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Introduction générale 
 

La complexité des systèmes embarqués est en pleine croissance afin de répondre aux 

exigences et aux critères de performances des nouvelles applications. Ceci rend la conception 

de plus en plus difficile en intégrant une multitude de fonctionnalités tout en respectant les 

contraintes de l’application. Par ailleurs, l'avènement des nouvelles technologies met en 

évidence la nécessité d'établir de nouvelles méthodologies de conception à un haut niveau 

d’abstraction. Ces méthodologies servent à mieux guider le concepteur lors du choix de la 

solution architecturale afin d’atteindre les objectifs souhaités entre autre la basse 

consommation. 

En fait, la consommation de puissance et d’énergie est devenue une des contraintes 

principales lors de la conception des systèmes embarqués. En effet, les nouvelles applications 

nécessitent de plus en plus de puissance de calcul et de précision et par conséquent une 

augmentation de la consommation d'énergie et de puissance. Par ailleurs, vu le caractère de 

mobilité dans ces applications fonctionnant avec des batteries, la maîtrise de la consommation 

s’impose lors de la conception. Ceci permet d’une part d’augmenter la durée de vie des 

batteries qui se traduit par un gain en temps de communication d’un GSM par exemple, et de 

minimiser la dissipation thermique des composants qui influe sur la fiabilité du système 

d’autre part. 

 

Objectif du sujet 
 
• Les nouvelles applications embarquées ont clairement montré l’évolution croissante de 

la consommation. Si la consommation n’est pas réduite et maîtrisée, la complexité ou bien la 

performance des applications devra être réduite afin d’envisager une solution embarquable. 

D’où une dégradation importante, voire inacceptable pour l’utilisateur, de la qualité de service 

(QoS) associée aux services fournis.  

• On sait que les systèmes mobiles devront atteindre des performances élevées : 100 

Mops/mW pour les nœuds mobiles et 10 à 50 Mops/mW pour les stations de base. Si de telles 

performances peuvent être atteintes par les ASIC, cela représente une efficacité 10 fois 

supérieure aux DSP actuels, 100 fois supérieure aux microprocesseurs généralistes. Pour 

garantir l'adaptabilité des systèmes à un environnement hétérogène, il faut donc prospecter de 

nouvelles solutions architecturales logicielles et matérielles garantissant une performance 
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élevée, une grande flexibilité et une faible énergie. Seule une approche globale de haut niveau 

permet de caractériser et d'optimiser efficacement la consommation (Benoit et al., 2004). 

• L’étape d’exploration architecturale est une étape critique dans le flot de mise en 

œuvre du produit. En effet, pour une application donnée, il est possible d’avoir une multitude 

d’architectures. Cet espace contient des architectures qui sont non réalisables, d’autres qui ne 

satisfont pas les contraintes, d’autres qui les satisfont et des architectures qui ont des 

performances optimales. Il incombe à l’étape d’exploration de trouver pour l’application, une 

architecture adéquate qui satisfait les contraintes et qui optimise au mieux sa consommation. 

 
Organisation et contribution de ce rapport 
 

Afin de maîtriser l’aspect faible consommation dans les systèmes embarqués, et afin de 

voir la possibilité de l’intégration de cet aspect dans l’exploration de l’espace des solutions à 

différents niveaux d’abstractions, une étude est faite sur les divers outils et méthodologies.  

De plus, une approche d’exploration basse consommation est proposée et validée. 

Dans le premier chapitre du rapport, on présente les diverses techniques et 

méthodologies d’estimation de la consommation dans les systèmes embarqués à différents 

niveaux d’abstractions. Le deuxième chapitre est consacré à l’état de l’art de l’exploration de 

l’espace des solutions. On présente aussi les besoins, la nécessité et la complexité de 

l’exploration basse consommation lors de la conception.  

Dans le troisième chapitre du rapport, on présente notre approche pour faire face aux 

difficultés d’exploration et de conception basse consommation. Elle consiste à proposer des 

modèles de performances riches et une technique d’exploration dite basse consommation. Un 

modèle complet est proposé afin de déduire les performances globales du système qui seront 

utilisées lors de l’exploration à travers une technique basée sur le recuit simulé. Cette 

heuristique permet d’exploiter la technique d’exploration selon plusieurs niveaux de 

granularité et ce afin de pouvoir choisir le niveau qui permet d’assurer une exploration précise 

et rapide. 

