie de baisse contrdlée de la température conduit a un état solide stable

correspondant a I’optimum absolu de I’énergie.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁSS

Chapitre3 : Approche d adaptation multicouche proposée

4.2.6.2 Définition

Le recuit simulé est souvent présenté comme la premiere méta-heuristique qui a mis en ceuvre
une stratégie d’évitement des minima locaux [Bap06]. Cette technique est I’un des exemples
typiques des méthodes de trajectoire a base de solution unique qui construit une trajectoire

dans I’espace des solutions en tentant de se diriger vers des solutions optimales.

L’idée d’utiliser la technique du recuit consiste a introduire en optimisation un parametre de
contréle qui joue le réle de la température. La température du systéme a optimiser doit avoir
le méme effet que la température du systeme physique : elle doit conditionner le nombre
d’états accessibles et conduire vers I’état optimal si elle est abaissée de fagon lente et bien

controlée.
4.2.6.3 Principe

En pratique, cette technique exploite I’algorithme de Metropolis, qui permet de décrire a une

certaine température T le comportement d’un systeme en équilibre thermodynamique.
Pour une procédure de maximisation de la fonction « objectif », le principe est le suivant :

- En partant d’une configuration donnée, le systeme subit une modification élémentaire si
cette transformation a pour effet d’améliorer la fonction objectif du systeme, elle est
acceptee, si elle provoque au contraire une diminution AE de la fonction objectif elle peut
étre acceptée tout de méme avec la probabilité eexp(AE /T).

- En appliquant itérativement ce procédé tout en gardant la température constante,
I’équilibre thermodynamique sera atteint concrétement au bout d’un nombre suffisant de
modifications. La température est alors abaissée avant d’effectuer une nouvelle série de
transformations. La loi de décroissance par paliers de la temperature est souvent

empirique tout comme le critere d’arrét du programme [Sia03].

La Figure 15 présente I’organigramme de I’algorithme du recuit simulé.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitre3 : Approche d adaptation multicouche proposée

Configuration initiale

Température initiale T

Variation d’énergie AE

)

Régle d’acceptation de Metropolis:
+8i AE>= O:modification acceptée
*S1 AE< 0:modification acceptée
avec la probabilité exp(AE/T)

Diminutionlente de T]

Figure 15: Organigramme de I’algorithme du recuit simulé

4.2.6.4 Paramétrage

e Solution initiale : La solution initiale peut étre choisie au hasard dans l'espace des

solutions possibles ou par un expert du probléme.

e Mémoire : La méthode du recuit simulé est une méthode sans mémoire. En effet,
I’algorithme pourrait converger vers une certaine solution S en ayant visité auparavant une
solution S’ de qualité supérieure. C’est pourquoi afin de I’améliorer on peut ajouter une

mémoire a long terme qui stocke les meilleures solutions rencontrées.

e Température initiale : Son choix dépend de la qualité de la configuration de départ. Si
cette configuration est choisie aléatoirement, il faut une température relativement élevée.
Si au contraire, la solution de depart est déja assez bonne, parce qu’elle a été choisie par un
expert du probleme considéré par exemple, une température initiale assez basse sera

suffisante.

Approche de gestion de performances/contraintes pour les systémes embargués temps réel ﬁSS

Chapitre3 : Approche d adaptation multicouche proposée

e Deécroissance de la température : la température suit souvent une loi géométrique

décroissante : T,,; =T, -a , avec o un nombre reel appartenant a I’intervalle]0..1[.

e Arrét du programme : lorsque la température a atteint une valeur négligeable ou bien
lorsque aucune solution n'a été accepté au cours du palier : par exemple, lorsque trois
paliers successifs de température ont été descendus sans gu’aucune solution nouvelle n’ait

pu étre trouvée.
4.3 Le gestionnaire local

Dans ce qui précede, nous avons présenté le principe de fonctionnement du gestionnaire
global dont le réle est de choisir une configuration pour le systéme qui lui permet de respecter
ses contraintes. Mais ce dernier ne possede pas les techniques pour contrdler leur respect.
Cependant, nous travaillons dans un systtme multimédia temps réel mou qui permet les
dépassements des échéances dans une certaine limite. Nous avons proposé une technique de
contréle du respect de la contrainte temps réel qui se base sur I’utilisation d’un gestionnaire

local.

4.3.1 Principe de fonctionnement

Notre technique de contrble intervient dans les deux couches application et systeme
d’exploitation. Elle se base sur le principe de watchdog. Il s’agit dans notre cas d’un logiciel
permettant de s'assurer que le systeme ne reste pas bloqué dans une situation qui altere son
bon fonctionnement suite a la violation de ses contraintes. C'est une protection destinée a
reconfigurer le systeme si une action définie n'est pas exécutée dans un délai imparti. La

Figure 16 présente un schéma qui décrit d’une maniére générale la technique de controle.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁSG

Chapitre3 : Approche d adaptation multicouche proposée

Adaptateur Adapte Tiche
de tache [ey

Parameéters . :
constraint des taches Statistigue

applicatif
Durée de vie -
Dépacement j
d?

hyper-période
Activé Fonction l—— Watch Dog Dépassement Watch Dog

ontrole

[
Gestionnaire

okl ~~—— d'adaptation locale Global e Periode el
ParamETres 4
Tache active liste dag Contrainte
o config temps réel
Systeme

d’exploitation

j Base des
Batterie ;i 3
Configurations

Figure 16:Schéma de principe du gestionnaire local

Nous avons défini deux types de watchdog : un watchdog local responsable sur le contréle
d’exécution au niveau tache, et un watchdog global chargé du contréle d’execution au niveau
systéme sur toute I’hyper-période (HP), le plus petit commun multiple de toutes les périodes.
En effet, afin de respecter les contraintes temporelles, toutes les taches doivent étre exécutées
a chaque période. Et dans I’hyper-période h du systeme, une tache Ti de période Pi doit étre

exécutée ni = h/Pi fois.

Cependant, un dépassement d’HP peut toujours avoir lieu et c’est au watchdog global de le

gérer.

On affecte a chaque tdche un watchdog local responsable de contrbler son exécution et
maintenir son état pour chacune de ses périodes. Il est créé au moment de la création de la
tache, et supprime lorsqu’elle I’est aussi. En cas de détection de depassement d’echeance, le
watchdog local alerte le watchdog global qui enregistre ce dépassement. A I’expiration de HP,
le watchdog global analyse la liste des violations d’échéance pour voir si elles ont une
influence sur le fonctionnement global du systéeme. S’il n’y a pas d’influence, le systeme
continue a fonctionner avec les mémes parameétres applicatifs et d’OS. Mais s’il détecte un

dépassement d’HP, il en déterminera alors I’origine.

Ensuite, il fera I’appel a une fonction d’adaptation qui se chargera de prendre une décision

d’adaptation selon le dépassement. Cette fonction choisit de nouveaux parametres applicatifs

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁS?

Chapitre3 : Approche d adaptation multicouche proposée

pour la tache correspondante afin de résoudre le probléme de dépassement. Cette recherche
est beaucoup moins complexe que celle du gestionnaire global puisqu’elle ne prend en
considération que les configurations de la tache source du dépassement. Donc la configuration
choisie est celle qui a les mémes attributs architecturaux de la configuration actuelle avec un
temps d’exécution inférieur a la valeur actuelle. Une fois une nouvelle configuration est
choisie le gestionnaire local envoi les nouveaux parametres aux adaptateurs des taches et de
I’OS pour qu’ils modifient leurs parametres suivant les caractéristiqgues de la nouvelle
configuration choisie. Dans le cas ou le gestionnaire local ne trouve pas de solution pour
résoudre le probléme, il fait appel au gestionnaire global pour reconfigurer la totalité du

systeme.

4.3.2 Choix de I'algorithme d’ordonnancement

Comme nous I’avons déja mentionné, I’ordonnancement a pour role d’allouer le processeur
aux diverses taches. L’ordonnanceur est une procédure de service du systéeme d’exploitation.
Au cours de I’exécution a chaque laps de temps le systeme d’exploitation détermine si le
systeme a besoin d’un ré-ordonnancement. Si c’est le cas, le systéme invoquera son

ordonnanceur pour choisir une nouvelle tache pour I’exécuter.
Nous donnons par la suite un bref rappel sur les algorithmes d’ordonnancement et nous
expliquons la solution retenue.

4.3.2.1 Ordonnanceurs préemptifs

Un ordonnanceur est dit préemptif ou « avec réquisition », si I’exécution du processus courant
peut étre arrétée par I’ordonnanceur (suite a une interruption) pour laisser le processeur
volontairement a une autre tache. Il est dit non préemptif ou «sans réquisition » le cas

contraire. [Dan04]

Dans le cas d’un systéme d’exploitation non préemptif, une commutation de contexte ne peut
avoir lieu que si la tache courante termine son execution ou passe a I’état bloquée.

4.3.2.2 Lois d’'ordonnancements classiques

Les politiques d’ordonnancement déterminent la prochaine tache qui sera mise dans I’état
« courant ». Les politiques d’ordonnancement les plus répandues sont :

- premier arrivé, premier servi « PAPS » (ou FIFO)

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁSS

Chapitre3 : Approche d adaptation multicouche proposée

- le tour de réle ou tourniquet (round robin, circulaire),
- I’ordonnancement par priorité.

Dans la politique FIFO, les taches « prétes » sont placees dans une file FIFO gérée suivant la
politique premier arrivé premier servi. Une tache qui passe a I’état prét s’insere en fin de file,
et lorsque la tdche courante libére le processeur, c’est la tache qui est en téte de file qui

devient la tiche courante.

Dans la politique de tourniquet, les taches sont placées dans une file FIFO et sont activees
périodiquement. La période d’activation s’appelle un quantum de temps. A la fin d’un

guantum, la tache qui est en téte de file est activée.
4.3.3 Les algorithmes d’ordonnancement pour les systemes temps réel

Pour les systemes temps réel on distingue deux types de politiques d’ordonnancement :

- ordonnancement hors ligne (of line): I’ordonnancement est pris avant I’exécution du

systeme.
- ordonnancement en ligne (on line) : il prend les décisions d’ordonnancement durant
I’exécution du systéme.

4.3.3.1 Les ordonnanceurs sous contrainte de temps

4.3.3.1.1 Description

L’ordonnanceur est une piéce fondamentale d'un systeme temps réel. Pour chaque processeur,
I'ordonnanceur est en charge de définir la séquence d’exécution des processus, qui est une
séquence infinie d’éléments du type : (date, identifiant travail) tout au long de I’évolution du
systéeme. Donc le systeme d’exploitation doit disposer des mécanismes nécessaires pour la

gestion du temps et ce pour prendre les bonnes décisions aux bons moments.
4.3.3.1.2 Ordonnanceurs a priorités simples

Dans cette partie, nous définissons les algorithmes d'ordonnancement a priorité fixe.
Les ordonnancements a priorités les plus courants sont les suivants :

e RM (pour Rate Monotonic) : ordonnancement a priorité statique pour les taches
périodiques/sporadiques avec échéance relative égale a la période/délai d'inter-arrivée.

Une tache est d'autant plus prioritaire que sa période est petite.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁsg

Chapitre3 : Approche d adaptation multicouche proposée

e DM (pour Deadline Monotonic) : ordonnancement & priorité statique pour les taches
sporadiques. Une tache est d'autant plus prioritaire que son échéance relative est petite.
DM équivaut a RM quand I'échéance relative est égale a la période.

e EDF (pour Earliest Deadline First) : ordonnancement a priorité dynamique. Une tache
est d'autant plus prioritaire que sa date d'échéance est plus proche.

e LLF (pour Least Laxity First) : ordonnancement a priorité dynamique. Les taches sont

d'autant plus prioritaires que leur laxité est faible a la date courante.
4.3.3.1.3 Propriétés des ordonnancements

- EDF et LLF sont optimaux parmi les ordonnancements préemptifs non oisifs [LL73].
EDF est également optimal relativement a la minimisation du retard maximal des taches.

- EDF est optimal parmi les ordonnancements non-préemptifs non oisifs [Bru06].

- RM est optimal parmi les ordonnancements préemptifs non oisifs a priorité statique, pour
les taches périodiques non-concrétes/synchrones ou sporadiques, lorsque I’échéance
relative est égale a la période (ou au délai d'inter-arrivée dans le cas sporadique) [LL73].

- DM est optimal parmi les ordonnancements préemptifs non oisifs a priorité statique, pour
les taches périodiques non-concrétes/synchrones ou sporadiques a écheance relative
inferieure a la période.

- Dans les cas ou les taches périodiques concretes ne sont jamais synchrones, ni RM, ni
DM ne sont optimaux parmi les ordonnancements préemptifs non oisifs a priorité
statigue. Dans [Aud04], on donne [l'adéquation optimale des priorités pour
I’ordonnancement préemptif non oisif a priorité statique pour le cas général (i.e. qui reste
valable quand les échéances relatives et les périodes ne sont pas reliées).

- DM est optimal parmi les ordonnancements non-préemptifs non oisifs a priorité statique,
pour les taches périodiques non-corsetes/synchrones ou sporadiques a échéance relative
inferieure a la période [Bat98]. Pour l'ordonnancement a priorité dynamique, les
démonstrations utilisent le fait que si on dispose d'un ordonnancement faisable, il faut
alors faire intervertir 2 taches pour le respecter I’ordre d'ordonnancement EDF ou LLF
conserve la faisabilité de l'ordonnancement. Le méme type de démonstration est utilisé

avec les priorités des taches pour démontrer I’optimalité de RM/DM.
4.3.4 Choix de I'ordonnanceur

La méthode d’adaptation nécessite la disponibilité d’ordonnanceurs a caractéristiques

spécifiques. A titre d’exemple un ordonnanceur a priorité fixe ne peut étre utilisé. En effet, si

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁGO

Chapitre3 : Approche d adaptation multicouche proposée

on utilise cet ordonnanceur avec les budgets de temps affectés par le GM on peut rencontrer
des cas la ou I’une des tches ne peut pas terminer son exécution au cours de I’hyper période.

Le graphe de la Figure 17 illustre I’un de ces cas.

Considérons un systéme qui exécute trois taches T1 (période=10, priorité=1, Texe=3),
T2(période=10,priorité=2,Texe=3) et T3 (période=15,priorité=1,Texe=6). Le graphe
d’exécution des différentes taches sur un ordonnanceur a base de priorité est illustré par la

Figure 17 :

T3 |------- it B Amommoe- —

N —

1T ——

v

0o II5 ...10.. I1I5 I18IIt
Figure 17: Graphe de séquences avec MicroC

On remarque bien que la tache T3 a depassé sa période(t=18) et ceci est di au fait que les
taches T1 et T2 sont plus prioritaires ce qui entraine son interruption. On est donc amené a
chercher un ordonnanceur adéquat qui permet de garantir I’exécution des différentes taches
dans leur propre période. Nous avons choisi de travailler avec I’ordonnanceur EDF (earliest
deadline first) qui se base sur I’affectation dynamique des priorités puisqu’il a une condition
(E6) nécessaire et suffisante pour que le systéme soit ordonnancable.

Le systéme ne peut étre ordonnancgable que si U = };; 1C—il. 1 E8

Avec Ci et Ti sont respectivement le temps d’exécution et la période de la tache i.
Corollaire : EDF est un algorithme optimal

Si U>1 aucun algorithme n’est capable d’ordonnancer I’ensemble des taches

Si U<1 I’ensemble des taches est ordonnangable par EDF

Reprenons le méme exemple du graphe suivant et considérons que la valeur du deadline de
chaque tache est égale a la période. Le graphe d’exécution des différentes taches sur un
systeme d’exploitation qui se base sur un ordonnanceur de type EDF est illustré par la Figure
18.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁﬁl

Chapitre3 : Approche d adaptation multicouche proposée

A

T3 _______ 1Tt T T T T

2 I S — peee- R

1 —

~v

Figure 18: Graphe de séquences avec EDF

On remarque bien que toutes les taches terminent leur exécution avant la fin de la période.

L’ordonnanceur EDF répond bien a nos besoins.
5 Etape de caractérisation des configurations

Cette étape permet a partir d’une analyse ou a travers des outils de construire la base des
configurations. Cette étape se fait hors ligne. Nous présentons dans cette partie les méthodes

et les outils utilisés dans notre travail afin de mettre en place la base des configurations.

La construction de la base des configurations nécessite deux principales étapes. La premiere
étape consiste d’abord a la détermination de I’ensemble des taches candidates a une
implémentation HW ensuite a la mise en place des différentes architectures possibles du
systéme. La deuxiéme étape consiste a caractériser les différentes configurations possibles du

systéme en agissant sur les paramétres de I’application.
5.1 Mise en place des configurations

Le choix du nombre de configurations du systeme dépend d’un compromis
précision/complexité. En effet, la disponibilité d’un nombre important de configurations
permet d’avoir une adaptation fine qui permet de mieux ajuster les contraintes. Cependant,
cette finesse d’adaptation est obtenue au dépend d’une complexité plus importante du systéme
d’adaptation (due a I’augmentation de [I’espace occupée pour la sauvegarde des
configurations) et un co(t plus élevé du systeme de gestion des contraintes (complexité plus

grande de I’algorithme de recherche de la solution).
5.2 Partitionnement logiciel/matériel

Dans notre travail nous avons opté a une méthode de partitionnement logiciel/matériel qui se

base sur :

- Iutilisation des résultats fournis par le profilage de I’application sur la plateforme de

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁGZ

Chapitre3 : Approche d adaptation multicouche proposée

travail et I’utilisation de I’outil design trotter. Cette approche est représentée par la Figure
19 [Lou09b].

- Poutil Design Trotter développé au laboratoire Lab-STICC est étendu dans le cadre de la
these de nader Ben Amor [Ben05].

Profiling

v v

HW candidate | SW candidate |

!

[Optimisation SW]

[Accélérateur] [Co-processeur]

Design Trotter

Figure 19: Approche de partitionnement SW/HW

5.2.1 Profilage de I'application :(Profiling)

Cette étape permet de donner au concepteur des statistiques sur les différentes fonctions
exécutées dans un programme (temps d’exeécution, pourcentage d’occupation du processeur,
nombre d’itération, I’occupation mémoire, etc). Cette technique peut donner une idée sur les

chemins suivis pour I’exécution de I’application.

Dans notre travail nous avons utilisé cette technique pour comparer le temps d’exécution et le
nombre d’itérations des différentes fonctions qui constituent I’application. Les fonctions qui

prennent plus de temps d’exécution seront favorisées pour une implémentation hardware.
5.2.2 Analyse par design trotter

Les entrées de I'environnement Design Trotter se présentent sous la forme de fonctions
décrites en langage de haut niveau (en langage C). L'environnement Design Trotter fournit en
sortie différents types d'estimations et d'informations visant a guider le concepteur de
systémes embarqueés. Parmi celles-ci nous pouvons citer I’estimation systeme par métriques
[Mou03b].

L'objectif des métriques est d'analyser les fonctions de I'application afin d'en déterminer deux

parameétres : d'une part leur orientation traitement, Contr6le ou Mémoire (a I'aide des

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁGS

Chapitre3 : Approche d adaptation multicouche proposée

métriques MOM et COM) et d'autre part leur criticité (parallélisme moyen disponible) a I’aide

du métrique gamma. La Figure 20 montre I’environnement Design Trotter [BenQ7].

Graphe de tache
Radha Ratan

\

| (===

r'd

Fonction C

Contraintes
de temps par
tache

Flot d’estimation

Design Trotter (1)

Architecture

-~

Estimations sur architectures

reconfigurables
(L. Bosset Lester (2})

I Meétriques |

v

Solutions HW/SW granularité variable

:

=

Solutions parallélisme intra-fonctions

.

Partitionnement HW/SW Partitonmement HW/SW Estimations Inter-

RTOS monoprocesseur + reconﬁguratiou fonctions

(A. Azzedme Lester) (4) I35 (projet EPICURE) (3) (T.Gourdeaux Lester)
l (Projet A35) (3)

v

SoC reconfigurable]
dynamiquement Partionnement SoC
CEA (Projet EPICURE) HW/SW
choix fréquence HW
(Projet A3S)
h 4

Approche de conception
statique de processeur
multimedia

(N. Ben Amor)(6)

-

Environnement Design Trotter

Figure 20: Environnement Design Trotter

Ces métriques sont calculées pour chaque fonction de I’application et pour chaque niveau
hiérarchique de graphe. Par la suite en analysant ces résultats numériques on peut classer les
différentes fonctions qui constituent notre application selon leurs comportements. Par
exemple, d’une part, les fonctions orientées contr6lent avec peu d’occasions de parallelisme et
sont donc un candidat prometteur d’une implémentation logicielle. Dautre part, les fonctions

a parallélisme élevé sont candidats pour les implémentations matérielles.