Le dernier chapitre est consacré à l’étude et la modélisation de haut niveau du filtre FIR, 

de la FFT et des différentes fonctions de l’application MPEG-2 sur diverses architectures 

cibles. Les modèles établis serviront comme bibliothèque de modèles utiles pour bien mener 

le choix stratégique de l’architecture cible adéquate lors de l’exploration basse consommation. 

Et afin de valider l’approche, une étude probabiliste est proposée. 
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Chapitre I. La conception faible consommation 

I.1 Introduction 
 

Historiquement, les contraintes majeures lors de la conception des systèmes embarqués 

étaient essentiellement la performance et le coût. Avec la tendance vers les applications 

portatives et la forte densité d’intégration, l'énergie est devenue un facteur critique lors de la 

conception. En effet, la consommation est actuellement l’une des importantes métriques lors 

de la conception des systèmes embarqués. Il est à signaler que l’objectif essentiel de la 

conception faible consommation est non seulement minimiser la puissance, mais aussi 

augmenter la durée de vie des batteries et éviter les systèmes de refroidissement encombrants. 

Pour cela, plusieurs techniques et technologies sont développées et appliquées dans ce 

contexte. Ces différentes techniques seront présentées dans ce chapitre.   

I.2 Les exigences des systèmes embarqués 
 

La conception logiciel/matériel de haut niveau permet de maîtriser la conception des 

systèmes complexes (Figure 1) et d’approuver leurs continuités. L'analyse des performances 

pendant une phase avancée de conception et avant la fabrication permet une exploration 

rapide de plusieurs alternatives d'architecture, ce qui offre au concepteur une meilleure 

visibilité et une grande réactivité vis-à-vis des changements technologiques (fiabilité, 

optimisation, flexibilité, migration etc.).  

 

 

 

 

 

 
Figure 1.  Architecture d’un système embarqué mixte (HW/SW) 

 

Les prévisions pour l’évolution des applications de traitement de signal et d’image, pour 

les systèmes mobiles par exemple, montrent leur impact sur la conception des circuits et des 

systèmes embarqués. En particulier, à l’heure actuelle, il est indispensable de tenir compte de 

la consommation (en puissance et en énergie) comme critère de développement d’un système 

(Tableau 1) au même titre que la surface et la vitesse. En effet, la fréquence de 

Processeur Mémoire ASIC 

Processeur FPGA Processeur 
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fonctionnement élevée, le nombre de ressources mises en œuvre et le degré d’intégration, 

contribuent à atteindre les limites physiques supportables par les circuits. La maîtrise de la 

consommation est donc un problème majeur dans la conception des systèmes embarqués.  

On sait que si l’optimisation de la consommation doit intervenir à chaque niveau de la 

conception, c’est cependant aux plus hauts niveaux que les gains attendus sont les plus 

importants : 20 à 50% au niveau technologique contre 10 à 20x au niveau système (Rabaey et 

al., 1996) (Fei et al., 2003). Comme la partie logicielle représente au moins 70% du coût du 

développement des systèmes complexes et que la taille du code des applications TDSI double 

tous les deux ans, on conçoit qu’il est indispensable de disposer, au plus tôt dans la 

conception, de métriques de consommation fiables caractérisant aussi bien les parties 

logicielles et les parties matérielles (ITRS, 2004). 

Tableau 1.  Les exigences fonctionnelles des systèmes PDA (ITRS, 2004) 
 
 

Année  2004 2007 2 0 1 2  2015 
Technologie (nm) 90 65 45 32 

 Voltage (V) 1.2 0.8 0.6 0.5 
 Fr é quence (MHz) 300 600 900 1200 

 Vidéo temps réel Codec
(MPEG4) Interprétation temps réel

Application  

Traitement 
Image 

 
Web  

 
 E-Mail 

 

TV Téléphone  
reconnaissance de voix 

Cryptage 

TV Téléphone 
reconnaissance de voix 

 Performa n ce (GOPS) 0.3 2 14 77 461 
Puissance (W) 0.1 0.1 0.1 0.1 0.1 

 Puissance Sta n dby ( m W )  2 2 2 2 2 
Capacité batter i e  (Wh/Kg) 120 200 400 

 

I.3 Système faible consommation 
 
Diverses méthodes existent afin d’obtenir un système à faible consommation : 

- Modéliser le logiciel pour diminuer le coût énergétique de son exécution : 

optimisation du code des applications, étude du comportement des applications et des 

processeurs en fonction des paramètres du code. 