En se basant sur I’information issue de la premiére étape, on construit deux classes de
fonctions. Les premiéres fonctions incluent des candidats pour I’implementation mateérielle,
elles peuvent étre par exemple des fonctions flot de données avec des opérations de test (avec

une valeur petite de COM et une valeur grande de y) et un temps d’exécution élevé. Cela va

F

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Chapitre3 : Approche d adaptation multicouche proposée

étre additionné comme un accélérateur matériel au cceur du processeur embarqué pour
obtenir une architecture a colt réduit. Ces modeles incluent des modules utilisés qui couvrent
plusieurs applications multimédia comme la transformation d’images (DCT, le transformateur
d’ondelettes DWT, etc.) et des algorithmes classiques de traitement d’image comme le

filtrage, et aussi les fonctions de traitement de vidéo comme I’estimation de mouvement.

La deuxiéme classe contient des fonctions logicielles, elle peut étre par exemple des fonctions
avec beaucoup de contrble et peu de parallelisme (des valeurs grandes de COM et petites de

v) et un temps d’exécution bas.
5.3 Caractérisation des configurations

Elle consiste a déterminer pour chaque configuration son temps d’exécution au pire cas, son

énergie consommeée et son niveau de QoS.
5.3.1 Calcul de Texe

Pour caractériser les configurations du systeme nous avons besoin de calculer le temps
d’exécution de I’application au pire cas (Worst Case Execution Time WCET). Différents
travaux ont eté menés pour I’estimation de cette valeur. Dans notre travail nous avons utilisé
une mesure directe sur la carte vue la précision de cette méthode. En effet, une fois les
différentes configurations matérielles sont mises en place on peut les utiliser pour faire les
mesures et ce a travers un « timer » hardware. Bien entendu, il faut initialiser les paramétres

de I’algorithme de fagon qu’il suive le plus long chemin possible.

Le timer est un composant hardware qui joue le role d’un décompteur qui se decrémente a
chaque n ticks d’horloge qui est appelé période. Elle est fixée lors de la conception de la
partie hardware. Pour mesurer le temps d’exécution d’une tache, on lit alors, la valeur du
timer avant et aprés son exécution. Le temps pris par cette période est la différence entre les

deux valeurs multipliées par la période du timer. [Lou09a]
5.3.2 Mesure de la consommation

Cette étape peut étre déterminée par simulation ou par mesure directe. La 1° solution utilise
I’environnement de simulation relatif a la cible choisie (par exemple Quartus « Power
estimator » si le processeur NIOS est choisi). Cette solution exige des temps de simulation
relativement longs. De plus, les valeurs fournies ne sont pas exactes. La deuxieme solution

consiste a mesurer la puissance consommée Pconso par mesure directe. Cette deuxiéme

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁGS

Chapitre3 : Approche d adaptation multicouche proposée

méthode est plus rapide et plus précise mais elle exige un matériel bien spécifique avec une

haute précision.

5.3.3 Quantification de la QoS

Un modéle doit étre défini pour quantifier la QoS de chaque configuration connaissant ses
attributs applicatifs. 1l permet de caractériser la qualité de service fournie a I’utilisateur en

fonction des paramétres liés a I’application multimédia.
6 Conclusion

La notion d’adaptation est devenue indispensable dans la conception des systemes embarqueés
autonomes. Cette adaptation peut intervenir dans les trois couches du systeme afin de
bénéficier au maximum de son apport. Dans ce contexte nous avons décrit dans ce chapitre,
un systeme d’adaptation a contraintes multiples dédié aux systéemes embarqués. Ce systéme
permet de satisfaire les trois contraintes Ddv, Texe et QoS. Afin de mettre en place ce
systéme, deux étapes sont nécessaires. La premiére étape est une étape « hors ligne » qui
permet la construction de la table des configurations et sa caractérisation. Pour cela, une
analyse préliminaire de I’application doit étre effectuée afin de déterminer les attributs
applicatifs susceptibles d’influencer le compromis Ddv, Texe et QoS. La deuxiéme étape est
une étape en ligne formeée par deux activités : I’activité d’observation et celle d’adaptation.
L activité d’observation permet le suivi des paramétres Ddv, Texe et QoS. L’activité
d’adaptation permet d’adapter le systéme en choisissant la configuration adéquate de la table
des configurations.

L approche proposée est générique puisqu’elle est indépendante de I’application et de la
plateforme de prototypage. Afin de la mettre en place pour pouvoir évaluer ses performances
il est judicieux de passer par un environnement de conception logiciel/matériel et une
application cible. Dans le chapitre suivant nous entamons une étude de cas pour valider
I’approche proposée. Nous décrivons ainsi les éléments principaux de I’application et de

I’environnement choisis.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitred : Etude de cas T environnement de conception

CHAPITRE 4 : Etude de cas &

Environnement de validation

IR V] ¢ oo [8 o1 4 o] o PO RO SEOSSOROUROPROPRPRR 68
2 Apercu sur I’application synthese d’ image 3Dcciiiiiiiiine e 68
2.1 Différentes étapes du PIPEIINE..........ciiiiiiee e e 68
2.1.1TranSfOrMALIONSooiviiiiec et e e 69
2.1.2Test de VISIDIHTE. ..o 69
2.1.3CalCuls deS TUMUEIEScovieiie ettt 71
2.1.4Transformations deS tEXTUIEScc.viiieeiiie ittt 73
2.1.5CHPPING (FENEIITAGE) ... veeeterieiti sttt bbbt 73
N I O o (o] =Tt o] PSRRI 73

W A o S (=] 4 57 L o] o PSSR OPO PP 74

2.2 Graphe de taches de I’application 3Dcccciiiiiiiciecc e 77
2.3Modification de I’application « SYNtNESe 3D »........cccceviriririiieieese e 78
2.3.1 Construction des configurations 10giCIElIES..........ccceovvveiiiiiiiiici e 78
2.3.2 Développement d’une version multi-applications...........cccooeveiineiininesieeeen, 80

2.4 Intégration des services de MICrOC/OS-1cccoovviieiiiiciecce e 80

3 Environnement de conception des configurations MIXLESccooeiireriiirieeieiere e 81
3.1Le processeur embarqUE NTOScooiiiiiiiii e 83
3.2Etude du BUS AVAION........eiiic s 83
3.2. 1 CaraCerISTIQUES. ... cveiuieieeieeiete sttt sttt bbbttt bbbttt 84
3.2.2MOdeS de tranSTert.oouiiiiice e 85
3.3Flot de conception de I’environnement d”AITEra..........cocoovriiieiiiine e, 85

4 Etude du systeme d’exploitation temps réel : MiCroC/OS-T.......cccooiiiiiiiviiniee e 86
4.1 Capacités et CaraCteriSTIUEScveiveeieiieecie ettt sre e eae e 86
4.2 Structure de MICTOC/OS-11 ...t e 87
4.3Fonctionnement de MICIOC/OS-I1.......cooviiiiiiiece e 88
4.3.1Création d’UNE tACNEcciiiiice e 88
4.3.2FONCLIONS U8 DASE......veiiiieeciee et 88
4.3.3Communication INtEr tACNESc.oiieiiiicceee e 89

LT ©o] o o 1§17 T o PSP SUSTPRPS 90

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitred : Etude de cas T environnement de conception

1 Introduction

La validation est une étape primordiale dans la réalisation de n’importe quel projet. Cette
étape permet d’une part de valider et de combler les défaillances de la partie théorique étudiée
et d’autre part elle permet de mettre en évidence les performances des travaux réalisés. Afin
de valider I’approche proposée nous sommes amenés a choisir un environnement de
prototypage logiciel/matériel et une application cible. Ceci est le theme du présent chapitre.
Nous présentons dans sa premiére partie I’application de synthese d’images 3D connue sous
le nom du pipeline graphique 3D ou moteur 3D. Cette application répond bien a nos besoins
puisqu’elle présente des paramétres applicatifs modifiables selon le compromis (temps
d’exécution, qualité de I’objet fourni).

La deuxiéme partie de ce chapitre est consacrée a la présentation de I’environnement de
conception des systemes sur puce. Il s’agit de I’environnement QUARTUS qui permet de
concevoir des systémes sur puces sur les circuits FPGA de la societée ALTERA et qui integre
aussi le systeme d’exploitation MicroC_OS-II.

2 Apergu sur I'application synthese d’'image 3D

La chaine de production d’une image 3D est appelée pipeline graphique. Elle est formée par
I'ensemble des opérations nécessaires pour afficher un objet 3D regardé depuis une position et
avec une orientation donnée. A chaque fois que I'état de la scéne change (c’est-a-dire a chaque
mouvement de la caméra), elle doit étre redessinée. Pour cela, la description des objets de la
scene doit étre traduite en points 2D a I'écran.

Les éléments d’entrée de ce pipeline sont des triangles qui sont plus pratiques que les
quadrilatéres ou autres polygones pour les calculs. En effet, ils ne peuvent étre ni vrillés (dont
les sommets ne sont pas coplanaires) ni concaves. La plupart des moteurs 3D effectuent une

triangulation des différentes faces avant de les envoyer au pipeline graphique.

2.1 Différentes étapes du pipeline

Tout objet graphique complexe est d’abord transformé en un ensemble de triangles. La Figure

21 montre deux exemples de cette transformation.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

.

Chapitred : Etude de cas T environnement de conception

/

A'a'ay
/|
-

Figure 21: Objets transformés en un ensemble de triangles

Plusieurs éditeurs 3D permettent d’exporter un objet dans un fichier ASCII, comme le cas de
3D Studio. Ce fichier contient le nom de I’objet, le nombre de sommets et le nombre de faces.
Les sommets sont décrits avec leurs composantes X, y et z. Une fois les sommets initialisés,
les faces seront énumérées avec leurs trois sommets. Chacun des triangles subit alors les

différentes étapes du pipeline graphique. La Figure 22 représente ces étapes.

@ ransformations Test de visibilité
Calculs des lumiéres

ransformations des
Rasterisation Projection textures

Figure 22: Les différentes étapes du pipeline [lou04]

2.1.1 Transformations

Les transformations sont des translations, des rotations et des homothéties des triangles pour
les convertir de leurs repéres locaux au repére global de la scéne puis dans le repére de la
caméra. Pour ce faire, la position et l'orientation de l'utilisateur sont utilisées. En fait, ce sont
des operations matricielles donnant le transformé d’un point par une ou plusieurs des

matrices de transformations.

2.1.2 Test de visibilité

Le test de visibilité d’un triangle se fait gréce a son vecteur normal donnant sa face avant. Si
I’angle formé entre le vecteur normal N et le vecteur de vision V (allant de la face a I’eil) est

aigué alors la face sera visible. Sinon elle sera invisible. Ce calcul se fait en utilisant le

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁGQ

Chapitred : Etude de cas T environnement de conception

produit scalaire entre N et V. Si celui-ci est négatif alors cela signifiera que la face est

invisible.

Dans la suite, on détaille la détermination des fonctions de « calcul de normale » et «sa

normalisation » parce qu’on aura besoin dans la phase de réalisation des accélérateurs

hardwares.

2.1.2.1 Détermination de la normale a une face

Pour calculer la normale a une face triangulaire, on prend les trois vecteurs délimiteurs du

triangle, dans le sens des aiguilles d'une montre. La Figure 23 illustre cette étape. On soustrait

celui du milieu des 2 autres, et on obtient 2 vecteurs dont le produit vectoriel est la normale a

la face.

Soit les trois vecteurs Vi |y, [,\V2:| Yo | €t V3:|y, |, on détermine Vq; et Vi, tel que :

(Viix=Xa - Xp

Vi < Viiy =VYa- Yo
Vhiz=2a- 2y

(Vnox =Xc = Xp

Vo < Vn2y =Ye- Yo
V27 =2c-2p

Xa Xp Xc
Za Zp Zc
E9
E10
a
—
Vy
—
V3
b
c —
V>

Figure 23 : Détermination de la normale

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

RV

Chapitred : Etude de cas T environnement de conception

Nx = an.y X Vn2.z - Vn2.y X an.z
La normale de la face est N (Nx,Ny,Nz) tel que : < Ny = Vi1, x Viex — Vs x Vmx ELL
Nz = an.x X Vn2.y - Vn2.x X an.y

2.1.2.2 Normalisation

La normalisation est une étape trés importante dans la détermination du signe du cosinus de
I’angle entre deux vecteurs (lumiere et normale) pour le calcul de I’intensité de la couleur. En

effet, un produit scalaire entre deux vecteurs normalisés donne directement ce cosinus.

La normalisation du vecteur normal N(Nx,Ny,Nz) est donnée par le systeme d’équation E12.

(. N,
T NZENZ N2
{ Nn= i E12
N, = N,

T NZ N2 N2

2.1.3 Calculs des lumiéres

Les modéles d’illumination, ci-dessous, prenant en compte seulement les interactions entre
une surface et la source lumineuse, servent a déterminer I’intensité de la couleur en un point.
L’intensité de la lumiére est donnée par I’équation E13

I=lumiére ambiante + lumiere diffuse+lumiere spéculaire [lou04] E13

2.1.3.1 Lumiére ambiante

La lumiere ambiante correspond au modéle le plus simple. On considere qu'il existe une
source lumineuse présente partout éclairant de maniere égale (constante) dans toutes les
directions. Le calcul de I’intensité de la lumiere ambiante est donné par I’équation E14.

lamb= Pala E14

lamb : intensité de la lumiere ambiante.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ“

Chapitred : Etude de cas T environnement de conception

pa: est le facteur qui détermine la quantité de lumiere ambiante réfléchie par la surface et en

fonction des propriétés matérielles de la surface (0 < pa <1).
l.: I’intensité de la lumiere.
2.1.3.2 Lumiére due a une réflexion diffuse

Dans le modele de réflexion diffuse, l'intensité en un point d'une surface dépend de I'angle
formé entre le rayon de lumiére qui touche le point de la surface et la normale a cette surface.
Plus I'angle formé entre le rayon de lumiére et la normale au plan est faible, plus l'intensité

lumineuse réfléchie visible par I'observateur est forte. L’équation E 15 donne cette intensité.

laite = pa L {INP|| [|Lp]| cos 0 = pg I 1 (Npx.Lpx*+ Npy.Lpy + Npz.Lpz) E15

Idiff : intensité de la lumiére due & une réflexion diffuse.

pd : coefficient de réflexion diffuse de lasurface 0 <pd< 1

II: I’intensité de la source lumineuse.

Np (Npx,Npy,Npz) :la normale a la surface a un point P.
Lp(Lpx,Lpy,Lpz) : la direction du point P a la source lumineuse.

0: I’angle formé entre Np et Lp.

2.1.3.3 Lumiére due a une réflexion spéculaire

Le modele de réflexion spéculaire se différencie du modele de diffusion par le fait de faire
intervenir le point d'observation. Dans ce modele les rayons de lumiere sont réflechis par
symétrie par rapport a la normale a la surface. Ce modeéle correspond aux propriétés de
"miroir" des objets. L’équation E16 calcule I’intensité de la lumiére due a une réflexion

speculaire.

lso = ps 11 (INpI| [ILp]| cos 6)" E16

Isp : intensité de la lumiére due a une réflexion spéculaire.
ps : coefficient de réflexion spéculaire 0 <ps< 1

n : coefficient de la diffusion autour du rayon réflechi.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitred : Etude de cas T environnement de conception

2.1.4 Transformations des textures

Cette étape permet de transformer les textures avant qu’elles ne soient appliquées au triangle
dans I’étape de Rastérisation. Ce sont des transformations 2D sur les images qui sont un cas
simplifié des transformations 3D précedentes. Si aucune texture ne doit étre appliquee au
triangle, cette étape sera rejetée. Dans notre travail on n’a pas tenu compte de cette étape

puisgu’on n’utilise pas de textures dans nos objets.

2.1.5 Clipping (fenétrage)

Dans cette étape on élimine les triangles qui ne font pas partie du volume de vue (dans notre
cas I’écran de I’ordinateur) et on découpe ceux en partie visible selon leurs intersections

avec le volume de vue. La Figure 24 présente un exemple de fenétrage d’une figure.

Zone de Figure . Figure
clipping ==/ I_IF.. . clippée
= ‘-\.\ .--.__ --------------- § -\:\._13; --------------------

Figure 24: Clipping d’une figure

2.1.6 Projection

La projection est la transformation qui permet de donner la position du point image sur le
plan a partir d'un point dans I'espace. Il s'agit donc de déterminer ce que l'on doit dessiner sur
le plan de I'écran pour que l'observateur voie la méme chose sur le plan comme s'il observait

vraiment l'objet. La Figure 25 représente la projection d’un objet sur un écran.

ecran

}
's
@
@
S =
=]
observateur | coordonnégs en 'y ST
da [image de |'objel -
¥ sur le plan | 8 %

 distance focale

- -

coordonnée en Z de 'objat

Figure 25: Projection

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁm

Chapitred : Etude de cas T environnement de conception

Les coordonnées de I’objet en question sont données par le systéme d’équation E17.

D.xC
Cimagex = _?
E17
c. _ De xC,
imagey C

z

e Cimagex : Coordonneée en x de I'image de I'objet

e Cimagey : COOrdonnee en y de I'image de I'objet

e D¢ : distance focale.

e C,:coordo

e C,:coordo

nnee suivant x de I’objet.

nnee suivant y de I’objet.

e C,:coordonnée suivant z de I’objet.

2.1.7 Rastérisation

La rastérisation est I’étape transformant les formes géométriques 3D en des pixels sur

I’écran tout en donnant un aspect réel a I’objet 3D en question.

La solution la plus simple pour effectuer le rendu d’une surface consiste a calculer

I’illumination en chaque point visible de la surface. Cette méthode est tres colteuse en temps

de calcul. Dans cette partie, nous allons voir les différentes méthodes permettant de diminuer

le colit en temps en n’effectuant le calcul d’illumination que pour un nombre limité de points.

2.1.7.1 Ombrage plat

La méthode d’ombrage la plus simple pour les facettes polygonales est I’ombrage plat. Elle

consiste a calculer I’intensité de couleurs pour un seul point de la surface que I'on veut

représenter. Ensuite, on applique la méme intensité pour toute la surface. La Figure 26 montre

une application d’ombra
4
bl

ge plat sur un triangle.
A

a

Figure 26: Ombrage plat appliqué a uniiriangle

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

&

Chapitred : Etude de cas T environnement de conception

Soit P un point de la surface, I’intensité de couleurs est calculée par I’équation de
Lambert (E18).

Ip = lamp + laies + |spec E18

Ip : intensité de couleurs au point P.
lamb, lair €t lspec SONt respectivement définis dans (E14, E 15 et E16).

Si Np et Lp sont unitaires, a partir de I’équation E18, on obtient une nouvelle équation de
Lambert (E19) plus simple.
Ip = lamp + pa 11 cos 0 + ps I cos 6 E19

Si cos 0 <0, I’intensité résultante sera la valeur de I’intensité de la lumiere ambiante, sinon on

la calcule selon I’équation de Lambert.

Une fois I’intensité de couleurs calculée, on I’applique sur toute la surface du polygone en
utilisant un algorithme de balayage de lignes. Le résultat d’ombrage plat appliqué sur une

sphére est représenté par la Figure 27.

Figure 27: Ombrage plat appliqué a une sphére_

Cette méthode a tendance a trop faire ressortir les polygones qui représentent un objet comme

le montre la Figure 27.

2.1.7.2 Ombrage de Gouraud

La méthode développée par Gouraud élimine les discontinuités d’intensité de couleurs sur
une facette polygonale par interpolation des valeurs d’intensité aux sommets de la facette.
Cette technique permet d'avoir un lissage qui "gomme" les frontiéres entre les polygones que

I'on obtient avec un ombrage plat.

La Figure 28 présente une application de I’ombrage de Gouraud a un triangle ainsi que les

points clefs utilisés dans I’algorithme. Cet algorithme nécessite un calcul des intensités de

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ?S

Chapitred : Etude de cas T environnement de conception

couleurs dans les trois sommets du triangle (11, 12 et 13), une interpolation de I’intensité de

couleurs entre les sommets et une interpolation horizontale (selon I’axe des x) de I’intensité

de couleurs.
y A
|
1 a
5] S
Ia
) I
yofe I3
c | b
D : :
D) E !

»

Xa B X

Figure 28: Ombrage de Gouraud appliqué a un triangle

Calcul de I’intensité de couleurs dans les sommets

Le calcul de I’intensité de couleurs dans un sommet du triangle nécessite d’abord la
détermination des normales aux sommets. La normale a un sommet est la moyenne des
normales des faces partageant ce sommet. Par la suite, I’intensité est calculée a I’aide de

I’algorithme d’ombrage plat.

Interpolation de I’intensité de couleurs entre les sommets
Dans cette étape, on considere une ligne de balayage (ys) qui fait le parcourt du triangle en
commencant par le sommet (a). A chaque déplacement vertical de (ys), on calcule les

couleurs aux extrémités 1A et IB respectivement selon les équations E20 et E21.

(Vs = Y,) x 1 +(y, =y,)1,

I, = E20
Yi—Ys

oo Vs =ya)xhi (v —y) >, E21

° Yi—Ys

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁm

Chapitred : Etude de cas T environnement de conception

Interpolation horizontale de I’intensité de couleurs
Pour avoir une interpolation horizontale de I’intensité de couleurs entre 1A et IB, en faisant le

parcourt de la ligne de balayage pixel par pixel, on incrémente I’intensité de couleurs par
(AIS) selon I’équation E22.

Iz -1
Alg =—2—~ E22
Xg = Xa

La Figure 29 montre une sphere en utilisant I’ombrage de Gouraud.

Figure 29 : Ombrage de Gouraud appliqué a une sphére

2.2 Graphe de taches de I'application 3D

Il faut dire que nous avons un code original (qui a des limites qu’il faut citer) qui utilise des
fichiers ascii en entrée, et qui génere sur « écran un seul objet 3D animé avec I’algo plat et

gouraud selon le modéle de couleur a spécifier

Nous avons réalisé le graphe de taches associé a cette application. Il est illustré par la Figure
30.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ”

Chapitred : Etude de cas T environnement de conception

Mat_ident
4X4

Load ASC

\ 4

Rotation

Translation

Echelle

Table de coordonnées sommets
Table des faces

Matrice homogéne M

\ 4
Transformation
{projection}

v
Calcnormale
{vectoriel, normalisation}

. Vecteur lumiére
Normale a la face Normalisé

Produit scalaire

Les coordonnées des
Sommets (monde xyz,
Ecran xy)

Tri des faces

v /
Dessin_poly \
T Dessin_Objets

Figure 30: Graphe de tache de I’application synthese 3D

2.3 Modification de I'application « synthese 3D »

Afin de pouvoir appliquer les décisions d’adaptation (algorithmique) du module

« adaptateur » il est nécessaire que le code original soit modifié pour qu’il puisse:
v’ générer un nombre d’objets 3D différents sur I’écran
v' varier le nombre de polygones représentant un objet 3D.
v' varier le type de d’ombrage de I’objet (Plat ou Gouraud).

Le principe consiste a dégrader la qualité (en réduisant le nombre de polygones ou

I’algorithme d’ombrage) si nécessaire au profil de la préservation de I’autonomie du systeme.

2.3.1 Construction des configurations logicielles

Comme premiére étape, nous avons créé différentes configurations {A',im } d’objets 3D.
Dans un premier temps, ces configurations sont purement logicielles (Im ={logicielles}) avec

deux paramétres applicatifs d’adaptation :

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *‘78

Chapitred : Etude de cas T environnement de conception

e Le nombre variable de triangles
e Le type d’algorithmes d’ombrage.

o Variation du nombre de triangles

Pour cela, on a utilisé I’éditeur Autodesk 3Ds max 2010. Cet outil permet la modification du
nombre de polygones constituant I’objet. En effet, I’augmentation du nombre de polygones
entraine I’amélioration de la qualité et vice versa. La Figure 31 montre I’effet de la

modification du nombre de polygones sur la qualité de I’objet 3D.

Figure 31 : Objets 3D avec qualités différentes

Les objets crées sont ensuite enregistrés sous forme de fichier d’extension «.3Ds ». Pour les
exploiter par I’application synthese 3D, ces fichiers doivent étre transformés en fichiers
ASCII d’extension « .asc ». Pour cela nous avons utilisé I’outil Wcvt2pov pour la réalisation

de cette conversion [Ben07].

Le fichier ASCII créé contient le nom de I’objet, le nombre de sommets et le nombre de faces.
Les sommets sont décrits avec leurs composantes X, y et z. Une fois les sommets initialisés,
les faces seront énumérées avec leurs trois sommets. Ce fichier sera ensuite fourni comme

entrée pour I’application « synthese 3D ».

o Modification du type d’ombrage

Nous avons modifié le code de I’application 3D afin d’étre capables de traiter deux types
d’algorithmes d’ombrage qui sont I’algorithme plat et I’algorithme Gouraud avec un nombre

de polygones qui peut varier au cours du fonctionnement du systeme. Bien entendu, nous

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁm

I

Chapitred : Etude de cas T environnement de conception

avons modifié la plupart des structures de données utilisées afin de pouvoir modifier le type

d’ombrage et le nombre de polygones de I’objet au cours du fonctionnement du systeme.

2.3.2 Développement d’'une version multi-applications

Pour tester notre technique d’adaptation, nous devons traiter plusieurs applications
multimédia simultanément. Pour cela, nous avons modifié le code principal de I’application
3D qui fait le traitement d’un seul objet 3D en un code qui peut manipuler plusieurs objets a
la fois dans la méme scéne. On suppose que chaque objet 3D constitue une application
indépendante et que chaque application représente une seule tache qui s’execute
indépendamment des autres taches (une tache ne peut pas utiliser les accélérateurs marériels

des autres).

2.4 Intégration des services de MicroC/0S-II

Afin d’exécuter le code de la synthése 3D sur MicroC/OS, nous devons les répartir en taches
qui coopérent pour genérer une scéne d’objets 3D choisis par I’utilisateur. La Figure 32

présente le principe utilise.

Task_init

Task Create Tasks

Task Anim 1 Task Anim 2 Task Anim N

Task Assemblage

Figure 32 : Scénario du fonctionnement de I'application 3D avec les services MicroC/OS
Tout d’abord nous avons défini une tache initiale « task_init » qui permet de :

o spécifier le nombre d’objets N a afficher dans la scéne.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

-

Chapitred : Etude de cas T environnement de conception

o Faire I’appel des fonctions indépendantes du traitement de I’animation des

objets :
v' Preparepal () pour la préparation de la palette des couleurs.
v Precalc () pour le calcul des tableaux de sinus et cosinus.
v" Normalise () pour la normalisation du vecteur de lumiére).

o Ensuite selon le nombre d’objets choisis dans la tache précédente nous faisons
la création des taches d’animation. Chaque tache « Task_Anim i » (avec 0< i

< N) manipule I’animation d’un objet 3D de la scéne.

o Une fois que toutes les tdches d’animation ont terminé leurs traitements, nous
faisons I’appel de la tache « Task_Assemblage » qui permet I’assemblage de
tous les objets dans une méme scene. Aprés I’exécution de la tache
d’assemblage nous revenons a I’exécution des taches d’animation et ainsi de

suite.

3 Environnement de conception des configurations mixtes

Divers types d’environnement de conception de systéeme sur puce existent. Dans notre travail
nous avons choisi celui fourni par Altera. L’inconvénient de cet environnement est qu’il ne
permet pas de faire de la reconfiguration dynamique. Pour remédier a ce probléme toutes les
configurations hardware seront embarquées et le systeme switch entre elles suivant les
besoins du systéme. Bien entendu nous supposons que les autres configurations n’existent pas

dans le systéme.

Ce choix a été fait vu la disponibilité ainsi que la maitrise qu’on a développé de se type de
plateforme dans notre laboratoire. Par ailleurs, la contribution de la these est de traiter le
probleme d’adaptation et non pas la reconfiguration dynamique qui est traitée dans d’autres
travaux (ex. these de Linfeng YE, dans le laboratoire Lab-STICC [Lin10b]).

Cet environnement de développement comporte essentiellement :

e un environnement de conception hardware/software formé par un ensemble de

logiciels :

0 Quartus : compilation et simulation du hardware

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁBl

Chapitred : Etude de cas T environnement de conception

o Programmer : configuration de I’FPGA par la partie hardware
0 SOPC Builder : conception de la partie hardware par assemblage d’IP

o Nios IDE : implémentation et exécution de la partie software par émulation ou

sur la carte
e une carte pour le prototypage du systéeme.
0 L’FPGA utilisee est le (Stratix 111)
0 Le processeur Nios-II

0 Un cable JTAG pour la configuration de I’FPGA et I’exécution de la partie
software.

La Figure 33 montre le schéma de la carte de développement utilisée

JTAG Control DIP Switch (SWH)

QDRIl+ SRAM (U15) Stratix ll | oe pe yaaxcn -
(Behind the LCD Screen) 24 MHz Crystal (v4) o~ (U22) 1

Device Select (J2) 1vpe BUSB
Jumper - Connector (J5)

Speakar Header (J1) Flash Memory Device [Uf}} A CI!"'L‘BX: ::5) .
HSMC FortB - - _ Ll \ T 24 MHz Crystal (v2)
TX/RX Activity LEDs | Ji) : e . Y
i \ F Crystal (Y3)

DDAR2 SDRAM
(U7, U20)

MAX |l Control

HSMC Port B (J8)- DIP Switch (SW2)

PGM Config Selact
Rotary Switch (SW3)
—_ Ethernet PHY

LEDs (D6, D7, D8} and

HSMC PortB |
Prasent LED (D10}
Y

MSELC to GND___ {'o T o Tt = E - VSEERON
Jumper (J13) : . i — RuJ-45 Ethemat
: 2 O e Fel ' Connactor {J14)
HSMC Port A | B ot Ethernet PHY TX/RX
TH/RX Activity focess . : 3) S Activity LEDs (D14, D15}
LEDs (D11, D12) o: (OO - & e S
| : BB Clock In/Out SMAs (J18, J17)
HSMC Port A (J18) b Factory Configuration
. Push Button (51)
I Power Swiich (SW4)
HSMC Port A) Power LED (D16)
Presant LED (D17) =—DC Power Jack (J21)

Power Display (U27) User Display (U28)

: . : Resat Configuraticn
. I o ' Configuration | | ™ Push Button (S7)
User DIP Switch (SW5
il AEWE) User Push Buttons Do LED (D2 | BoMmSpeciEs.
(S2 through S5) | DDR2 SDAAM LEDs (Da3-D36) el T
DIMM Connector (118} ¢py) Rasat ?
! Push Button (SE)
Power Selact
Aotary Switch (SWE)

Figure 33 : Schéma de la carte de développement Stratix |11

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel jsz

Chapitred : Etude de cas T environnement de conception

3.1 Le processeur embarqué NIOS

Le processeur embarqué NIOS est un processeur RISC (Reduced Instruction Set Computer),
délivré sous forme d’un Soft Core (une IP disponible dans I’environnement SoPC Builder),
dédié a la famille d’Altera. L architecture du NIOS Il peut étre choisie selon les besoins de

I’application :
- Possibilité de réduire ou (enrichir) les périphériques supportés par ce processeur.
- Ajout d’instructions spécialisées (au maximum 256 instructions)

- Pouvoir de supporter des composants faits par le concepteur

#ads rul
———- I:: .

aldaii

il -
Irtaript
e Conem [TTe]
- e grths
— = —--J‘-F_.-
ol ‘!
[- |

Figure 34: CPU NIOS

Ce processeur possede une largeur de bus de 32 bits, au maximum 6 niveaux de pipeline

Figure 34. Sa fréquence de fonctionnement est de 100MHZ.

Le NIOS Il utilise le bus Avalon Dans la suite nous nous intéressons a étudier le bus Avalon.
Cette étude nous aidera au fur et a mesure, de notre travail a I’ajout des accélérateurs a notre

architecture hardware. [Alt11]

3.2 Etude du bus Avalon

L’Avalon est un bus simple congu pour connecter les processeurs embarqués et les

périphériques dans un systeme sur un composant programmable (SOPC).

Les transactions de base du bus Avalon peuvent utiliser une largeur variable de données (8,
16, ou 32 bits) entre un périphérique maitre et un périphérique esclave. Une fois un transfert
est accompli, le bus est immédiatement disponible sur le prochain coup d’horloge pour une

autre transaction entre la méme paire maitre-esclave ou entre des maitres et des esclaves

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁSS

Chapitred : Etude de cas T environnement de conception

indépendants. Le bus Avalon supporte également les dispositifs avancés de communication
tels que les périphériques latents, les périphériques de transferts. Ces modes avancés de
transfert permettent a plusieurs unités de données d’étre transférées entre les periphériques

pendant une simple transaction du bus.

3.2.1 Caractéristiques

La Figure 35 montre la décomposition du bus Avalon. Il comprend un décodeur d’adresse, un

multiplexeur de données, un génerateur de cycles d’attente et un contrdleur d’interruption.

Le bus Avalon supporte plusieurs maitres du bus. Cette architecture multi-maitres fournit une
grande flexibilité dans la construction des systemes SOPC et est favorable aux périphériques
de large bande passante. Par exemple, un périphérique maitre peut exécuter des transferts par
acces direct en mémoire (DMA), sans exiger un processeur pour transférer des données a

partir du périphérique a la mémoire [Alt02].

Processeur \,/:> Décodeur Interface | —
NIOS 1 | D’adresse Des ports K .)
i i (—| TIMER
1 | Multiplexeur !
' | De données :
i N—/ Mémoire
i | Controle : Interne
i | Interruption (] :
1 ™ ! .
! u i]
i : -
1| Générateur /\ | -
' | Wait_state :
| Largeur A__1\| Périphérique
i BUS N—v| D’utilisateur

Figure 35: Architecture de bus Avalon

Cette interface est générée de fagon transparente par le SOPC Builder ce qui permet la

création rapide d’un systeme complet fonctionnel intégrant le NIOS avec ses périphériques.

L ajout d’un périphérique sur le bus dépend de son type maitre ou esclave.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *‘84

Chapitred : Etude de cas T environnement de conception

Un périphérique maitre est un périphérique qui peut initialiser les transferts. Il a au minimum
un port master qui est connecté au bus Avalon. Il peut avoir un port esclave qui permet au

péripherique de recevoir des transferts initialisés par les autres maitres.
Un périphérique esclave est un périphérique qui accepte les transferts mais il ne peut pas les
initialiser. Par exemple une mémoire, un UART.
3.2.2 Modes de transfert.
Le bus Avalon offre différents modes de transferts que nous détaillons par la suite :
» Transfert simple

Un transfert est une opération de lecture ou d’écriture qui peut prendre un cycle s’il s’agit
d’un transfert sans « wait state » pour les péeriphériques synchrones ou plus d’un cycle pour

les périphériques asynchrones qui nécessitent wait state.
» Transfert avec latence

Le bus Avalon supporte les transferts de données avec latence. Dans ce cas le maitre peut
initialiser un transfert de lecture, passe a un autre transfert et retourne pour recevoir les

données plus tard.
» Transfert en mode Streaming

Ce mode de transfert permet de créer un canal entre le « streaming maitre » et le « streaming
esclave » pour executer successivement des transferts de données. Ce mode de transfert peut
utiliser le « setup time » ou le « hold time » ou « waite states ». Ce mode de transmission

maximise le débit entre le maitre et I’esclave.

3.3 Flot de conception de I'’environnement d’Altera

La Figure 36 présente les étapes necessaires pour le prototypage d’un SoC en utilisant le kit
de développement d’Altera.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁBS

Chapitred : Etude de cas T environnement de conception

\4

Core NIOS Configuration du CPU
v

Sélection des périphériques

\4

Périphériques (IPs)

Matériel v Logiciel
- Fichiers verilog/vhdl Configuration du Bus e
- TCL Scripts 1 I_C iers *.c
- Test Bench - Pilotes de
N Génération périphériques
Debug Info
A 4 SOF EXE v
Quartus M & ; - Cygnus/Red Hat GNU Pro
LeonardoSpectrun TV » SignalTap ™™ [« Y9
A A A
PC Trace JTAG —
- Conception utilisateur - Code Utlllsateur
- Autres IPs STRATIX - Bibliothéques
- RTOS

Figure 36: Flot de conception logiciel et mateériel

4 Etude du systeme d’exploitation temps réel : MicroC/0S-II

MicroC/OS-Il, congu et mis a point par Jean J. Labrosse, est un noyau temps reel permettant
d’effectuer une exécution de plusieurs taches sur un microprocesseur ou un microcontréleur
[Lab02].

Ce noyau temps réel est maintenant disponible sur un grand nombre de processeurs, et il peut
intégrer des protocoles standards comme TCP/IP (uC/IP) pour assurer une connectivité IP sur
une liaison série. Les différentes versions de MicroC/OS-1l sont portées sur des systemes
différents : Motorola famille 680x0, 68HC11/16, Power PC 860, Intel 80x86, Philips XA, etc.

4.1 Capacités et caractéristiques

Les caracteéristiques essentielles de ce noyau sont les suivantes :
- Ouvert, code source disponible [Lab02],

- Portable, ROMable donc Encapsulable dans un produit,

- Fiable et robuste,

- Aux fonctionnalités ajustables,

- Multitaches et préemptif (I’Ordonnanceur de ce noyau contient seulement quatre lignes

simples de code C),

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel Ij%

Chapitred : Etude de cas T environnement de conception

- Interruptible : traitement des interruptions Par les ISR,

- Il permet de gérer 63 taches ou chaque degré de priorité correspond a une seule tache,

c'est-a-dire que deux taches ne peuvent pas avoir le méme degré de priorité.
- Changement de priorité des taches (inversion et héritage de priorités).
- Fonction d'attente de tache,
- Occupation optimale dans la mémoire: 2 Koctets taille du code,

- Création et gestion des semaphores, des mutex, des mails box, des queues de messages et

des drapeaux d’événements,

- Le temps d'exécution pour la plupart des services fournis par pC/OS-Il est constant et

« déterministe ».

4.2 Structure de MicroC/0S-I1

Le systeme MicroC/OS-II peut étre vu comme une bibliothéque de fonctions réparties sur des
couches logicielles. Cette bibliotheque est liée avec I’application a développer. Ainsi, les
services de MicroC/OS-11 sont appelés depuis I’application comme de simples fonctions. Et
comme le montre la Figure 37, le code source de ce noyau est divisé en deux sections : la

premiére est indépendante du processeur et la seconde en est dépendante.

/ Application Software (le code)
Micro C/OS-II
(Processor Independant Micro C/OS-I11
Code) Configuration
OS_CORE.C (Application
OS_FLAG.C Specific)
0OS_MBOX.C
OS_MEM.C
OS_MUTEX.C
0Ss_Q.C OS_CFG.h
OS_SEM.C INCLUDE.H
OS_TASK.C
OS_TIME.C
UCOS_II.C
UCOS_IILH
Micro C/OS-11 (Processor Specific Code)
Sw OS_CPU.H
HAL 0S_CPU_A32.s
\ OS_CPU_C.C
HW CPU Timer

Figure 37: Structure de MicroC/OS-11

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *‘87

Chapitred : Etude de cas T environnement de conception

4.3 Fonctionnement de MicroC/0S-II

Lors de l'initialisation du programme MicroC/OS-I1, les différents programmes de I'utilisateur
sont considérés comme des taches qui sont toutes créées pendant cette période d'initialisation.
Le programmeur doit alors spécifier le point d'entrée de la tache, I'emplacement des données
pour cette tache, I'adresse de la téte de la pile de la tache et le degré de sa priorité. Ainsi, la
tache du plus haut degre de priorité est préte a I’execution. Les taches peuvent communiquer
avec d’autres grace aux sémaphores, boites aux lettres, files d’attentes et aux drapeaux

d’événements, ou bien avec des périphériques grace aux ISRs.

4.3.1 Création d’'une tiche

Une telle tache de I’application est constituée par une zone d'initialisation (une zone
permettant d'initialiser les variables du programme utilisateur), une zone ou l'utilisateur place
le code de son programme et une instruction OSTimeDly(n) permettant de céder « n » coups

d'horloge aux autres taches. La création de la tache se fait en appelant la routine suivante :
OSTaskCreate(AppTaskl, (void *)0, (void *)&AppTask1Stk[255], 3);

AppTaskl: point d'entrée du programme utilisateur (nom de I'étiquette).

(void *) O : adresse des données.

(void *)&AppTask1Stk [255] : adresse de la téte de la pile de la tache.

3 : degré de priorité de la tache.

4.3.2 Fonctions de base

Les principales routines de MicroC/OS-I1 sont [Lab02] :
= [nitialisation de pCOSII : OSInit()
= Deémarrage du multitache : OSStart(),

= Gestion des taches: OSTaskCreate, OSTaskCreateExt, OSTaskQuery, OSTaskDel,
OSTaskDelReq, OSTaskChangePrio, OSTaskSuspend et OSTaskResume.

= Gestion d'interruption : OSIntEnter et OSIntEXxit.

= Gestion du temps: OSTimeDly, OSTimeDIyHMSM, OSTimeDIlyResume,
OSTimeSet, OSTimeGet et OSTimeTick.

= Gestion des sémaphores : OSSemCreate, OSSemAccept, OSSemPost, OSSemPend,
0OSSembDel et OSSemQuery.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁBS

Chapitred : Etude de cas T environnement de conception

= Gestion des mails box: OSMboxCreate, OSMboxAccept, OSMboxPost,
OSMboxPend, OSMboxDel et OSMboxQuery.

= Gestion des files de communication : OSQCreate, OSQAccept, OSQPost, OSQPend,
OSQQuery et OSQDel.

= Gestion des drapeaux d’événements: OSFlagCreate, OSFlagPost, OSFlagPend,
OSFlagDel, OSFlagAccept et OSFlagQuery.

4.3.3 Communication inter tiches
Deux mécanismes élémentaires sont adoptés :

4.3.3.1 Partage de variable

Dans le cadre d’un partage de variable, le plus souvent, une tdche produit des données qui
sont utilisées par une (ou plusieurs) autre(s) tache(s). La coopération des taches de
I’application entre elles s’effectue a travers les messages, et les queues de messages. Alors
que le sémaphore est employé pour gérer I’acces exclusif a la ressource partagée du systéme

(mémoire vidéo). Le commun entre toute coopération est la présence de deux actions :
- Signalisation ; appelée aussi envoi (Posting).
- Attente ; appelée aussi réception (Pending).