- La seconde méthode consiste à concevoir de composants spécifiques pour 

consommer le minimum d'énergie. En fait, c’est avec l’explosion du marché des systèmes 

embarqués et l’apparition des problèmes de surchauffe des composants, que cet aspect a été 
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pris en compte au niveau de la conception. Comme techniques de limitation de consommation 

des composants, on cite la diminution de la tension d’alimentation, l’activation séparée des 

blocs logiques et le contrôle du taux d’activité des données.    

 - La troisième méthode consiste à réaliser une collaboration entre le logiciel et le 

matériel afin d'optimiser la consommation totale du système. Elle s'appuie sur des 

mécanismes matériels pour diminuer la consommation et utilise le logiciel pour une meilleure 

décision en activant ou non ces mécanismes. Cette méthode est décrite dans le cadre de la 

mise en veille des périphériques ainsi que sur l'adaptation dynamique de la vitesse du 

processeur, etc.  

I.4 La maîtrise de la consommation 
 

Les principales sources de dissipation de puissance dans un circuit numérique sont 

données dans l'équation suivante (équation 1).  

La puissance statique Ps peut être, dans certains cas, négligée pour des circuits de type 

CMOS. Mais avec les taux d’intégration actuels et les nouvelles technologies, elle est loin 

d’être négligeable. 

Pmoy = Pd + Pcc + Pf   = α . C . Vdd² . f + Vdd . Icc + Vdd . If   (1) 

où Pmoy est la puissance moyenne dissipée par le circuit, Pd la puissance dynamique causée 

par la charge et la décharge de la capacité C. Pcc et Pf  reflètent la puissance dissipée due aux 

courants de court-circuit et de fuite respectivement.  

Avec Vdd la tension d'alimentation, f la fréquence d'horloge, C la capacité physique du circuit 

et α le taux de commutation du circuit. Ces deux derniers paramètres sont souvent regroupés 

en un terme Ceff. 

I.5 La réduction de la consommation 

La consommation moyenne dans un circuit dépend de : 

 La tension d’alimentation, son impact quadratique en ce qui concerne la 

consommation permet d'envisager un gain important. Il faudra cependant rester avec     

Vdd > 2*la tension de seuil (VT) (Rabaey et al.,1996) ou même plus actuellement. Et ceci 

pour éviter une augmentation importante du temps de propagation, qui est proportionnel à 
Cl*Vdd/(Vdd-VT)², ce qui cause un ralentissement du fonctionnement. 

 La fréquence d'horloge peut être réduite en se basant sur des techniques 

d'optimisation du chemin critique logique (arbre de l’horloge) ou bien des méthodes 
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(parallélisme, pipeline) aux niveaux algorithmiques et architecturaux. De cette manière, on 

évite le fonctionnement à des fréquences plus élevées. 

 L’activité du circuit qui se manifeste par le nombre de commutations au niveau 

des portes. Afin de réduire cette activité, il est utile de bien codifier les données de telle 

façon qu’on minimise les changements de niveau logique et éventuellement  minimiser les 

commutations parasites.   

 La capacité effective qui est un paramètre technologique : les connexions aux 

composants externes ont typiquement une capacité beaucoup plus élevée que les 

connexions aux ressources sur la puce. Donc pour économiser l'énergie, la minimisation de 

l’utilisation des accès externes et de la commutation est sollicitée. En fait, l’accès à la 

mémoire externe consomme beaucoup d'énergie. Ainsi, une façon de réduire la capacité est 

de réduire ces accès et d’optimiser le système en employant des ressources internes comme 

la mémoire cache et les registres. 

I.6 Méthodologies de réduction de la consommation 

 
Il est possible d’utiliser des techniques de conception basse consommation à différentes 

étapes de la conception d’un système. La conception descendante consiste à partir du niveau 

le plus abstrait d’atteindre le niveau le plus bas. Pour ces systèmes, on distingue cinq niveaux 

différents: (Havinga et al., 2000) (Nikolaidis et al., 2005)   

- Le niveau système 

- Le niveau algorithmique 

- Le niveau architectural (RTL: Register Transfert Level) 

- Le niveau logique 

- Le niveau électrique et physique 

Par exemple, au niveau système : les modules inactifs peuvent être désactivés afin de 

minimiser les pertes énergétiques. Au niveau architectural, le parallélisme matériel peut être 

employé pour réduire les interconnections sans dégrader la sortie du système. Au niveau 

technologique, plusieurs optimisations peuvent être appliquées au niveau porte.  