Avec MicroC/OS, lors de la création d’un tel outil de communication, un ECB (Event
Control Block) est créé pour maintenir I’état courant de cet outil. En fait, un ECB est une
structure de données designee pour décrire le type de I’événement en cours, ainsi que la liste
des taches en attente sur cet événement, avec d’autres informations nécessaires pour sa

gestion.
Les actions de synchronisation mises au point sont les suivantes :

- Lors d’un PEND sur un sémaphore, un mutex, un message de la queue de messages ou un
message d’un mail box, la fonction OS_EventTaskWait() est appelée pour retirer la tache

courante de la liste OSRdyGrp, et la mettre a I’état bloqué dans la liste OSEventGrp.

- Lors d’un POST sur I’'un de ces outils, la fonction OS_EventTaskRdy() est appelée pour
déterminer la prochaine tache en attente qui aura la section critique. Et donc, celle-ci sera
retirée de la liste OSEventGrp et mise a nouveau, active dans la liste OSRdyGrp.

- Lors d’un retour au PEND sur timeout, la fonction OS_EventTo() va retirer la tache de la

liste OSEventGrp, mais sans la mettre a nouveau active car elle I’est déja. En effet, c’est

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁBg

Chapitred : Etude de cas T environnement de conception

OS_TickTime() qui a la responsabilité de mettre OSTCBDIy a jour et puis de rendre la

tache active lorsque ce dernier arrive a 0.
4.3.3.2 Synchronisation par événements

Dans ce cadre, les taches sont synchronisees via les événements. En fait, si deux taches ont
besoin de se synchroniser avec I’apparition de multiples événements, typiquement, la
seconde, afin de poursuivre son exécution, devra attendre que la premiere parvienne a un
point donné. La synchronisation est maintenue a travers les drapeaux d’événements (Event
Flag).

Les drapeaux d’événements de pCOS-II sont constitués de deux éléments : une série de bits
(8 ou 16 ou 32 bits) utilisés pour maintenir I’état courant des événements dans le groupe, et
une liste de toutes les tdches en attente de la combinaison de ces bits (0 et 1) selon I’ordre
deésiré.

La gestion d’un événement se fait généralement au moyen des actions suivantes:

- Lorsd’un PEND, la fonction OS_FlagBlock() est appelée pour maintenir le blocage de la
tache en attente sur I’apparition de I’événement. En fait, si les bits désirés dans le groupe
de drapeaux d’événements (Event Flag Group) ne sont pas encore obtenus, cette tache
restera en attente indéfiniment jusqu’a la production de I’événement, ou bien I’expiration
du timeout. Dans le cas de notre application, nous attribuons la valeur 0 au champ
« timeout », étant donné que les taches en attente sur un événement ne consomment
aucune capacité de traitement, donc elles restent indéfiniment en attente jusqu’a ce que

I’événement se produise.

- Lorsd’un POST, la fonction OS_FlagTaskRdy() est appelée pour retirer la tdche bloquée
de la liste d’attente (Waiting List of the Event Flag Group), et la remettre a nouveau a
I’état prét pour s’exécuter. Pour garantir qu’a tout moment le systéme puisse répondre
aussi rapide que possible a un événement, cette tadche devrait commencer son exécution
juste apres la terminaison de la tache produite. Pour ce faire, si la priorité associée a la
tache produite est « i », alors celle de la tiche consommatrice sera « i+1 » sachant que la

valeur la plus petite correspond a la priorité la plus élevée.

5 Conclusion

La premiére partie de ce chapitre a été consacrée a la présentation de I’application de

synthese d’images 3D. On a présenté les différentes étapes du moteur graphique 3D qui

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *}90

Chapitred : Etude de cas T environnement de conception

permet la création d’un objet 3D. On a présenté aussi les modifications qui ont été apportées a
cette application pour qu’elle supporte la creation de plusieurs objets. On a ajouté aussi la
possibilité de changer le type d’algorithme d’ombrage et le nombre de polygones au cours du

fonctionnement du systéme.

On a présenté dans la deuxiéme partie I’environnement de conception Hardware/Software
adopté ainsi que le systeme d’exploitation temps réel MicroC_OS-IlI fourni avec

I’environnement.

La deuxieme partie de I’étape de validation consiste a mettre en place I’approche proposée a
travers I’environnement et I’application choisis dans le but de mesurer ses performances et

valoriser son apport.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁgl

Chapitre 5: Expérimentations & Validation

1

(20 &2 I~

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Chapitre 5 : Expérimentation et

validation
o T [o4 [S 93
Construction de la base des CONfIGUIAtIONScoviiiiiiiiii s 93
2.1 Configuration purement 10gICIEHESccuveiii i 93
2.1.1 Etude de I’effet des attributs applicatifs sur le temps d’exécutioncccccevnen. 95
2.2 Conception des configurations mixtes HW/SW ... 96
2.2.1 Conception d’accéléerateurs dedies a la synthese 3Dcccoceveiiieiinininieieee, 96
2.2.2 Implémentation des aCCEIErateUIS.ccveiviiiiee e 102
2.3 Ajout des COPrOCESSEUNS NAITWAIESceeverieierieitesiesieeieeie et 107
2.4 Etude de I'effet des parametres architeCturaux SUr TEXEccvvevveeveeiieevieeieseesie e 108
2.5Mesure de 12 CONSOMMALIONccuveieiieiieie et e et ste e ae e sreeneeeneesneas 109
2.6 Mise en place du modele de QOS..........cov oo 110
2.7 CONTIGUIALIONS FEIENMUES ..ottt bbbttt 112
Mise en place d’un systéme d’exploitation temMPS Féel..........cccviiiiiiriiie e 113
3.1Description de I’EDF (Earliest Deadling First)........c.ccoovririiiiieneni e 113
3.2Implémentation de 'EDF soUS UC_OS-1l.......ooviiiiiiie et 113
3.2.1Gestion de 1a PEMOTICITAooveiiiiiieeee e 114
3.2.2Mise en RUVIE A8 EDFcooiiiiiie e e 116
Test de I’apPrOCHE PIOPOSEEocviv ettt ettt et r bt s et e e s e et et eneebe st en e beneenes 118
YN o] o1o] g le (SN I T o] o] ol o 1= TSSOSO PR 121
Mise en ceuvre des algorithmes d’OpPtimiSAtiONooiiiiiiiiiiiiee e 124
B. L PIEMIEE SCENAITO ...vveveeiieeieeie ettt te et et e s e s e e teeseesteeteaneesraeaeeneeaseeteaneenneas 125
6.2 DEUXIEIME SCENAMO.....vevieuierieiteite st sie ettt ettt te e s e s et e e bestesbesreereaneeseeneeneenees 126
B.3MELNOTE MIXEEeevieeie ettt e b e reesreeaeeneesreenteeneenreas 127
(O] o111 o o S 129

0

Chapitre 5: Expérimentations & Validation

1 Introduction

Dans ce chapitre nous décrivons dans la premiére partie les différentes étapes qui ont conduit
a la mise en ceuvre concréte de cette application pour la validation de I’approche. Ces étapes
regroupent la mise en place de la plateforme de prototypage et la caractérisation des
configurations choisies pour le systeme. La deuxieme partie de ce chapitre est consacrée a la
présentation des résultats expérimentaux issus de I’exécution de notre approche sur un
systéme physique. Nous cléturons ce chapitre par la présentation des résultats fournis avec les

algorithmes d’optimisation implémentés.
2 Construction de la base des configurations

Nous allons suivre les étapes décrites dans le troisieme chapitre pour la mise en place de la
base des configurations. Nous commencgons par I’étude de différents parameétres applicatifs
qui influent sur la QoS du systéme. Ensuite nous appliquons I’approche de partitionnement
hardware/software pour déterminer les parties candidates pour une implémentation matérielle
pour notre application. Une fois les configurations implémentées et interfacées sur le bus

nous passons a |I’étape de caractérisation.

2.1 Configuration purement logicielles

Dans cette étude, nous utilisons un méme attribut architectural : une implémentation
purement logicielle (processeur + mémoire) sans avoir recours a des modules d’accélération
hardware. Nous disposons d’un code C faisant du rendu 3D sur écran en utilisant les deux
techniques d’ombrage flat et Gouraud (Dore, 2005) décrites dans le chapitre précédant. Ce
code permet de charger un fichier d’extension .ASC décrivant les sommets et les polygones
de I'objet 3D et de lui faire les traitements nécessaires pour le visualiser sur I’écran. Le cycle

d’exécution de I’application de synthése d’images 3d est représenté par la Figure 38.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

0

Chapitre 5: Expérimentations & Validation

Format .3DS Format .ASC w

3DMAX

"> wc2pov27?

Exécution

sur —

plateforme

TN

Fichiers. ASC représentant
des objets avec
NbPoly variable

w

|

Programme principal
«rendu 3D » adapté au
compilateur de NIOS [N

Programmer Winzip
Mémoire K== Avec un taux de
flash compression nul

Figure 38: Procédure d’exécution de I’application synthése d’images 3D

L’environnement de conception de la partie software le Nios-IDE, ne prend pas en

considération le traitement des fichiers séquentiels. Afin de remédier a ce probleme nous

avons utilisé la mémoire flash pour que I’application puisse lire les coordonnées des

polygones formant I’objet 3D. Cette méthode exige que les fichiers chargés soient étre

compressés par le logiciel Winzip avec un taux de compression nul (Figure 39).

S

!lcheStacr. TCP/IP Stac
Lightweight TCP/IP Stack {Der

)

Altera Zip Read-Only File System

Specify a Zip file to include in the HAL file system. The contents become available via C standard library functions, such as fopen().

[] Add this software component

Flash memory device ext_flash | =
Offset 100000
Mount-point fmntfrozipfs

Zip file {must be uncompressed) | fich.zip

Browse...

Restore Defaults |

OK | | Cancel

Figure 39 : Configuration des composants logiciels

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Chapitre 5: Expérimentations & Validation

2.1.1 Etude de I'effet des attributs applicatifs sur le temps d’exécution

Nous étudions dans I’impact du changement du nombre de polygones de I’objet 3D et le type
d’algorithme d’ombrage sur le temps d’exécution de I’application. Cette étude est faite dans
les deux cas d’ombrage : ombrage plat et ombrage de Gouraud. Pour la mesure du temps
d’exécution on a utilisé le Timer. Le résultat est en nombre de tics; pour le convertir en
secondes il suffit de diviser la valeur par la fréquence de fonctionnement du systeme (100Mhz

dans notre systéme).

La Figure 40 illustre le résultat de I’exécution de I’application 3D en modifiant le nombre de
polygones et de I’algorithme d’ombrage.

70000000
, 60000000
=]
§ 50000000
c
£ 40000000
(8]
‘O
3 30000000 ——Texe_SW_Flat
©
é 20000000 —@—Texe_SW_Gouraud
()]
F 10000000

0

0 500 1000 1500
Nombre de polygones

Figure 40: Impact du changement du nombre de polygones et de I’algorithme d’ombrage sur

temps d’exécution de I’application

Nous constatons que le temps est d’autant plus élevé qu’on augmente le nombre de
polygones. Méme chose I’utilisation de I’algorithme d’ombrage de Gouraud demande un
temps d’exécution plus élevé que I’algorithme de Lambert (Plat). Cette étude permet de fixer
les premieres caractéristiqgues des configurations a construire : temps d’exécution, type

d’ombrage, nombre de polygones.

Nous détaillons dans la suite I’étude de I’effet des attributs architecturaux sur le temps
d’exécution de I’application.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ%

Chapitre 5: Expérimentations & Validation

2.2 Conception des configurations mixtes HW/SW

Dans cette section, nous étendons notre étude au deuxieme niveau d’adaptation qui est le
niveau architectural et nous étudions I’influence des attributs architecturaux sur le temps

d’exécution de I’application.

Nous détaillons dans un premier temps la mise en place des accélérateurs, ensuite nous

étudions I’effet de I’utilisation de ces accélérateurs sur le temps d’exécution.

2.2.1 Conception d’accélérateurs dédiés a la synthese 3D

Nous présentons dans cette section une implémentation matérielle de quelques modules de
I’application de synthése d’images 3D. Nous suivons la démarche développée au troisieme
chapitre pour la conception de ces accélérateurs afin d’obtenir des solutions architecturales en

adéquation avec les caractéristiques algorithmiques de I’application.

2.2.1.1 Exploration de l'espace des solutions pour 'application synthése 3D

Le but de cette tache est d’identifier les fonctions candidates pour une implémentation
hardware. Plus une implémentation comporte d’accélérateurs, plus elle sera performante
(temps d’exécution plus faible) au depend d’une architecture plus complexe et donc qui

consomme plus d’énergie électrique.

Le nombre de solutions possibles correspondant a une application donnée est tres élevé. Le
choix des solutions retenues est trés important. Ceci passe a travers une analyse de
I’application synthese 3D sous forme de profilage et d’analyse de complexité de chacune de
ses fonctions. Ce qui permettra d’identifier les fonctions critiques qui nécessitent un

traitement particulier.

Le profilage est obtenu grace a un outil spécifique de NIOS IDE qui utilise un compteur
materiel précis appelé « Performance Counter». Cet outil détermine le temps d’exécution des
fonctions, le pourcentage ainsi que le nombre d’appels de chaque fonction, ce qui nous
permettra d’identifier les fonctions critiques nécessitant des modules matériels pour leur
exécution. Dans un deuxiéme temps, nous utilisons « Design Trotter » afin de mieux analyser

les fonctions critiques.

2.2.1.1.1 Résultat de profilage sur Nios-II
Le Tableau 3 représente les résultats de profilage pour I’application de synthése 3D décrite

entierement en langage C. Ce profilage représente le temps d’exécution pour chaque fonction

ainsi que son nombre d’itération.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁ%

Chapitre 5: Expérimentations & Validation

Tableau 3: Le résultat de profilage par I’outil « Performance Counter »

finizh 3D ayntheziz code—-Performance Counter Report-—-

Total Time: 437.06% =econds (218353450472 clock-cycles)
- +—— - - - 4
Section % Time (=zec) Time (clock=z) |Cccurrences
- +————- - t—————————— - 4
transformation £.03 26.87581 443790261 3e0
- +—— - - - 4
calnormal 13.5 L8.0E6604 29483347128 3e0
- +—— - - - 4
trie face 5.82 25.87717 12593858382 el
L +—=——- to— e e to—m e 4
translation 0.165 0D.7281l6 36307753 3e0
- +—— - - - 4
load ASC 0.013 0.05660 28259821 1
e —— - o o o +
dessin objet T7.6 340.79640 17039819772 360
- +—— - - - 4
Botation 0.479 2.10350 105174764 360
- +—— - - - 4
dessin _poly 68.6| 301.24407 15062203474 11489
e —— - o o o +
normalise 2.23 5.78738 489363000 12860
- +————- - t—————————— - 4
vectoriel 2.22 D.71742 4835871140 258520
- +—— - - - 4
Ghline 43.8 151.373497 05686508351 11485
- +————- - t—————————— - 4
Echelle 0.144 0.62963 31481286 360
p——————————————— +————- - - - =+

D’aprés le Tableau 3, nous constatons que les fonctions «trie_face , dessin_objet,
transformation, calnormal, Ghline et dessine poly» admettent un temps d‘exécution
important. 1l est a noter que les valeurs présentées dans ce tableau correspondent a I’exécution
de I’application dans boucle de 360 itérations. En fait, nous avons appliqué un mouvement de

rotation a I’objet donc le nombre d’itérations correspond a un déplacement de 1°.

Bien entendu, la comparaison doit étre faite entre les fonctions de I’application avec les

mémes parametres applicatifs (nombre de polygones et algorithme d’ombrage).

D’aprés le résultat du profilage, on peut dire que ces fonctions sont candidates a une
implémentation hardware. Passons maintenant aux résultats de I’outil « Design Trotter » qui

nous permet de donner des estimations sur I’orientation des fonctions.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel ﬁw

Chapitre 5: Expérimentations & Validation

2.2.1.1.2 Lesrésultats de Design Trotter

Le Tableau 4 représente les résultats issus de I’utilisation Design Trotter. Des modifications
ont été apportées au code de I’application pour tenir compte de la syntaxe utilisée par cet

outil.

Tableau 4: Les résultats des métriques par « Design Trotter »

Fonction Gamma MOM COM
transformation | 3.8750 0.3939 0.000
Calnormal 3.3244 0.6527 0.0425
Normalise 3.2149 0.6522 0.0441
Vectoriel 3.2500 0.5600 0.000
trie des faces |1.8571 0.6666 0.1818
Dessin_objet |1.2429 0.8298 0.0038

D’apres le Tableau 4, nous constatons que les fonctions transformation, calnormal, normalise,
ont une valeur relativement élevée de gamma, donc elles ont un parallélisme moyen

important. Elles sont donc candidates a une implémentation matérielle.

Combinant les résultats des deux méthodes, nous avons choisi les fonctions suivantes de la

synthese 3D :
- Lafonction ombrage permettant de calculer la couleur en un point d’un objet 3D.

- La fonction Normalisation qui permet de normaliser un vecteur. Cette opération est

nécessaire avant toute transformation (rotation, homothétie) sur un vecteur.

- La fonction calcul normal qui permet de calculer la normale a une face ou aux trois

sommets d’un polygone, elle sert au calcul de I’intensité de la couleur.
- Lafonction transformation elle permet d’appliquer des transformations sur I’objet

- Une fois les fonctions ont été choisies nous passons a leurs implémentations sous forme

d’accélérateur en utilisant un langage de bas niveau.

2.2.1.2 Accélérateur dédié a 'ombrage Plat (ou de Lambert)

Le schéma bloc de I’accélérateur pour I’ombrage plat est donné sur la Figure 41. Il permet de

calculer I’intensité de couleur d’un pixel en appliquant I’équation E19 d’illumination :

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel *}98

Chapitre 5: Expérimentations & Validation

Ambiante

A\ 4

MUX

Diffuse

A 4
+
A 4

4
Nin

X
an —>

»< Cos0<0

X
\AA /
+

Y

Figure 41: Module de calcul de I’équation d’illumination de Lambert
La valeur de la couleur d’un point dépend du signe de cos(0).
- Sicos 0 <0 alors la sortie est égale a la valeur de la couleur ambiante.
- Sicos 0 > 0 alors la sortie est calculée suivant I’équation d’illumination.
2.2.1.2.1 Accélérateur dédié a 'ombrage de Gouraud

Le module d’ombrage de Gouraud comme la Figure 42 est formé de :

Igtensité

- Un module pour le calcul des couleurs aux trois sommets du triangle élémentaire (a, b et

c de la Figure 43), il est formé par trois accélérateurs d’ombrage plat.

- Deux modules interpolateurs de couleurs qui implémentent les équations E20 et E21.

- Un module pour le calcul d’incrément de couleur, il implémente I’équation E22.

»n

s

s
2

Figure 42: Ombrage Gouraud

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Chapitre 5: Expérimentations & Validation

N,

Nb

Nc

!

Module Plat

Iy, 12

Iy, I3

XA x»r

b

Interpolateur
de couleurs

Xa

|

A 4

_I—' Interpolateur

de couleurs
T 1
X B

A 4

Incrément
de couleurs

!

XB

Delta I<
—>

Figure 43: Le schéma bloc d’un module d’ombrage de Gouraud

Le 1% interpolateur de couleur calcule les couleurs des points de la ligne [ac], le second

calcule les couleurs des points de la ligne [ab].

La Figure 44 représente le schéma bloc du module « interpolateur de couleurs » pour le calcul

de la couleur au point Ia.

—>
»
Y—>
s

\ 4

N —»
v

\ 4

i
T

\ 4

Y

\ 4

\ 4

Figure 44: Interpolateur de couleurs

La Figure 45 représente le schéma bloc du circuit «incrément de couleurs ». Il s’agit de

diviser la différence entre les couleurs de deux points par le nombre de pixels qui les séparent.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

100

Chapitre 5: Expérimentations & Validation

|B—> _
—>
Xg—p i
XA_> B }/

Figure 45: Incrément de couleurs
2.2.1.2.2 Accélérateur dédié au calcul de normale

En se référant au systéme de I'équation E11, le schéma bloc du circuit de la détermination de

la normale d’une facette triangulaire est représente par la Figure 46.

N N
-]
[
[F7
¥y
¥

&M
Yy
®

Figure 46: Schema bloc du circuit de calcul de la normale
2.2.1.2.3 Accélérateur pour la normalisation des vecteurs

Les transformations de repéres et le calcul des couleurs effectuées dans la synthése d’image

3D nécessitent I’utilisation de vecteurs unitaires (dont la norme est égale a 1).

La Figure 47 illustre le schéma bloc du module de normalisation

A\

x »Nxn

\

Nx >

> Nyn

Yy
X

vy
X
AAA4
+
A 4
i‘

Ny

NZ : X —>| N
X —' V2N

Figure 47: Schéma de bloc de la normalisation d’une normale

\ 4

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

101

Chapitre 5: Expérimentations & Validation

2.2.1.2.4 Accélérateur dédié a la transformation

La fonction « transformation » permet de passer les coordonnées locales de I’objet 3D dans le
repere du monde (3D) puis dans le repére de la caméra 2D. Elle permet également d’animer
I’objet 3D. Pour ce faire nous appliquons, aux objets de différentes matrices des translations,
des rotations, et une normalisation des vecteurs.

Remarque

Les acceélérateurs realisés traitent des valeurs entiéres alors que dans notre application nous
avons besoin de traiter des nombres réels. Comme solution, a chaque fois qu’on a besoin de
traiter des nombres réels on multiplie la valeur par 10" (n représente le nombre de chiffres
aprés la virgule). Bien entendu on tient compte de ces multiplications dans le reste du
traitement de notre accélérateur et au niveau des résultats fournis.

Par exemple pour le calcul de la racine carrée d’un nombre avec deux chiffres aprés la

virgule.

Idée :4/3=1.73 et E(+3x10000)=173

Donc, dans la partie implantation en VHDL, on multiplie le nombre auquel on veut faire
appliquer la racine carrée, par 100% pour obtenir une précision de deux chiffres aprés la

virgule.

Or le bloc désiré est (]/\/7).

Alors, la structure finale du bloc doit étre (1002/J1002 x nombre).

Par conséquent, les sorties de ce circuit sont des multiples de cent dont on va tenir compte

dans les modules d’ombrages.

2.2.2 Implémentation des accélérateurs

Pour implémenter les accélérateurs hardwares congus il est nécessaire de passer par un
langage de programmation de bas niveau tels que VHDL, Verilog ou SystemC.
L’environnement de conception d’Altera fournit un utilitaire qui permet de réaliser des blocs
d’une maniére graphique a travers I’assemblage d’opérateurs predéfinis fournis avec
I’environnement. Il donne aussi la possibilité d’ajouter des blocs écrits en langage de bas
niveau. Apres avoir réalisé le circuit adéquat schématiquement cet environnement peut
générer directement le fichier correspondant en langage de bas niveau VHDL ou Verilog. La
Figure 48 illustre I’accélérateur de Lambert réalisé avec cet utilitaire. Apres avoir realisé la

totalité du circuit nous pouvons regrouper toutes les fonctions utilisées dans un seul circuit

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

102

Chapitre 5: Expérimentations & Validation

sous forme de boite noire qui ne présente que les entrées/sorties du circuit et ce pour

I’encapsulation du traitement. La Figure 49 présente le schéma bloc de méme module.

mul1f

¢ _idataa(1:5..0]

resultf31 0] - - ¢
Signed
muttiplication

result[31.0] - - -

o [
mul16 S A+B

L dstaam)

- datahi3 0]

__datac[15.0 e

resuttl[3 00 - - - - dataa[31 0] s s : buszzsig

Taned

[e dlatabl15.0 miticain | e rimer(31.0) ctertst O el.0) sl15.00
i L S ferom(31.0] remain[31.0] =t -

Mumeris UNSIGNED
Denom is U i

e[3.] s[15.0] - cofnparateur
. signed compare|

detsalisn] | T L e[5.0] st
datab[]=0 9

Do instiE

result{31..0]
Unsigned

Figure 48:Circuit de Lambert

n

o A A A ///////////////////////////z’
=

ambragedelambert

e

=t h¥n[15..0] intensite[15..0] ==
=t LHn[15..0]

=t hv'r[15..0]

=t Lvn[15.0]

=t WZn[15.0]

=t |7r[15.10]

=t diffuse[15 0]
=t Smbizrte[15. 0]

inst

!\.\\\\\\\\\\\\\.\\.\\.\\.\\.\\'\.-\\\\\\\\\\\\\\\\\\\\\\\\
[~ ESERERRIRTEA NI ARARERS, ISR RE AN OIS

A 8t 8t B o S A 1

Figure 49: Schéma bloc de la fonction Lambert

2.2.2.1 Simulation des circuits implémentés

La simulation est une étape primordiale dans la conception des accélérateurs hardwares. Elle
permet de vérifier le bon fonctionnement du composant réalisé. Cette étape se fait a travers
des vecteurs de test « waveform vector» qui permettent d’envoyer des valeurs aux entrées de
I’accélérateur et de récupérer les résultats fournis. Les figures (Figure 50 et Figure 51)

présentent les étapes de validation par simulation du fonctionnement du circuit de Lambert.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

103

Chapitre 5: Expérimentations & Validation

Simulation Waveforms

taster Time Bar:| 9475 ns 4| »| Painter: Interval: Start: End:
o [vaeat |2 i 41?05.53 ns 200ns |
948 nz - ns
[T Ambiante | 5100 100
| @ difuse 520 50
| = L 50 I
| @ L 50 3
| @ Lzn 5100 300
(| @ Hxn 5@ 3
| @ Mvn 585 =
| = Mn 535 =
| @ intensite | 5107 il

Figure 50:Résultat de simulation du circuit de Lambert avec 6 négative

Simulation Waveforms

Master Time Bar:| 9475 n: 1) +| Pointer: Interval: Start: End:
T 9 41?050 s 200ns |
948 ns - k ns
(g Ambiante | 5100 100
| = difuse 520 70
| @ L 50 I
| | L'tn 50 i]
| @ L=z 5100 T
| @ Nn 58 7
| @ wvn 585 %
| @ Hzn 535 =
| & inensite | 5100 700

Figure 51:Résultat de simulation du circuit de Lambert avec 0 positive

Les deux figures ci-dessus illustrent les deux cas que I’on peut rencontrer dans I’algorithme
de Lambert.

e Le premier cas représente un cos 6 >0, suite & une Vérification de I’application
numérique, la valeur de I’intensité trouvée est conforme.

¢ Le deuxieme cas représente un cos 6 <0, I’intensité trouvee est égale a la valeur de la

lumiere ambiante.

2.2.2.2 Intégration des accélérateurs au processeur NIOS

Nous detaillons dans cette section les différentes méthodes d’interfagage des accélérateurs

avec le processeur Nios-I1.
2.2.2.2.1 L'interface de l'accélérateur esclave

Cette interface est constituée de trois modules. Le processeur NIOS-11 avec ses mémoires, le
bus Avalon, et I’accélérateur. Ce systéme se compose d’un processeur qui est le seul maitre

connecté au bus Avalon et un accélérateur mateériel esclave. Les specifications d'accélérateur

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

104

Chapitre 5: Expérimentations & Validation

matériel sont limitées a un port de lecture et d'écriture. Ainsi, le maitre « le processeur » doit

alimenter le module matériel avec des données et attendre le résultat du port esclave.
2.2.2.2.2 L’interface de I'accélérateur maitre

L architecture se compose par le processeur NIOS Il associé a une mémoire externe, une unité
de traitement (accélérateur) et le bus avalon. Le principe de fonctionnement de I’interface
maitre peut étre décrit ainsi : le processeur NIOS-1I envoie I’adresse de base de la RAM a
I’accélérateur qui lui aussi peut lire les données directement de la mémoire, effectue le calcul
et réécrit le résultat dans la mémoire. Une fois achevée une IRQ est générée pour le
processeur pour lui indiquer I’achévement du traitement. Dans ce mode, nous évitons la
sollicitation du processeur et les retards induits. Ainsi le processeur peut effectuer d’autre

traitement en paralléle avec I’accélérateur.
2.2.2.2.2.1 Description de l'interface

Afin d’assurer la communication entre I’accélérateur maitre et les autres composants du
systéme, les signaux de I’accélérateur doivent étre conformes avec les signaux du bus qui va
assurer cette communication décrite dans le chapitre 4. La Figure 52 décrit I’interface globale
avec les signaux. L’entrée « read_master » et la sortie« write_master »sont sur 32 bits et
synchronisées par I’horloge du systeme. Le signal « read_master » prend des entrées a partir
d’une RAM extérieure Le signal write_master fournit le résultat qui sera écrit par la suite
dans la RAM.

Acc_master

RESET Irq
CLK address_master[31..0]

mm address_slave[l..0] writedata_master[31..0] E
chipselect_slave chipselect_master
write_n_slave read_master

e \\ritedata_slav e[31..0] write_master

mmm readdata_master[31..0]

waitrequest_master

inst

Figure 52: Structure de I’interface de I’accélérateur maitre

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

105

Chapitre 5: Expérimentations & Validation

2.2.2.2.2.2 Intégration des accélérateurs

Ayant les fichiers nécessaires a la création d’un périphérique, I’ajout d’un composant au

SOPC Builder passe par une interface graphique qui gére toutes les étapes nécessaires.

La premiere étape, consiste a indiquer les fichiers de description matérielle du périphérique a
ajouter, puis il va les analyser, voir s’ils sont synthétisables, définir I’entité de haut niveau et

valider cette étape.

A la deuxiéme étape a partir des fichiers de description, I’assistant va déduire les différents
signaux necessaires a I’interfacage de ce composant avec le bus Avalon (Figure 53) et donne
la main a I'utilisateur pour spécifier leurs types. Cette étape nécessite la connaissance des

contraintes imposées par le bus Avalon.

=101
File Templates
Introductionl HDL Files Signals | Interfacesl Sy Filesl Conmponent Wizardl
P About Signals L
IMatre Irterface Signal Type Wicth Direction
BA|RESET dlobal_signals reset 1 it
B|CLK global_signals clk 1 input
BIry avalon_slave_0 i 1 ot
B |address_slave avalon_slave_0 address 2 input
[|chipzelect_slave avalon_slave_0 chipzelect 1 input
etite__slave wtite 1 inipLt
@ [readdata_slave address 32 owtput
B readdata_master avalon_master 0 biurstcount 32 it
[[wvaitrecuest_mazter avalon_master_0 beteenable 1 inpLt
B |address_master avalon_master_0 bevteenable_n 52 oLtput
B |chipzelect_master avalon_master_0 e poth 1 oLt
B |read_master avalon_master_0 writebyteenable 1 oLtput
waritebyteenable_n
Add Signal Remave Signal
—@ Component "Acc_master” is ok,
% Prev | Mext = | Finish... |

i bt

Figure 53: Mise au point des signaux Avalon

Une fois cette étape faite avec succés le composant sera ajouté a la bibliotheque des
composants précongus fournis avec I’environnement. Ainsi I’utilisateur peut ajouter autant
d’instances de ce type d’accélérateur qu’il veut. Bien entendu ces accélérateurs fonctionnent

d’une maniére indépendante.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

106

Chapitre 5: Expérimentations & Validation

Deux fichiers seront créés automatiquement. Le premier fichier class.ptf c’est grace a ce
fichier, que le logiciel de développement pourra identifier et implanter I’interface dans le

systéme. Il contient toutes les informations de connexion.

Le deuxieme fichier system.h a travers lequel se fait la liaison entre les parties matérielles et

logicielles. Ce fichier contient I’adresse des registres de notre bloc matériel (IP).

La derniere étape consiste a modifier le programme de I’application pour qu’il tienne en

compte les accélérateurs existants dans I’architecture.

Dans cette section, nous avons détaillé les étapes suivies pour la conception des accélérateurs
d’ombrage. La lére étape consiste a identifier les fonctions a implémenter en matériel a
travers le profilage de I’application et I’outil « Design Trotter ». La deuxiéme étape concerne
I’implémentation des modules hardwares en langage de bas niveau. La derniére étape se
manifeste & I’interfacage des modules implémentés sur le bus. Ainsi, nous disposons d’une

multitude de choix architecturaux pour notre application.

2.3 Ajout des coprocesseurs hardwares

Par définition un coprocesseur est un processeur dédié a un traitement particulier. 1l décharge
le processeur principal des opérations qui lui sont dévouées. Le fait d’ajouter des
coprocesseurs dans I’architecture c’est le fait d’ajouter des instructions spécialisées dans le
jeu d’instructions du processeur. Contrairement aux accelérateurs hardwares qui peuvent avoir
0 ou n entrées/sorties un coprocesseur possede au maximum deux entrées et une sortie pour le

résultat.

Dans notre travail, nous avons choisi d’ajouter les quatre opérations élémentaires de base
sous forme de coprocesseur hardware avec virgule flottante. Il est a noter que le code VHDL

de ces opérations avec virgule flottante est fourni avec I’environnement Figure 54.

“ Nios II Processor
Mageters’

About ||| Documentation |

Advanced Features MM and MPL Settings IJTAG Debug Module Custom Instruckions

Clock Cycles M Part Opcode Extension

. fipoint [variakie o) M zszEs |

Iritetrugt Yector

Figure 54:Interface d’ajout d’accélérateur

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

107

Chapitre 5: Expérimentations & Validation

Dans la section suivante, nous étudions I’effet de ces implémentations sur le temps

d’exécution de I’application.

2.4 Etude de l'effet des parametres architecturaux sur Texe

Nous détaillons dans cette section I’impact du changement de I’architecture hardware sur le

temps d’exécution.

A noté que :

- Texe SW _Flat/gouraud : représente le temps d’exécution de I’application sur le

processeur.

- Texe_cop_flat/gouraud : représente le temps d’exécution de I’application en utilisant les

quatre opérations de base sous forme de coprocesseurs.

- Acc_normal_flat/gouraud : représente le temps d’exécution de I’application en utilisant

un accélérateur matériel qui calcule la normale a une face.

- Cop_normal_flat/gouraud : représente le temps d’exécution de I’application en utilisant

les coprocesseurs et I’accélérateur de calcule de la normale

e Casde I’'ombrage plat

La Figure 55 montre la courbe Texe=f(NbPoly).

160000000

140000000 .

120000000

100000000

80000000

60000000

Execution time (tick)

40000000

20000000

Polygon number

0 200 400 600 800 1000 1200 1400

—#— Texe_SW_Flat
—il— Texe_cop_flat
— acc_normal_flat

—— cop_normal_flat

Figure 55: Impact du changement de I’architecture sur le temps d’exécution(Plat)

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

108

Chapitre 5: Expérimentations & Validation

e Casde I’'ombrage de Gouraud

La Figure 56 montre la courbe Texe=f(NbPOly).

700000000

600000000

500000000

400000000

——Texe SW_Gouraud

300000000 ——Texe_cop_gouraud

Execution time (tick)

acc_normal_grd
200000000

~— cop_normal_grd

100000000

0

0 200 400 600 800 1000 1200 1400

Palygon number

Figure 56: Impact du changement de I’architecture sur le temps d’exécution(Gouraud)

Nous remarquons d’aprés les figures ci-dessus que plus que nous ajoutons de composants
hardwares plus gu’on exécute I’application plus rapidement mais sans doute ce gain est

pénalisé par une augmentation de la consommation du systeme, theme du paragraphe suivant.

2.5 Mesure de la consommation

La quantification de la consommation des configurations passe par plusieurs étapes. Tout
d'abord, afin de mesurer la consommation statique du systeme on a exécuté la tache IDLE
(tdche d’attente active) sur une architecture composée du processeur et des mémoires
nécessaires sans utiliser aucun accélérateur HW (configuration SW) et on a pris la valeur
maximale atteinte sur I’afficheur de la carte. Ensuite, dans le but de quantifier I’impacte de
chaque accélérateur sur la consommation statique du systeme on ajoute |’accélérateur
correspondant tout seul au processeur et on execute la tache IDLE. L’impact de cet
accélérateur sera égal a la différence entre la valeur mesurée et la consommation statique.
Enfin, l'application cible est exécutée sur chaque type d’architecture pour mesurer la
consommation dite a I’exécution de I’application. Cette valeur est égale a la difference entre

la valeur mesurée et la consommation de la tache IDLE sur la méme architecture.
Le Tableau 5 indique les mesures de consommation de quelques configurations.

Pour la mesure de la consommation on a utilisé la carte stratix3 qui intégre les circuits
nécessaires et affiche la consommation d'énergie du noyau FPGA en mW au cours du

fonctionnement du systéme.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

109

Chapitre 5: Expérimentations & Validation

Tableau 5: Caractérisation de la puissance des configurations

Puissance de I'exécution [Puissance de la [impact de I'accélérateur |Puissance dite a I'exécution

de I'application 3D{mw) |[tiche Idle {[mw) [HW [mw) de I'application {mw)
CPU + MEM 437 422 0 15
Acc_normale 440 431 9 9
Copro {+,-,%./) 459 444 22 15
Corpo+ Acc_normale 472 454 32 18
scalaire 440 428 6 12
vectoriel 444 425 3 19
normalisation 450 432 10 18
transformation 448 437 15 11

Sachant que :

- CPU + MEM : représente I’architecture standard qui ne contient pas d’accélérateur
matériel spécifique pour I’application de synthese d’images 3D

- Acc_normale : représente I’accélérateur matériel de calcule de la normale

- Copro(+,-,*,/) . représente I’utilisation des quatre opérations de base sous forme de

Coprocesseurs.

- Copro + Acc_normale : représente I’utilisation des coprocesseurs et de I’accélérateur

normale.

- Scalaire, vectoriel, normalisation et transformation : correspondent a I’accélérateur de
calcul respectivement du produit scalaire, du produit vectoriel, de la normalisation d’un

vecteur et du résultat de fonction de transformation.

Ainsi, en utilisant le tableau ci-dessus on peut calculer la consommation globale du systéeme

suivant I’architecture hardware utilisée.

Consommation (mj)= (puissance_idle_task+ Y, impact HW_acc)*hyp +), impact_app * Texe
La caracterisation compléte des configurations nécessite également la mise en place d’un
modeéle capable de caractériser la QoS d’une configuration donnée.

2.6 Mise en place du modele de QoS

Dans cette approche il est nécessaire que chaque type d’application exécuté dans le systeme
posséde son propre modéle de QoS. Vu qu’on a travaille avec I’application de synthése
d’images 3D on est amené a mettre en place un modéle permettant de quantifier la qualité
d’un objet 3D affiché a I'utilisateur. Bien entendu la qualité d’une image 3D dépend de

plusieurs parametres tels que le nombre de polygones représentants I’objet, le type de

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

110

Chapitre 5: Expérimentations & Validation

I’algorithme d’ombrage utilisé, la taille occupée sur I’écran, la vitesse d’animation etc.
Puisque dans cette approche on est limité a la variation du nombre de polygones et le type
d’algorithme d’ombrage, le modele adopté ne tient compte que de ces deux facteurs.

Dans ce travail on a utilisé le modéle de QoS proposé dans [Pan05]. Ce modeéle est représenté

par I’équation E23 il dépend uniquement du nombre de polygones constituant I’objet.

,1834

E23

QoS;(NbPoly = 100 * FrevRyvm—— —,

Ce modeéle a été amélioré dans [Ben07] pour qu’il tienne en compte du type d’algorithme
d’ombrage utilisé. D’ou la nouvelle formule de calcul de la valeur de QoS :
QoS=a(ombrage)*QoS1(Nbpoly)

La valeur de a(ombrage) est calculée par I’équation E24.

1
a(ombrage = -exp (@ E24
(

ou:
- Npixel_image : nombre total de pixels de I’image
- NPP : nombre moyen de pixels par polygone
- B : coefficient qui caractérise I’apport de I’algorithme Gouraud par rapport a celui du
plat.
Ainsi la formule de QoS de I’algorithme de Gouraud est donnée par I’équation E 25
QoS =100 *~exp orm— /1834 E25

% 1834 1,81 *(1

La Figure 57 permet de déterminer la valeur de QoS en connaissant le nombre de polygones

et le type d’algorithme d’ombrage utilisé avec une valeur de p=500.

QoS
120

100 Lemmt
80 '/-/-/'-,

// —— Flat
60

I/% —=— Gouraud
40

20 fpmmts

© 30’90 150210270 330 360450 510 570 630 690 750 810 870 894 NbPoly

Figure 57 : Modele de QoS

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

111

Chapitre 5: Expérimentations & Validation

2.7 Configurations retenues

Suite aux différentes mesures déja présentées on a pu mettre en place la base des

configurations qui contient les informations suivantes (la période, I’échéance, le temps

d’exécution, le niveau de qualité de service, le type d’algorithme d’ombrage utilisé, la

puissance statique de I’architecture, I’impact de I’exécution de I’application et la référence de

I’architecture hardware).

Le Tableau 6 représente un exemple de configuration pour deux objets, le cube et le cylindre.

Pour des raisons de simplicité et afin qu’on puisse vérifier les résultats fournis par I’approche

on s’est limité a dix configurations pour chaque objet.

Chague configuration contient les informations suivantes :

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Period : période de I’application

Deadline : échéance

Texe : temps d’exécution au pire cas

QoS level : niveau de la qualité de service fourni a I’utilisateur

Shade_algo : I’algorithme d’ombrage utilisé

Puis_conf : la puissance consommeée par I’accélérateur

Puis_app : puissance dite a I’exécution de I’application

Ref HW : le numéro de I’architecture (CPU+ ensemble d’accélérateurs). Dans notre
cas 1 représente une configuration purement software et 2 c’est une architecture qui
contient I’accélérateur de calcul de la normale, produit scalaire et vectoriel. 1l est a
noté qu’on n’a pas utilisé les coprocesseurs déja implémentés a cause d’un probleme
lié a la plateforme qui ne permet pas d’activer et désactiver les coprocesseurs pour une
tache donnée. Donc si on active les coprocesseurs pour une application ils seront
activés pour toutes les applications en cours d’exécution.