Les gains en consommation à chaque niveau de conception sont détaillés avec les outils 

dans le tableau 2:  (Rabaey  et al., 1996) (Laurent, 2002) (Beak et al.,2004) (Sequence, 2005) 

(Stanley et al.,2004) (Xilinx, 2006) (Minh et al., 2003) (Shin et al., 2002).   
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Tableau 2 : Techniques et outils de réduction de la consommation 
 

Niveau Domaine Outils Intervention 

Système Processeur travaillant avec 
plusieurs fréquences - ORINOCO 

-Mises en veille 
-Voltage scaling 
-Partitionnement (hw/sw) 
-Contrôle d’activité 

Algorithmique 

 
-Sources de consommation 
mal maîtrisées 
 
-Architecture peu connue 
 

 
-GAUT_LP  
-Orinoco (Offis) 
-SoftExplorer 
-ePRO 
-SES 

-Réduire les accès 
mémoire 
-Réduire les ruptures de 
pipeline 
-Diminuer le taux de 
défaut de cache 

RTL 

 
-Sources de consommation à 
peu près maîtrisées 

 
-Implantation réelle inconnue 

 
-Design Powe (Synopsys)       
-Power Theater Sequence 
-GAUT_LP 
- Wattch, Simplepower 
-DSP-PP 

 
-Parallélisme/Pipeline 
-Encodage de bus 
-Eteindre les modules 
inutilisés 

Logique 

 
 
-Nature des signaux entrés 
influence fortement la 
consommation du circuit 
 

 
-Cooltime 
-QuickPower (Mentor)           
-DesignPower(Synopsys)     
PowerTheater(Sequence)       
-Accupower 
-Xpower(Xilinx) 

-Format de codage 
-Extraction des sous-
fonctions communes 
-Partage de ressources 
-Eliminer les transitions 
parasites 

Physique 

 
 
Source de consommation 
clairement identifiée 
 

 
-Coolpower 
-Spice 
-Accupower 

 
-Transistor sizing 
-Actions sur les seuils 
-Actions sur Vdd 
 

 

Etant donné une spécification de conception, le concepteur a plusieurs choix sur les 

différents niveaux d'abstraction. Le designer doit choisir par exemple un algorithme 

particulier, concevoir ou exploiter une architecture qui peut être employée, et déterminer les 

divers paramètres influants comme la tension et fréquence d'horloge. Cet espace de 

conception multidimensionnel offre une grande gamme de compromis possibles. Et 

l'influence la plus remarquable sur la propriété de conception est obtenue aux plus hauts 

niveaux.  

Donc les décisions de conception les plus efficaces dérivent du choix et de 

l’optimisation des architectures et des algorithmes aux niveaux les plus hauts. Plusieurs 

chercheurs (Havinga et al., 2000)(Garcia et al., 2005) ont montré que la conception au niveau 

architectural et système peut avoir un fort impact sur la consommation. Cependant en 

concevant au niveau système, le problème est de prévoir l'efficacité des décisions de 

conception. En fait, les détails d’implémentation peuvent être exactement estimés seulement 

au niveau technologique et pas aux niveaux d’abstraction plus hauts. 
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I.7 Techniques et outils d’estimation 

I.7.1 Techniques 
 

Diverses techniques d’estimation sont basées sur une méthode appelée Analyse de la 

Puissance au niveau Instructions (ILPA). L’ILPA a été développé à l’université de Princeton 

par Vivek Tiwari et al (Tiwari et al.,1996). Cette méthode était souvent considérée comme 

référence dans l’estimation de la consommation. Elle est applicable théoriquement à tous les 

processeurs que ce soit les processeurs généraux (Pentium, Athlon,…) ou les processeurs 

spécifiques (DSP). 

Dans les systèmes basés sur microprocesseur, on peut modéliser la dissipation comme 

une fonction du logiciel (des instructions) étant exécutée sur une plate-forme matérielle. Les 

techniques d'évaluation de consommation du logiciel dans la littérature peuvent être triées 

dans ces catégories : 

I.7.1.1 Analyse de la puissance au niveau instructions (ILPA) 
 

Cette méthode est proposée afin d’évaluer la dissipation d’une partie du logiciel. 