Tableau 6: Exemple de configurations retenues

ident_obj Cubed1 Cubed2 Cube02 Cube02 Cube03 Cubed3 Cubed3 Cubedd Cubedd Cubes
period (s) 2,5 2,5 2,5 2,5 2,5 25 2,5 2,5 2,5 2,5
deadline (s} 24 24 24 24 24 24 24 24 24 24
Texe (s) 0.08 0.18 0.25 0.19 0.3 0.42 0.3 0.43 0.68 0.6
Qo5 level 3 10 22 22 14 28 28 26 36 45
shade_algo Flat Flat Gouraud Gouraud Flat Gouraud Gouraud Flat Gouraud Flat
Puis_conf {mw) 0 0 0 9 0 0 9 0 0 0
Puis_app (mw}) 15 15 15 k] 15 15 E] 15 15 15
Ref HW 1 1 1 2 1 1 2 1 1 1
ident_obj Cylol Cylos Cylos Cylos Ccylo7 Cylog Cylog Cyl11 Cyl11 Cyl1l
period (s) 2,5 2,5 s 2,5 2,5 Z) s m 2,5 2,5
deadline (s) 2,4 2,4 2,4 2,4 24 24 24 24 2,4 2,4
Texe (s) 0.18 0.28 0.4 0.24 0.69 0.52 0.8 0.6 0.95 0.75

QoS level 10 15 24 24 36 30 40 36 46 46
shade_algo Flat Flat Gouraud Gouraud Gouraud Flat Gouraud Flat Gouraud Gouraud
Puis_conf {mw) 0 0 0 9 0 0 0 0 0 3
Puis_app (mw) 15 15 15 9 15 15 15 15 15 9
Ref HW 1 1 1 2 1 1 1 1 1 2

112

Chapitre 5: Expérimentations & Validation

3 Mise en place d’'un systeme d’exploitation temps réel

Suite a I’étude faite dans le chapitre trois nous avons choisi de travailler avec un systeme
d’exploitation qui utilise un ordonnanceur de type EDF. Donc le probleme consiste a trouver
un systéme d’exploitation qui répond a nos besoins en premier lieu, et qui peut étre « porté »

sur notre plateforme de travail.

Puisque nous travaillons avec I’environnement d’Altera qui comporte le systéme
d’exploitation temps réel MicroC_OS-II, deux solutions ont été envisageables. La premiére
consiste a chercher un RTOS avec un ordonnanceur EDF et ensuite a se lancer dans la
complexe tache de modification de la couche HAL (hardware abstraction Layer) pour le
configurer et le porter sur notre plateforme de travail. La deuxieme solution, était de modifier
I’ordonnanceur du MicroC_OS-I11 puisque son code source est ouvert et disponible avec toute

la documentation.

Nous avons choisi dans notre travail la deuxiéme solution. Pour ceci, nous detaillerons les
étapes necessaires qui ont conduit a la mise en place d’une part de la notion de périodicité des

taches et d’autre part de I’implémentation de I’ordonnanceur EDF.
3.1 Description de I’EDF (Earliest Deadline First)

Earliest deadline first est un algorithme d'ordonnancement préemptif utilisé dans les systéemes
temps réel. Il appartient a la classe des algorithmes a priorité dynamique, ou une instance de
tache change de priorité durant son exécution. Cette politique d’ordonnancement permet
d'executer les instances dans I'ordre de leur urgence ou le degré d'urgence est mesuré par la
proximité de leur échéance. Cela impligue gu'une instance ne peut utiliser la ressource que si
toutes les instances d'échéances plus petites ont terminé leur exécution ou ne sont pas encore

actives.

Dans le cadre de I’ordonnancement préemptif des taches, EDF a le tres grand avantage d'étre
optimal vis-a-vis de la faisabilité du systeme dans des contextes variés, c’est a dire que tout
ensemble de taches faisable sous une politique autre qu’EDF sera nécessairement faisable
sous EDF.

3.2 Implémentation de 'EDF sous pC_OS-II

Notre politiqgue EDF a été introduite dans les fonctions internes de pC_OS-Il de maniére a

pouvoir commuter entre elles et la politique déja existante (a priorité fixe).

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

113

Chapitre 5: Expérimentations & Validation

Deux étapes étaient nécessaires pour I’implémenter : I’implémentation de la périodicité des

taches, ensuite, la gestion des échéances.

3.2.1 Gestion de la périodicité
Les taches périodiques lancent leurs instances dans des intervalles de temps réguliers appelés
périodes (se réveillent toutes les p unités de temps). Une tache périodique est alors

caractérisée par (Figure 58) :

sa période p,

- son échéance d. L’échéance est le temps séparant I’instant de mise a I’état prét de
I’instance de tache et celui au bout duquel cette instance doit terminer son exécution,

- son temps d’exécution c,

- son temps d’exécution au pire cas wcet.

F 3
v

L J

F

r
L 4

ro Echéance ra+p

ro: date de premierréveil

AvecO=c=d=p

Figure 58 : Parameétres des taches périodiques

Comme il est illustré dans la Figure 58, la tache périodique doit s’exécuter une fois par
période. Elle peut commencer son exécution a divers instants et avoir différents temps
d’exécution, mais elle doit terminer avant son échéance. Les parametres relatifs a cette tache

doivent étre définis tout en respectant I’ordre suivant : 0 <c < wcet <d <p.

Il est vrai que uC/OS-11 ne gere pas la périodicité des taches, mais il offre des services de
gestion du temps fonctionnant selon I’horloge systéme qui déclenche une interruption
périodique a une fréequence fixée au départ. En effet, lorsqu’une tache se suspend, elle spécifie
un délai en nombre de tics d’horloge pour s’endormir. A chaque tic, la routine d’interruption

de I’horloge systeme OSTimeTick() s’exécute. Elle doit vérifier les délais de toutes les taches

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

114

Chapitre 5: Expérimentations & Validation

pour en détecter ceux qui sont expirés. Dans ce cas, les tdches concernées seront remises a
I’état prét. A la fin de la routine, I’ordonnanceur est appelé. 1l décide qu’une commutation de
contexte s’avére nécessaire s’il y a une tache, parmi celles remises a I’état prét, qui a une
priorité plus élevée que celle de la tche ayant été interrompue. Dans ce cas, I’ordonnanceur
interrompt cette derniere et retourne a la tache de plus haute priorité. La Figure 59 illustre

I’ensemble de ces étapes.

(? :rTick ISR Pseudo Code:
|

. Y. —TickISR()
| -
14

HPTask -
\ Increment tick count
If{ Tick increment readied task)

: |
A |
N ~ F |
N g
T T~ '
dle Task | Switch execution context to readied task.
Time |}
N
|
|
|

~l— .Return from ISR
ﬁ = Timer Event

Figure 59:Gestion du temps

Le temps s’écoule de gauche a droite. En (1) la tache idle est en exécution. L’interruption
d’horloge arrive en (2) et le contréle du CPU passe a la routine correspondante (3). Cette
routine met la tiche HPTask a I’état prét. Puisque cette derniére a une priorité plus haute que
la tache idle, I’'ISR fait appel a une commutation vers le contexte de HPTask a la sortie de

I’ISR (4) et la tache commence a s’exécuter (5).

Afin d’intégrer la gestion de la périodicité dans le noyau de uC/OSII, I’idée était de profiter
des services de gestion du temps qu’il offre et de la routine d’interruption d’horloge qui
permettent de manipuler les taches a des instants bien spécifiques puis obtenir des

informations sur leurs contraintes temporelles.

L’idée était d’étendre la structure du contexte des taches définies par uC/OS-I1I pour supporter
la gestion de la périodicité. On a ajouté une nouvelle structure de données dans la zone de
données utilisateur additionnelle du bloc de contrdle des taches (TCB, Task Control Block).

La Figure 60 illustre la structure étendue de ce bloc.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

115

Chapitre 5: Expérimentations & Validation

OSTCBList .. TASK_USER_DATA O
Task Control Block 0 > .
' OSTCBEXxtPeriod

OSTCBEXxtPtr
OSTCBExtDly

OST(:.l.';;.Next — TASK _USER DATA 1

_ TCB 1 OSTCBExtPeriod

OSTCBPrio OSTCBEXtPtr OSTCBExtDly
OSTCBNext —
OSTCBPrio

Figure 60: Structure étendue du TCB pour le support de la périodicité des taches

La zone d’extension du TCB, TASK_USER_DATA, est pointée par OSTCBExtPtr. L utilisation
de ce pointeur permet d’étendre le TCB tout en réduisant les modifications apportées aux

fonctions internes du noyau existant.
OSTCBEXxtPeriod est la période de la tache qui doit étre définie en offline.

OSTCBEXtDIly est le compteur de délai associé a la période. Il est chargé par la valeur de
période a la création de la tache et il est décrémenté a chaque tic d’horloge. Lorsque la tache
termine son travail, elle se met en attente de sa prochaine période en utilisant la fonction
OSTimeDly(). Des que le délai de période expire, il est rechargé automatiquement et la
remise a I’état prét de la tache est forcée par la fonction OSTimeDIlyResume(). La gestion de la
période est implémentée dans la fonction interne OSTimeTick() qui est déclenchée

périodiquement par I’interruption de I’horloge systéme (System Ticker ISR).

Les TCBs sont placés dans une liste chainée pointée par la téte de liste OSTCBLIst et triée par
priorité.

La création d’une tache avec cette structure étendue n’est possible qu’avec la fonction
OSTaskCreateExt() et que si le flag OS_TASK_CREATE_EXT_EN est activé.

3.2.2 Mise en ceuvre de EDF
Apres avoir implémenté la périodicité des taches, on a ajouté une autre structure de données
dans la méme zone d’extension permettant la gestion d’échéance. La Figure 61 montre cette

structure de deadline qui est placée dans une liste chainée.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

116

Chapitre 5: Expérimentations & Validation

OSDeadLnlList
TASK_USER_DATAO

OSTCBExtPeriod S " OsDInld0
OSTCBExtDly OSDeadLn
OSTCBExtDIn OSDInDly

OSDeadLnNext
OSDeadLnPrev

TASK USER_DATA i

OSTCBExtPeriod o OSDInid i
. OSDeadlLn
OSTCBExtDly
OSTCBExtDIn OSDInDly B
OSDeadlLnMNext
OSDeadlLnPrev

Figure 61: Structure du deadline dans la zone d’extension du TCB pour le support d’EDF

Le troisieme champ de la zone d’extension, OSTCBEXxtDIn, est de type structure deadline. I
est formé de 5 champs.

OSDeadLn stocke la valeur d’échéance de la tdche qui doit étre inférieure ou égale a la

période.

Tout comme pour la période, OSDInDIy est le compteur de délai associé a I’échéance. Il est
chargé par la valeur de celle-ci & la création de la tache et il est décrémenté a chaque tic
d’horloge. La recharge d’OSDInDly est faite au moment d’expiration de la période.

Comme I’algorithme EDF attribue la plus haute priorité a la tache d’échéance la plus proche,
il était nécessaire de rechercher le Min des échéances a chaque évenement de commutation.

Deux solutions ont été envisageées :

- Parcourir toutes les échéances a chaque événement de commutation pour en

déterminer la plus petite.

- Arranger les structures des deadlines dans une liste chainée triée par ordre croissant
d’échéance. La plus petite échéance sera en téte de liste.

On a opté pour la 2°™ solution vu qu’elle est plus optimisée du point de vue temps

d’exécution. En effet, la mise a jour de la liste triée des échéances ne sera réalisée que

lorsqu’une nouvelle tache préte a rouler arrive ou un délai d’une période expire. D’ou le

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

117

Chapitre 5: Expérimentations & Validation

nombre de mises a jour de cette liste sera toujours inférieur au nombre d’événements de

commutation qui arrivent a chaque tic d’horloge.

Si une nouvelle tache préte arrive et est insérée en téte de liste, la tdche courante sera
immédiatement interrompue, et la premiére sera élue pour exécution. Si deux taches ont la

méme échéance, on en choisira une au hasard
4 Testde l'approche proposée

Pour valider le bon fonctionnement de I'approche compléte, nous avons testé une série de
scénarios en modifiant certaines contraintes du systeme tels que le niveau d'énergie disponible
dans la batterie, le nombre de taches en cours dans le systéme ou en changeant les préférences

de l'utilisateur.

Il est & noter que:

- DInDly représente : I’échéance de la tache

- ExecTime représente : le temps d’exécution effectué sur le processeur

- TotExecTime représente : le temps écoulé entre le démarrage de la tache et la fin de

I’exécution

- TaskOver représente : 1si la tache a terminé son exécution 0 si non

- En_model représente : la quantité d’energie consommeée par la configuration actuelle

- En_av représente : la quantité d’énergie disponible dans la batterie

- Life_time représente : durée de vie restante pour le systeme

- Task10, 11,12... représentent respectivement I’objet numéro 1,2,3...

- Task3 représente la tache d’assemblage
Comme premier scénario nous avons choisi une scene 3D composee de deux objets un cube
et un cylindre qui font une animation toutes les 2.5 s (période). Les contraintes de départ sont

fixées comme suit: Lt_constraint: 240 secondes QoS _constraint 10, En_av = 105 joules (1).

La Figure 62 montre le démarrage du systeme. Le module d'adaptation choisi pour le cube
une configuration SW avec l'algorithme d’ombrage plat et pour le cylindre une configuration
SW avec un ombrage Gouraud (2). Toutes les configurations choisies répondent aux

contraintes du systéme.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

118

Chapitre 5: Expérimentations & Validation

cterminated > appp_acc_nommal kios 1T HW configuration [Mos 11 Hardware] Mios 1T Terminal Windoss (17/03111 21:07)

W
& desired life cime of the system is 240.000000

< the residual energy is 105000,000000 md

[Fou-have 2 application(a)

Cube

Cylindre
Exacte method
SELECTED CONFIGURATICNS
fmnt/rozipfaffich/cubels. asc

Teate objeccl with QoS=45
eare objecc? with Q05=36

TaakMNamne DinDly ExecTime TotExeoTime Taskiver
mode] = + [a[u]n] Ep aw:105000.000000 Life tims:Z40.000000

SW archicecure Flat Shadinhg

task 10 1IF

Ohje 564.877319 564.877319 1

cask 11 i= Cwer

Obhjece 2 119z 652 .047485 652 . 047485 1

task 3 is Owver

Task Asa 536 T44.633118 T44.633118 1

Figure 62 : Démarrage de I’approche d’adaptation

Dans la deuxiéeme etape de ce scénario, on constate que la tache 10 (1), dépasse son
échéance, perturbe le fonctionnement du systeme (Figure 63) et cause un dépassement de
I’hyper-période (2). Notez que le LM a activé la tache d'adaptation locale (3), qui a consulté la

base de configuration et a choisi une nouvelle configuration (4) de la tache qui a provoqué le

dépassement.

wodel En model: 102812500000 _av:102836.300000 Life time:235.000000
% ALERT DELDLINE EXCEEDANCE TASE 10

%% ALERT DEADLINE EZCEEDANCE TASE 11

Chiect 1 oog 2409, 655029 2409, 655029]

W architecure Gauroud Shading

»> ALERT PERIOD EXCEEDANCE TASE 11 !!
»> ALERT DEADLINE EZCEEDANCE TASE 3

»» ALERT PERIOD EECEEDANCE TASE 3 !!

»» ALERT PERIOD EX LSE 10 V!
»»> ALERT HYPER-PERIOD EXCEEDANC
First deadline exceedance :

task ID : 10

FPETETEPEPdididiiririsisidsy FATIEIRIETRNENE
Fariiidddl-—<- local adaptation ——————————>A————— FEEFEFERESY
FEAEEEEd i re i FEAAEEEER RSN
SELE [COMNE TSR &

mnt/rogipfs/fich/ cubeld. ase
create obJeEC

]

Figure 63: Appel de la fonction d’adaptation locale

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

119

Chapitre 5: Expérimentations & Validation

Dans cette étape, un nouvel objet (deuxiéme cube) doit étre rendu dans le systéeme (1). La
Figure 64 montre les différentes actions du module d'adaptation. Le systeme d’adaptation

choisit de nouvelles configurations pour les taches existantes dans le systeme.

<terminated> appp_acc_normal Nios IT HW configuration [Mios 1T Hardware] Mios IT Terminal \Window (17/03/11 22:55)
model En model:39531.250000 En_sv:53530.750000 Life time:227.500000
3W architecure Flat Shading

task 10 i= Ower
Chject 1 1979 418.276703 418.276703 1

3W architecure Gauroud Shading
task 11 is Ower

Chiject 2 1322 667.186646 667.1586646 1
task 3 13 Owver

Task Azs 1206 205.090665 Te0.337280 1
model En model:98437. 500000 En av:53505.500000 Life time:ZZ5.000000

Hello from research

1 gsired life time of the systew is 2Z25.0000G8
the residual energy is 98508.900000 rJ
ave 3 applicationis)

Cylindre

Cube

Exacte wethod

SELECTED CONFIGURATICON

t/rozipfs/ fich/cubelz . asc

Junt/rozipfa/fich/oyl0s, ase
et/ rogipfs/ fich/cubels. a3e

create objectl with QoS=:22

create objectZ with QoS=:2Z4

create objectd with Qo5=45

wodel En model:38437. 500000 En =w:33508.200000 Life time:225.000000

AW architecure Gauroud Shading

task 10 is Ower

Chiject 1 2138 260.518127 2e0.518127 1

3W architecure Gauroud Shading

task 11 is Ower

Chiject 2 1752 394.037042 304,037042 1

Figure 64: Modification du nombre de taches

La derniére étape de ce scénario représente une situation ou le gestionnaire local ne trouve
pas de solution dans la base qui surmonte le dépassement d’échéance sans changer
I'architecture du systeme. Ainsi, il demande au gestionnaire global de reconfigurer la totalité

du systeme Figure 65.

En premier lieu le systeme détecte un dépassement de I’hyper période (1). Pour remédier a ce
probleme il fait appel a la fonction d’adaptation locale (2). Cette derniére n’arrive pas a

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

120

Chapitre 5: Expérimentations & Validation

résoudre le probléeme localement elle active alors la fonction d’adaptation globale(3). De

nouvelles configurations seront alors, choisies pour toutes les taches (4).

Nous constatons, que la tache 10 a été migrée vers une implémentation hardware pour

accélérer le traitement et résoudre ainsi le probléme de dépassement d’échéance (5).

<terminated = appp_acc_normal Mio A iguration [Nios IT Hardware] Mios IT Terminal Window (17/03{11 22:55)
>> ALERT HYPER-FERIOD EXCEEDANCE ' T

First deadline exceedance :

task ID

wrrrarrt A idaptation function*rrrrEEaes .
,ll!'
Faddd i i DT i R Fedddddiddiiidsd

e local adaptation —----——-——=s<————- SEEEEELEEEY

Fabidiiiiiiiiily

Hello from research

the desired life time of the system is 112.500000 s

the residual energy is 4982Z5.650000 mJd

vou have 3 application(s)

Cuhe

Cylindre

Cuhe

Exacte method

SELECTED CONFLGHRALTIONS

Wit/ rozipfs/fich/ cubell. asc

Junt/rozipfa/fich/ocyl0s. asc
st/ rozipfs/fich/ cubels.

create objectl with Qo3=2Z38

create objectZ with Qo3=24

create objecti with Qo3=45

model En mwodel:49218.730000 En _av:459825. 650000 Life cime:11Z.500000

3W architecure Gauroud 3hading

task 10 is Ower

Chie

43Z.153992 432.133992 1

Figure 65: Activation du gestionnaire global par le gestionnaire local
5 Apportde l'approche

Le but de cette partie est de comparer le fonctionnement du systéme avec ou sans I’approche
d’adaptation proposée. On rappelle que sans avoir utilisé I’approche de conception
I’utilisateur ne peut choisir ni la durée de vie du systéme ni le niveau de qualité minimale pour
chaque application. Toutes les applications s’exécutent sur une méme architecture et avec les

mémes parametres applicatifs fixés par le concepteur lors de la phase de conception.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

121

Chapitre 5: Expérimentations el Validation

Afin de valoriser I’apport de I’approche on a choisi de comparer la qualité de service du
systéeme offerte par I’approche d’adaptation et celle fournie par la version minimale qui
fournit la plus basse qualité sur une architecture purement software d’une part et avec celle
fournit avec la configuration de meilleure qualité sur une architecture qui contient tous les

modules hardware implémentés.
1* Cas : qualité minimale

Pour ce premier cas on a choisi une quantité d’énergie disponible égale a 1800000m;j et une

durée de vie de 70 minutes.

La Figure 66 montre la différence entre la durée de vie du systéeme et celle offerte par le
systéme avec une version purement software qui fournit la plus basse qualité en modifiant le

nombre d’objets présents dans le systeme.

71,20 -
71,00 -
70,80 -
70,60 -
70,40 -
70,20 - ® QoS_min_SW

70,00 - Approche
69,80 -
69,60 -
69,40

Durée de vie minimale (min)

1 2 3 4

Nombre d'objets dans la scéne

Figure 66: Durée de vie du systéme version minimale

La Figure 67 illustre la différence en termes de qualité de service (fonction objectif) fournit

par les deux versions en variant le nombre d’objets dans le systéeme.

Approche de gestion de performances/contraintes pour les systémes embargués temps réel

122

Chapitre 5: Expérimentations &l Validation

7,00 - - — —
6,00 -
5,00 -
4,00 -
3,00 -
2,00
1,00 -
0,00 —
2 3 4

B QoS_min_SW

MMM
|

Approche

QoS(fonction objectif)

[any

Nombre d'objets dans la scéne

Figure 67: Variation de QoS pour une version minimale/Approche

Nous constatons d’aprés les deux graphes ci-dessus que la qualité de service fournie par
I’approche est meilleure que la version minimale et que la différence peut atteindre 5 dans la
fonction objectif alors que la différence dans la durée de vie du systeme ne dépasse pas 1
minute.

2°™ cas Meilleure qualité

Pour le deuxieéme cas on a choisi une quantité d’énergie disponible égale a 1800000mj et une

durée de vie égale dans les deux cas.

La Figure 68 montre la différence entre la durée de vie du systéeme et celle offerte par le
systeme avec une architecture qui contient tous les accélérateurs implémentés. Elle fournit la

plus haute qualité de service.

70,00 -
69,00 -
68,00 -
67,00 -
66,00 -

65,00 -
64,00 - Approche

B QoS_max_HW

Durée de vie minimale (min)

63,00 -
62,00

1 2 3 4

Nombre d'objets dans la scéne

Figure 68: Durée de vie du systéme version maximale

Approche de gestion de performances/contraintes pour les systémes embargués temps réel

123

Chapitre 5: Expérimentations &l Validation

La Figure 69 illustre la différence en termes de qualité de service fournie (fonction objectif)

par les deux versions maximale/approche en variant le nombre d’objets dans le systeme.

_ 20 ~
E
g
= 15 1
o
c
2 10 A
‘g B QoS_max_HW
o
%—'; 5 1 Approche
g
O -
1 2 3 4
Nombre d'objets dans la scéne

Figure 69: Variation QoS pour une version maximale/Approche

X Indique que le temps d’exécution dépasse I'hyper période du systéme

Nous remarquons que la version maximale fournit une qualité meilleure a celle de I’approche
mais en contre partie le systeme ne respecte plus ses contraintes temporelles puisque le temps

d’exécution de toutes les tdches dépasse I’hyper période du systeme.
6 Mise en ceuvre des algorithmes d’optimisation

Dans cette étude nous mettons en ceuvre deux algorithmes : I’algorithme génétique et le recuit
simulé afin de comparer leurs performances et de choisir le plus approprié pour notre

approche.

Comme nous I’avons déja mentionne les algorithmes d’optimisation permettent de résoudre
un probléme et de fournir une solution au probléme sans garantie d’optimalité. Toutefois, ces
algorithmes possédent des facteurs paramétrables qui influent sur la probabilité de trouver la
solution optimale ou une solution trés proche d’elle. Cependant, pour augmenter cette
probabilité il y a toujours un prix a payer en termes de temps d’exécution. Nous sommes

invités a fixer ces facteurs et a choisir I’algorithme adéquat pour notre systeme.

Dans notre travail, nous avons utilisé deux types d’algorithmes d’optimisation. Le premier est
I’algorithme génétique dont on a choisi comme facteur le nombre d’itérations de l'algorithme.

Nous adoptons une valeur fixe pour la longueur de la population pour l'algorithme génétique

Approche de gestion de performances/contraintes pour les systémes embargués temps réel

124

Chapitre 5: Expérimentations & Validation

(chague nouvelle population = 20). Le deuxiéme est celui du recuit simulé dont on a choisi de

travailler sur le facteur de dégradation de la température.

Nous rappelons que ces tests sont faits avec la méme table de configurations décrite dans le
tableau 6.

6.1 Premier scénario

Nous utilisons, dans ce scénario, une valeur faible pour le nombre d'itérations de l'algorithme

génetique « GEN» (50 iterations) et un facteur éleve de la réduction de la température pour
I'algorithme du recuit simulé « SA» (facteur = 0,8).

30

objective function (Gos)
N
)
=
\->
.\\
t
A

¢ e
u/ —.—SA
a— GEN
10 1 t T ——MNER OBJECT
I 2 3 4 5 6 7 8 9 1011 o327 33 34745

Time

Figure 70: Variation nbr_objet/QoS pour I’algorithme génétique (nb_it=50) et le recuit simulé
(fact=0.8)

2E+10 & &> &

N
ol \ || \ =
/]
LAY L

S 10 11 12 13 14 15

execution time{tick)

Time

Figure 71: Variation nbr_objet/Texe pour I’algorithme génétique (nb_it=50) et le recuit

simulé (fact=0.8)

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

125

Chapitre 5: Expérimentations & Validation

Nous voyons pour ce premier essai (Figure 70 et Figure 71) que la méthode exacte pourra étre
utile si le nombre de taches dans le systéme ne dépasse pas deux (t <0,13). Au-dela de ce
nombre, le temps d'exécution de cette méthode est inacceptable (t = 1,32) pour 3 applications.
Pour la méthode génétique nous notons que les valeurs de la fonction objectif sont trés
proches de la méthode exacte si le nombre de taches est inférieur a quatre. Si nous dépassons
cette valeur avec le méme nombre d'itérations, nous ne trouverons pas les bonnes solutions.
Nous notons également que le recuit simulé avec les solutions proposées est proche des
résultats obtenus avec la méthode exacte et nous constatons aussi qu'il n'y a pas de solution

inacceptable et que le temps est assez réduit dans tous les cas testés.

6.2 Deuxiéme scénario
Nous utilisons dans ce scénario une valeur élevee pour le nombre d'itérations de I'algorithme
génetique (200 itérations) et un faible facteur de diminution de la température pour

I'algorithme du recuit simulé (facteur = 0,95).

/ANN VTV L

—m—5A
GEN

Ohjective function ((Gos)
I

10 || —-—NEBR OBJECT

|

L 2 3 4 5 5 5 B 9 40 Al (37 804 i1h

Figure 72: Variation nbr_objet/QoS pour I’algorithme génétique (nb_it=200) et le recuit
simulé (fact=0.95)

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

126

Chapitre 5: Expérimentations & Validation

2,5E+10

2E+10 . 1 4

1,5E=+10

execution time (tick)

1E+10

—a— EXACT

GEN

Figure 73: Variation nbr_objet/Texe pour I’algorithme génétique (nb_it=200) et le recuit
simulé (fact=0.95)

Nous constatons pour le deuxiéme scénario (Figure 72 et Figure 73) que les valeurs fournies

par l'algorithme génétique sont plus proches a la méthode exacte que le recuit simulé lorsque

le nombre de taches est inférieur a quatre. Nous notons une augmentation du temps

d'exécution plus importante pour la méthode génétique.

6.3 Méthode mixte

Suite a cette expérience nous avons mené une étude visant a choisir la méthode a utiliser dans

notre approche. Nous avons constaté que chacune peut étre utile dans certains cas. Ainsi, nous

proposons la methode Mixte qui sélectionne l'une des trois méthodes en fonction des

contraintes du systéeme. Elle conduit a l'algorithme suivant:

- La méthode exacte si le systeme effectue au moins trois taches.

- La méthode génétique avec un nombre d'itérations égal a 20 si le nombre de taches est

égal 4 3

- La méthode génétique avec un nombre d'itérations égal a 200 si le nombre de taches

est égal a 4

- La methode du recuit simulé si I’on a plus de quatre applications avec un facteur qui

commence avec la valeur 0,8 et qui augmente suivant le nombre de taches.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

127

Chapitre 5: Expérimentations & Validation

30

25

20

15

10

Ohjective function ((o5)

I 2. 3 4 5 & 7 B 971011 1213 14 15

Time

—4— EXACT
= MIXT
—i— NBR OBIECT

Figure 74: Variation nbr_objet/QoS pour la méthode mixte

2,56+10
2E410 - . 2
= H
=
= 1,58410
2
k] ——EXACT
-
=
g 1Eel0 T
i
5E+0%
D .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time

Figure 75 : Variation nbr_objet/QoS pour la méthode mixte

Nous notons que la qualité du service offert par cette méthode est trés proche de la méthode

exacte (Figure 74) avec un temps de réponse acceptable (Figure 75) et un taux d'erreur trés

faible.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

128

Chapitre 5: Expérimentations & Validation

7 Conclusion

Dans ce chapitre, nous avons détaillé les différentes étapes de la mise en ceuvre du
démonstrateur de I’approche d’adaptation a contraintes multiples. Cette validation a été faite a
travers I’application de synthése d’images 3D et I’environnement de conception d’altera. La
premiére étape a consisté a la mise en place de la base des configurations HW/SW pour notre
application. Cette partie englobe les étapes de partitionnement hardware/software de mise en
place des architectures matérielles nécessaires ainsi que la caractérisation de chaque
configuration (temps d’exécution au pire cas, énergie consommeée pour une période, niveau de
qualité fourni). Nous avons détaillé par la suite la mise en place du systéeme d’exploitation
temps réel avec I’ordonnanceur EDF et I'implémentation du gestionnaire global et local.
Finalement nous avons présenté quelques scénarios pour la validation du fonctionnement de
I’approche proposée. Ce chapitre est cloturé par une comparaison entre les différentes

méthodes d’optimisation implémentées.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

129

Chapitre 6: Conclusions générales

Conclusions générales

L CONCIUSTON ..ottt bbbt b e h bR bbbt bbbt b bbbt r e
2 Réponse a la problématique et travail FEAlISEcccceiveiieiieiiee e
K T] 0= Toa R OO SOOI

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

130

Chapitre 6: Conclusions générales

1 Conclusion

Actuellement on assiste a une emergence de systemes multimédias électroniques embarqueés
destinés a un large public d’utilisateurs. Leurs fonctionnalités sont de plus en plus complexes
et diversifiés. Les concepteurs de ces systemes sont soumis envers une contrainte fastidieuse
qui est le temps de mise sous le marché « Time To Market ». Pour gagner ce défi des
méthodes de conception logicielle matérielle ont été développées. Elles tiennent en compte
uniquement des caractéristiques des applications pour définir une architecture en adéquation.
Cependant, les systémes sur puce doivent fonctionner dans des conditions souvent difficiles
fluctuation des conditions de transmission en réseau, ressources d’énergie limitée, contraintes
imposées par I’utilisateur etc. Tous ces parameétres « dynamiques » ne sont pas tenus en
compte dans les méthodes classiques de codesign existantes.

De ce fait, les méthodes de conception classiques ne permettent plus de répondre aux
exigences des systemes actuels et doivent étre améliorées par d’autres techniques afin de
surmonter ces problemes. En effet, elles doivent permettre la conception de systémes
performants pour pouvoir traiter les applications multimédia complexes et d’autre part
flexibles pour s’adapter a I’environnement externe variable pour respecter les contraintes

imposées par les ressources du systéme, I’environnement externe et I’utilisateur.

2 Réponse a la problématique et travail réalisé

Une bonne conception d’un systéme multimédia embarqué doit tenir compte non seulement
de la consommation du systeme mais aussi du comportement du systeme envers le

changement dynamiquement de ses contraintes.

Ces contraintes sont d’autant plus difficiles a realiser qu’elles sont sous I’influence de
parameétres externes souvent aléatoires et imprévisibles (influence de la variation des données
sur la consommation, influence des choix de I'utilisateur...). Nous avons proposé donc une
approche d’adaptation pour répondre aux contraintes durée de vie / Temps réel / Qualité de
service. Cette méthode suppose d'une part I’existence de divers modes de fonctionnements du
systéme et d'autre part que celui-ci est capable de passer d’un mode a un autre suivant

I’évolution des paramétres durée de vie, temps d’exécution et QoS.

Cette méthode se compose de trois activités principales qu’on a classées en deux étapes :
I’une se fait hors ligne lors de la conception du systeme et I’autre en ligne, elle intervient au

cours du fonctionnement du systéme:

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

131

Chapitre 6: Conclusions générales

- Etape de caractérisation hors ligne : elle permet de déterminer les différents modes de

fonctionnement du systéeme (configurations). Cette étape nécessite :

Le choix d’un modele d’architecture et une cible technologique.

L’étude de I’application afin de déterminer les attributs qui peuvent influencer le
compromis Ddv/Texe/QoS. Ces attributs sont de deux natures: applicatifs et
architecturaux. Les attributs applicatifs regroupent les valeurs des differents
algorithmes (ou leurs parameétres associés) et dont le changement a un impact direct
sur le compromis Ddv/Texe/QoS. Les attributs architecturaux concernent le type
d’implémentation des configurations. Dans cette etape, nous utilisons une approche de
partitionnement qui se base sur I’utilisation de I’outil Design Trotter et le résultat de
profilage de I’application sur I’architecture cible afin d’obtenir des implémentations en
adéquation avec I’application cible. A chaque couple d’attributs
applicatif/architectural correspond une configuration, elle est caractérisée par un triplet
{Energie_consommée, Texe, QoS}. Pour ceci il a fallu mettre en place des méthodes
de quantification de la consommation d’une configuration en termes d’énergie et de

temps d’exécution et de la qualité de service fourni a I’ utilisateur.

- Etape «en ligne » qui consiste a mettre en place un modele d'adaptation qui permet de

suivre en ligne I’évolution des contraintes Ddv, Texe et QoS et de reconfigurer le

systéme selon les consignes imposées par I’utilisateur. Cette étape est formée par deux

activités : une activité d’observation et une activité d’adaptation

L activité d’observation permet le suivi des trois paramétres Ddv, Texe et QoS.

Une activité d’adaptation qui permet de choisir les configurations adéquates pour
toutes les applications présentes sur le systeme afin de satisfaire les consignes de
I’utilisateur. Vu que cette tache ne doit pas dégrader les performances du systéme on a
eu recourt a trois méthodes d’optimisation pour le choix d’une combinaison a partir de

la base des configurations déterminées lors de caractérisation hors ligne.

Cette méthode a été validée a travers un environnement de prototypage des systémes sur puce

reconfigurable d’Altera. Nous avons retenu la fonction de rendu d’image 3D comme

application cible.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

132

Chapitre 6: Conclusions générales

3 Perspectives

Le travail effectue dans cette thése peut étre étendu et amélioré dans plusieurs axes. Nous
présentons quelques uns dans la suite.

Le premier theme que nous proposons, est la validation de I’approche sur une architecture
reconfigurable dynamiquement (tel que les FPGA de type Xilinx). Bien entendu de nouveaux
facteurs doivent étre pris en compte tel que le colt de la reconfiguration du systéeme en termes
de temps d’exécution et de consommation. Nous proposons aussi d’ajouter d’autres
applications multimédia telles que I’application H264. Il est a noter que ces travaux ont déja
commencé au sein de notre équipe dans le cadre du projet CMCU « CESAME ».

Le deuxiéeme theme concerne I’extension de cette approche pour quelle supporte les
architectures multiprocesseurs. Beaucoup de problémes sont a surmonter pour que cette
approche puisse supporter les architectures multiprocesseurs telles que I’affectation de la
charge de travail a chaque application, I’affectation des taches a un processeur, la
reconfiguration de [I’architecture du systétme et bien évidemment le probleme
d’ordonnancement puisque le EDF n’est plus optimal pour une architecture multiprocesseurs.
Le troisieme axe touche I’utilisation des modules d’accélérations hardware existants dans
I’architecture par plusieurs applications en méme temps. Dans notre travail nous avons
supposé que chaque accelérateur ne peut étre utilisé que par une seule application mais rien
n’empéche que ce dernier soit utilisé par d’autres applications puisqu’il est présent sur le
systéeme. Bien entendu, ce partage nécessite I’utilisation des mécanismes nécessaires pour
I’ordonnancement des taches sur I’accélérateur.

En dernier lieu nous proposons de faire une étude exacte pour choisir la méthode

d’optimisation adéquate a utiliser dans I’approche d’adaptation.

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

133

Références

Références

[Ana05]

[Aou06a]

[Aou06b]

[Aud 04]

[Ara05]

[Arn09]

[Azz04]

[Bam01]

[Ban02]

[Bap06]

[Bat9s]

[Bav00]

[Ben05]

[Ben07]

[Bra02]

[Bru06]

[Cat01]

[Chr11]

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Ana Belén Abril Garcia estimation et optimisation de la consommation dans les descriptions
architecturales des systemes intégrés complexes thése juin 2005, université de paris 6.

Y. Aoudni, Kais Loukil , Guy Gogniat, Jean Luc Philippe and Mohamed Abid, Mapping SoC
architecture Solutions for an Application based on PACM Model, International Symposium on
Industrial Electronic (IEEE ISIE’06) Montreal Canada 2006.

Y. Aoudni, G. Gogniat, K. Loukil, J. L. Philippe, M. Abid Method for Embedded Application
Prototyping based on SoC Platform and Architecture Model (IEEE DTIS 2006), Tunis, Tunisia
2006. Pages 73-83

Audrey MARCHAND et Maryline SILLY-CHETTO Simulation et évaluation d'algorithmes
d'ordonnancement temps-réel sous des contraintes de QoS, Septembre 2004, rapport de
recherche N° 0405

Arato. P, Mann. A. Orban. A, Algorithmic Aspects of Hardware-Software partitioning, ACM
Transactions on Design Automation of Electronic System, Vol. 10, No. 1, 2005. Pages 532 -
544

Arnaldo Azevedo, Parallel H.264 Decoding on an Embedded Multicore Processor, Lecture
Notes in Computer Science, 2009, Volume 5409, High Performance Embedded Architectures
and Compilers, Pages 404-418

Azzedine Abedennour, outil d’analyse et de partitionnement pour les systemes temps réel
embarqués, livre publié en 2004

N. Bambha, S. Bhattacharyya, J. Teich, E. Zitzler, Hybrid Global/Local Search Strategies for
Dynamic Voltage Scaling in Embedded Multiprocessors, In Proc. Hardware/Software Co-
Design (CODES’01), pages. 243-248, 2001.

S. Banachowski and S. Brandt, The BEST scheduler for integrated processing of best-effort
and soft real-time processes in Proc. of SPIE Multimedia Computing and Networking
Conference, San Jose, CA, Jan. 2002.

Baptiste A. Les métaheuristiques en optimisation combinatoire rapport de recherche, 9 mai
2006.

1J Bates Scheduling and Timing Analysis for Safety Critical Real-Time Systems, PhD thesis,
University of York, Nov 1998.

A. Bavier and L. Peterson, The power of virtual time for multimedia scheduling, Proc. of 10th
International Workshop for Network and Operating System Support for Digital Audio and
Video (NOSSDAYV), June 2000.

Ben Amor N., Y.Le Moullec, J-Ph.Diguet, J-L.Philippe, M.Abid, Design of a multimedia
processor based on metrics computation Special Issue for "Advances in Engineering
Software", volume 36 (2005) pages 448-458.

N. Ben Amor Approche de conception de processeur de vision embarqué these 2007,
université de Sfax

S. Brandt and G. J. Nutt, Flexible soft real-time processing in middleware Real-Time
Systems Volume 22, Numbers 1-2, pages 77-118, 2002.

Bruno Gaujal and Nicolas Navet. Ordonnancement temps réel et minimisation de la
consommation d'énergie, In Systémes temps réel - volume 2, pages 109-133, 2006

Catha. K, Vemuri. R, Magellan, multiway hardware-software partitioning and scheduling for
latency minimization of hierarchical control-dataflow task graphs, Proceedings of ACM
international Conference on Hardware/Software Codesign and System Synthesis, page 364,
2001.

Christian Bachmann, An Automated Framework for Power-Critical Code Region Detection
and Power Peak Optimization of Embedded Software, Integrated Circuit and System Design.

134

Références

[Cor01]

[Dan04]

[Dan09]

[Dava7]

[Fli01]

[F1i99]

[For98]

[Fral0]

[Fré00]

[Fre02]

[Gan10]

[Gru01]

[Hen08a]

[Hen08b]

[Hen99]

[Hif07]

[Hua06]

[Iva05]

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Power and Timing Modeling, Optimization, and Simulation Lecture Notes in Computer
Science, 2011, VVolume 6448/2011, pages 11-20.

M. Corner, B. Noble, and K. Wasserman, Fugue: time scales of adaptation in mobile video, in
Proc. of SPIE Multimedia Computing and Networking Conference, San Jose, CA, Jan. 2001.

Daniel Mossé Hakan Aydin, Rami Melhem. Periodic reward-based sheduling and its
application to power-aware real-time systems to appear in Handbook of Scheduling :
Algorithms, Models, and Performance Analysis, 2004.

Daniel Menard, et al Reconfigurable Operator Based Multimedia Embedded Processor,
Reconfigurable Computing: Architectures, Tools and Applications Lecture Notes in Computer
Science, 2009, Volume 5453/2009, pages 39-49

B. Dave, G. Lakshminarayana, N. Jha, COSYN : Hardware-Software CoSynthesis of Embedded
Systems, in Proc. ACM/IEEE Design Automation Conference, pages 703-708, Anaheim, CA,
June 1997.

J. Flinn, E. de Lara, M. Satyanarayanan, D. Wallach, and W. Zwaenepoel, Reducing the
energy usage of office applications, in Proc. of Middleware 2001, Heidelberg, Germany, Nov.
2001.

J. Flinn and M. Satyanarayanan, PowerScope: A tool for profiling the energy usage of mobile
applications, in Proc. of 2nd IEEE Workshop on Mobile Computing Systems and Applications,
Feb. pages 2-10, New Orleans, LA , USA 1999.

W. Fornaciari, P. Gubian, D. Sciuto, C. Silvano, Power Estimation of Embedded Systeme: A
Hardware/Software Codesign Approach IEEE Trans. VLSI Systems, June 1998, pages. 266-
275.

Francky Catthoor Global State-of-the-Art Overview, book chapter Ultra-Low Energy Domain-
Specific Instruction-Set Processors 2010, pages 17-32

Frédéric Parain et al. Techniques de réduction de la consommation dans les systemes
embarqués temps-réel, Rapport de recherche Mai 2000

Frédéric Le Mouél, AeDEn: An adaptive framework for dynamic distribution over mobile
environments, Annals of Telecommunications Volume 57, 2002

Ganghee Lee, et al, Communication architecture design for reconfigurable multimedia SoC
platform, Design Automation for Embedded Systems, 2010, Volume 14, Number 1, Pages 1-
20

F. Gruian, K. Kuchcinski, LEneS : Task Scheduling for Low-Energy Systems Using Variable
Supply Voltage Processor, In Proc. Asia South Pacific - Design Automation Conf. (ASP-
DAC’01), pages. 449-455, 2001.

M. Hentati, N. Ben Amor, K. Loukil, M.abid, HW/SW Interface Impact on an Adaptive
Multimedia System Performance: Case study,First IEEE International Workshops on Image
Processing theory, Tools& applications November 24-26, 2008-Tunisia.

Hentati Manel, Techniques d’interfacage dans les SoC : étude de cas, juin 2008, école
nationale des ingénieurs de sfax, tunisie

Henry Chang, Larry Cooke, Merrill Hunt, Grant Marti n, Andrew McNelly, Lee Todd,
Surviving the SOC Revolution : A Guide to Platform-Based Design, Kluwer Academic
Publishers, ISBN 0-79238679-5, 1999

Hifi M. , Michrafy M. Reduction strategies and exact algorithms for the disjunctively
constrained knapsack problem, Computers and Operations Research, 2007.

Huaxiang Lu, SOC Dynamic Power Management Using Artificial Neural Network, Advances
in Natural Computation Lecture Notes in Computer Science, 2006, Volume 4221/2006, pages
555-564

Ivano Barbieri et al. A Simulation and Exploration Technology for Multimedia-Application-
Driven Architectures, The Journal of VLSI Signal Processing, 2005, Volume 41, Number 2,
Pages 153-168

135

Références

[Jal0g]

[Jph11]

[Julo4]

[Kan02]

[Kanl1]

[Kim03]

[K0i06]

[Kon05]

[Kri0g]

[Kri0g]

[Kuh9s]

[Lab02]

[Lac04]
[Lad01]
[Lay09]
[Lee00]

[LicO6]

[Lin10a]

[Lin10b]

[LL73]

[Lor98]

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Jalel Ktari, Mohamed Abid, A Low Power Design Space Exploration Methodology Based on
High Level Models and Confidence Intervals, ASP Journal of Low Power Electronics March,
2009 Volume : 5, Pages : 1-14

cle: J.Ph Diguet, Y. Eustache, G. Gogniat, Closed-loop based self-adaptive HW/SW embedded
systems: design methodology and smart cam case study, in ACM Transactions on Embedded
Computing Systems, vol.10, issue.3, April 2011.

Julio C. B. Mattos, Design Space Exploration with Automatic Selection of SW and HW for
Embedded Applications, Computer Systems: Architectures, Modeling, and Simulation Lecture
Notes in Computer Science, 2004, Volume 3133/2004, pages 103-118

Kanishka Lahiri et al. Battery Driven System Design: A Nex Frantier in Low Power Design

Design Automation Conference, 2002. Proceedings of ASP-DAC 2002. 7th Asia and South
Pacific and the 15th International Conference on VVLSI Design. Proceedings. 2002 , Pages
261 - 267

Kan Fang, A New Shop Scheduling Approach in Support of Sustainable Manufacturing,
Glocalized Solutions for Sustainability in Manufacturing 2011, pages 305-310

Kim N., Austin T., Blaauw D., Mudge T., Leakage Current: Moore’s Law Meets Static
Power, IEEE Computer Society revue Computer, Pages 68-75, 2003.

Koichiro ISHIBASHI et al. Low-Voltage and Low-Power Logic, Memory, and Analog Circuit
Techniques for SoCs Using 90 nm Technology and Beyond, IEICE TRANS. ELECTRON.,
VOL.E89-C, NO.3 MARCH pages 250-262, 2006

Konstantinos Masselos and Nikolaos Voros, Introduction to Reconfigurable Hardware
2005, System Level Design of Reconfigurable Systems-on-Chip, Part A, Pages 15-26

Kristopher Welsh and Pete Sawyer, When to Adapt? Identification of Problem Domains for
Adaptive Systems, Lecture Notes in Computer Science, 2008, Volume 5025, Requirements
Engineering: Foundation for Software Quality, Pages 198-203

Kris Gaj and Pawel Chodowiec, FPGA and ASIC Implementations of AES Cryptographic
Engineering , pages 235-294, 2009

Kuhn P.M., Stechele W. Complexity Analysis of the Emerging MPEG-4 Standard as a Basis
for VLSI Implementation Visual Communications and Image Processing SPIE 3309, San Jose,
california, 1998.

Labrosse J.J., MicroC/OS-11, The real time kernel, R&d books editions, 2002, ISBN 1-57820-
103-9

Lacroix J., Terrade S. Algorithmes Génétiques, livre17 novembre 2004.
Laddaga, R. Active software. Lecture Notes in Computer Science, 2001
LAYEB.A, introduction aux métaheuristiques, cours recherche opérationnelle, 2009

S. Lee, T. Sakurai, Run-time Voltage Hopping for Low-power Real-time Systems, In Proc
IEEE 37th Design Automation Conf. (DACO00), pages 806-809. 2000.

Licandro F., et al. A Multimedia Adaptive-Quality Platform For Real-Time E-Learning Over

IP, Signals and Communication Technology, Distributed Cooperative Laboratories:
Networking, Instrumentation, and Measurements, Chapter |, Pages 29-44, 2006.

Lina Jarboui, Etude et implémentation d’une technique d’adaptation multi contraintes pour
les systemes multimédia embarqués, Rapport projet fin d’étude Enis-2010

Linfeng Ye, Jean-Philippe Diguet, Guy Gogniat, Rapid Application Development on Multi-
processor Reconfigurable Systems, FPL'2010. Pages 285-290

C. L. Liu and James W. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, Journal of the ACM, 1973.

Lorch Jacobs R. And Alan Jay Smith, Software strategies portable computer energy
management, IEEE Personal communications Magazine. June 1998

136

Références

[Lou04]

[Lou09a]

[Lou09b]

[Lou09c]

[Luo02]

[Man03]

[Mar05]

[Mat07]

[Mat09]

[Mes02]

[Mo065]

[Mou03a]

[Mou03b]

[Muh10]

[Muh11]

[Nab10]

[Oku01]

[Pan01]

[Pan05]

[Pha03]

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Loukil K., Ben Cheikha H., Conception d’accélérateurs pour la synthese d’image 3d, juin
2004, université du sud, Faculté des Sciences de Sfax, tunisie.

K. Loukil, N. Ben Amor, Mouna Ben said, Mohamed Abid, OS service update for an online
adaptative embedded multimedia system, the fourteenth IEEE Symposium on Computers and
Communications (ISCC’09) July 5-8, 2009 Sousse, Tunisia

K. Loukil, N. Ben Amor, M. Hentati, M. Abid, HW/SW partitioning approach on
reconfigurable multimedia system on chip, The 7th ACS/IEEE International Conference on
Computer Systems and Applications, Rabat, Morocco. May 10-13, 2009

K. Loukil, N. Ben Amor, M. Abid, Self adaptive reconfigurable system based on middleware
cross layer adaptation model, IEEE SSD 2009 Djerba, Tunisia 2009.

J. Luo, N. K. Jha, Static and dynamic variable voltage scheduling algorithms for real-time
heterogeneous distributed embedded systems, Int. Conf. on VLSI Design, Jan. 2002.

A. Manzak, C. Chakrabarti, Variable Voltage Task Scheduling Algorithms for Minimizing
Energy/Power, in IEEE Trans on VLSI Systems, April 2003.

Marcus T. Schmitz, Bashir M. Al-Hashimi and Petru Eles, Power Variation-Driven Dynamic
Voltage Scaling, System-Level Design Techniques for Energy-Efficient Embedded Systems
2005, pages 35-59

Matthias Grumer, Software Power Peak Reduction on Smart Card Systems Based on Iterative
Compiling, Emerging Directions in Embedded and Ubiquitous Computing Lecture Notes in
Computer Science, 2007, Volume 4809/2007, pages 627-637

Matt Klein, Power Consumption at 40 and 45 nm, White Paper: Spartan-6 and Virtex-6
Devices, WP298 (v1.0) April 13, 2009

M. Mesarina and Y. Turner, Reduced energy decoding of MPEG streams, in Proc. of SPIE
Multimedia Computing and Networking Conference, San Jose, CA, Jan. 2002.

G. E. Moore. Cramming more components onto integrated circuits, Electronics, Volume 38,
Number 8, April 19, 1965.

Y. Le Moullec, D. Heller, J.-P. Diguet, J.-L. Philippe, Estimation du parallélisme au niveau
systéme pour I’exploration de I’espace de conception de systemes enfouis, Technique et
Science Informatiques (RSTI-TSI), Vol. 22, n°3/2003, pages315-349, Lavoisier Hermes-
Science publications.

Y. Moullec, Aide a la conception de systemes sur puce hétérogenes par I'exploration
paramétrable des solutions au niveau systeme, Thése, I'Université De Bretagne Sud, 2003.

Muhammad Khurram Bhatti, Assertive Dynamic Power Management (AsDPM) Strategy for
Globally Scheduled RT Multiprocessor Systems, Integrated Circuit and System Design. Power
and Timing Modeling, Optimization and Simulation Lecture Notes in Computer Science,
2010, Volume 5953/2010, p116-126

Muhammad Khurram Bhatti, Hybrid power management in real time embedded systems: an
interplay of DVFS and DPM techniques, Real-Time Systems Volume 47, Number 2, pages
143-162, junary 2011

Nabila Moubdi et al. Product On-Chip Process Compensation for Low Power and Yield
Enhancement, Lecture Notes in Computer Science, Volume 5953/2010, pages 247-255, 2010

T. Okuma, T. Ishihara, H. Yasuura, Software Energy reduction Techniques for Variable
Voltage Processors, IEEE Design & Test of Computers, March-April, 2001.

D. Panigrahi , C. Chiasserini, S. Dey, R. Rao , A. Raghunathan and K. Lahiri, Battery Life
Estimation of Mobile Embedded Systems, 14éme Intl. Conf. on VLSI Design, Bangalore, Inde,
janvier 2001.

Pan Y., Cheng I., Basu A. Quality Metric for Approximating Subjective Evaluation of 3-D
Objects, IEEE transactions on multimedia, Vol. 7, N°. 2, pages269, avril 2005.

N. Pham Ngoc, G. Lafrui, G. Deconinck, and R. Lauwereins Terminal QOS management on
run-time reconfigurable platforms, Third PA3CT-symposium pages 22-23 September 2003

137

Références

[Pha04]

[Qual1]

[Ram05]

[Rut02]

[Sia03]

[Seo10]

[Shi01]

[Shi04]

[Sof07]

[Swa01]

[Tou00]

[Tur03]

[Van02]

[Var04]

[Wan03]

[Xin07]

[Yua06]

[Yutl1]

[Zhi08]

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

N. Pham Ngoc, W. van Raemdonck, G. Lafruit, G. Deconinck, and R. Lauwereins, A QoS
framework for interactive 3D applications, Proceedings of the ninth international conference
on 3D Web technology 2004

G. Quan, X. Hu, Energy efficient fixed-priority scheduling for real-time systems on variable
voltage processors, Design Automation Conference, Proceedings, 2001, pages 828 -833.

Raman. B, Chakraborty. S, Ooi. W, Meeting CPU constraints by delaying playout of
multimedia tasks, Proceedings ACM International Workshop on Network and Operating
System Support for Digital Audio and Video, 2005, pages 165-170.

Rutten. M et al. A Heterogeneous Multiprocessor Architecture for Flexible Media processing
IEEE Transactions on Design and Test of Computers, Vol. 19, No. 4, 2002, pages 39-50.
Siarry P., Dréo J., Pétrowski A., Taillard E. Métaheuristiques pour I'optimisation difficile
Livre Septembre 2003.

SEONGSOO LEE, Modeling and Description of Semiconductor IP interfaces for System-
Level SoC Design, CSECS '10 Vouliagmeni, thens, Greece December 29-31, 2010

D. Shin, J. Kim and S. Lee, Intra-Task Voltage Scheduling for Low-Energy Hard Real-Time
Applications, IEEE Design and Test of Computers, Vol.18 No.2, pages 20-30, March 2001.

D. Shin and J. Kim, Dynamic Voltage Scaling of Periodic and Aperiodic Tasks in Priority-
Driven Systems, in Proc. ASPDAC’03, pages 653-658, Jan. 2004.

Sofien Chtourou, Méthodologies de synthése de réseaux de neurones pour applications de
traitement de signal adaptatif et implémentation sur circuits reconfigurables dynamiquement ,

thése 2007

V. Swaminathan, K. Chakrabarty, S. S. lyengar, Dynamic 1/O power management in hard
real-time systems, Proceedings of the International Symposium on Hardware/ Software
Codesign, pages 237-243, 2001.

Touradj E., Horne C., MPEG-4 natural video coding - An overview, journal of Signal
Processing: Image Communication, vol. 15, 2000 , pages 365-385.

Turley J., Embedded Processors of Tomorrow, Embedded Systems Programming, novembre
2003, pages 36-38.

W. Van Raemdonck, G. Lafruit, E.F.M. Steffens, C.M. Otero Pérez, R.J. Bril, Scalable
graphics processing in consumer terminals, Multimedia and Expo, 2002. ICME '02.
Proceedings. 2002 IEEE International Conference

Varatkar .G.V and Marculescu. R, On-chip traffic modelling and synthesis for MPEG2 video
applications, IEEE Transactions on Very Large Scale Integration (VLSI) systems, 2004, pages
108-119.

Wanghong Yuana, Klara Nahrstedta, Sarita V. Advea, Douglas L. Jonesb, Robin H. Kravets,
Design and Evaluation of a Cross-Layer Adaptation Framework for Mobile Multimedia
Systems, Appears in SPIE/ACM Multimedia Computing and Networking Conference
(MMCN), 2003

Xiang LingXiang, The Design and Implementation of the DVS Based Dynamic Compiler for
Power Reduction, Advanced Parallel Processing Technologies Lecture Notes in Computer
Science, 2007, Volume 4847/2007, pages 233-240

Yuan W., and K. Nahrstedt, Energy-Efficient CPU Scheduling for Multimedia Applications,
ACM Transactions on Computer Systems, Vol. 24, No. 3, Pages 292-331, Aug. 2006

Yuto Hayamizu, Application-Aware Power Saving for Online Transaction Processing Using
Dynamic Voltage and Frequency Scaling in a Multicore Environment, Architecture of
Computing Systems - ARCS 2011 Lecture Notes in Computer Science, 2011, Volume
6566/2011, pages 50-61

Zhiyi Yu, et al. Architecture and Evaluation of an Asynchronous Array of Simple Processors,

Journal of Signal Processing Systems Volume 53, Number 3, pages 243-259, 2008

138

Webographie

Webographie

[Alt11]
[Alt02]

[Cad]
[Cel]
[Kar03]

[Ouh03]

[Ste10]

[Sys]
[Syn]

Approche de gestion de performances/contraintes pour les systémes embarqués temps réel

Altera : www.altera.com

Altera Documentation Avalon Bus Specification — Reference Manual
http://www.altera.com/literature/manual/mnl_avalon_bus.pdf, July 2002.

Cadence: HYPERLINK http://www.cadence.com

Celoxica : HYPERLINK http://www.celoxica.com

Karnofsky K. Signal-processing system design tackles tough wireless apps
http://www.commsdesign.com/, aolt 2003.

P. G.-Ouhamou, C. Belleudy, M. Auguin, Dynamic Voltage Scaling: implementations during
the scheduling step of a codesign tool http ://www.same-conference.org/technical.htm, SAME
2003.

Steuard J. An Introduction to Lagrange Multipliers
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html, 2010.
SystemC : www.systemc.org

Synopsys: WWWw.Ssynopsys.com

139

Résumé

Actuellement on assiste a une émergence de systemes multimédias électroniques embarqués destinés a
un large public d’utilisateurs. Leurs fonctionnalités sont de plus en plus complexes et diversifiés.
Cependant, les systémes sur puce doivent fonctionner dans des conditions souvent difficiles
fluctuation des conditions de transmission en réseau, ressources d’énergie limitée, contraintes
imposées par I’utilisateur etc. Tous ces paramétres « dynamiques » ne sont pas tenus en compte dans
les méthodes classiques de co-design existantes.

Dans cette thése une nouvelle approche multi-niveaux combinant I’adaptation au niveau systéme
d’exploitation, applicatif et architectural a été proposée. En fait, c’est une approche originale et
générique d’adaptation qui comporte essentiellement deux gestionnaires (global manager and local
manager). Le gestionnaire global peut intervenir dans les trois couches afin de répondre aux grandes
variations des contraintes du systeme (QoS et énergie). Le gestionnaire local intervient seulement dans
les couches application et systeme d’exploitation. Il est mis en place pour contrdler le respect de la
contrainte temps réel du systeme. Une étude de cas a été présentée sur un systeme réel en utilisant
I’environnement de conception d’Altera et I’application de synthese d’images 3D.

Mots clefs : systeme embarqué, qualité de service, auto-adaptation, énergie, temps réel

Abstract

The emergence of mobile and battery operated multimedia systems as well as the diversity of
supported applications put new challenges in term of design efficiency. These systems must provide a
maximum application quality of service (QoS) in the presence of a dynamically varying environment
such as video streaming and multimedia conferencing and multiple resources constraints (e.g. battery
level). These problems cannot be solved at design time and some efficiency gains can be obtained at
run-time using an adaptive architecture.

In this thesis we propose a new cross layer adaptation solution for embedded mobile systems. It
supports application QoS under real time and lifetime constraints via coordinated adaptation in the
hardware, OS, and application layers. Our method relies on an original middleware solution
implemented on a global and a local manager. The global manager (GM) handles large and long-term
variations whereas the local manager (LM) is used to guarantee real time constraints. The GM acts in
three layers, whereas the LM manages application and OS layers only. The main role of GM is to
select the best configuration for each application to meet system constraints and respect user
preferences. The approach has been applied to a 3D graphics application and successfully
implemented on an Altera FPGA.

Key words: embedded system, quality of service, auto-adaptation, power, real time

Ladal)

, Opeddinall (e a5y seand Ao sall Blad) e ek W e Jails gl Badaiia 5 el A 5 SSIV Akt Jlerinal zesal Llls
3l say cdaliial) CYLail) AS0ES A (585 L Wlle g ol Jaall Leale ang clld s, Lo g g aind ST Lgdila g iy
o3¢ Apalil) Jaladill gl (8 5 el "ASaalnall” el 238 JS padivull 08 (e Fua g siall 3 gl 5 633 sanall 48U
Akl

) gl 138 alaill dnia 5 zeald) el alai 1l sivna 320 o 313 oSl pany Tapaa Lags Liadi Aa g LY 028 8
el 1 Gal) Al) dall o Jaail) aladl Coyeaiall (S (e Ca paalia 5 ale Ca jpualic) (o ualie Jlesial o aaiag
a) oalae) a3 2l g Jadil) pUai g geal) Adda 8 dadd sl sl o puatiall (Say A8l g dedad) 30 a8 GUaill 208 e
Al I el 9 | il sl Ay aladinly s alai e Al Al) ol a5, aldaill Y1 <) o gl JUeY)

S gl Al A el daadl 83 e Aeral) dadail) spilial) cilall)