L’idée de base est d’associer la puissance consommée avec l'exécution d'une instruction 

individuelle. La modélisation de cette méthode est décrite généralement par : 

 

∑ ∑∑ ++=
ji K

kijiji
i

i SNONBE
,

)*()*(    (2) 

Avec Bi l’énergie dissipée par l’instruction individuelle i, Oij reflète la puissance due au 

changement entre deux instructions consécutives (i,j). En effet, il apparaît un surcoût dû au 

passage d’une instruction à l’autre c à d qu’un certain nombre de bits commutent du fait du 

changement du code de l’instruction (Brandolese et al., 2000). Le modèle doit donc tenir 

compte de cette consommation inter-instruction ce qui oblige à mesurer les consommations de 

toutes les combinaisons possibles deux à deux. Sk représente l’énergie due aux ruptures de 

pipeline et aux défauts de cache. 

 La figure 2 représente une plate forme utilisée afin de matérialiser cette méthode 

(Russell et al.,1998). Pour mesurer la puissance, une résistance de précision a été placée en 

série avec l’alimentation du processeur.  

La consommation du processeur est calculée par cette formule (3) : 

)(*)()()()()( 2
21 tVR

tVtVtVtItP −==                                   (3) 
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Pour déterminer Bi et Oij de l’équation 2 il faut faire un ensemble de tests des cas 

possibles. Mais ça engendre un nombre important de mesures ≈110 000 mesures pour un 

processeur Intel de 331 instructions  (Li et al., 2003). 
 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 

Figure 2 : Plate forme expérimentale pour la mesure  
 

 V. Tiwari dans (Tiwari et al.,1996) a fait l’expérience sur les processeurs 

commerciaux : 

•  Intel 486 DX2-S, 40 MHz, c’est un processeur CISC (Complex Instruction Set 

Computer) basé sur l’architecture du X86. 

• FujiTsu SPARClite MB86934, 20 MHz, c’est un processeur 32 bits, RISC 

(Reduced  Instruction Set Computer) 

L’expérience est faite par le procédé décrit au-dessus, le tableau 3 montre quelques résultats 

obtenus : 
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Tableau 3 : Le coût des instructions de bases du 486 et ‘934 
 

 Intel 486DX2 FujiTsu SPARClite MB86934 

N° Instruction   Courant (mA)   Cycles        Energie(nJ) Instruction Courant (mA)  Cycles      Energie(nJ) 

1 

2 

3 

4 

NOP 

Mov dx,bx 

Jmp 

Add dx,bx 

276 

302 

373 

314 

1 

1 

3 

1 

22.7 

24.9 

92.3 

25.9 

NOP 
St %io,[%IO] 

Ld [%IO],%io

 

198 

346 

213 

 

1 

2 

1 

 

32.6 

114 

35.1 

 

 

 Cette méthode est assez efficace et fiable pour les architectures ayant un jeu 

d’instructions limité. Par contre, pour les architectures VLIW (Very Long Instruction 

Word), le nombre de mesures à réaliser devient important [O(N2k) avec N le nombre 

d’instructions et k l’ordre du VLIW ]. Pour cela d’autres méthodes ont été développées afin 

de surmonter ce problème.           

I.7.1.2 Caractérisation par macro-modélisation 
 

Au lieu d'évaluer la puissance au niveau instruction, le niveau fonctionnel logiciel, qui 

est une technique de macro-modélisation, traite les fonctions ou les sous-routines comme "des 

boîtes noires" et construit les macro-modèles qui corrèlent la puissance avec un jeu de 

caractéristiques. Telles caractéristiques de puissance  peuvent être obtenues et rassemblées en 

employant une structure de simulation d'énergie à bas niveau (Li et al., 2003). La puissance 

dans  ce cas est :  

i
i

i CWP *∑=                            (4) 

Avec Wi sont les coefficients du macro-modèle à déterminer. Des méthodes 

mathématiques de régression sont mises en jeu afin d’identifier les Wi optimales, basées par 

l’application de paires d’entrée/sortie bien connues. Le problème-clé de cette macro-

modélisation est comment choisir les Ci qui représentent une corrélation de la puissance avec 

ces boites noires, qui peuvent efficacement capturer les caractéristiques de puissance d'une 

sous-routine logicielle donnée dans des circonstances diverses. 
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I.7.1.3 FLPA 
 

Les techniques d’estimation classiques ont souvent leurs limites. En effet, avec ces 

méthodes, la consommation due à la communication avec l’extérieur (accès à la mémoire 

externe, défaut de cache) n’est pas considérée. Par ailleurs, ces techniques sont assez 

complexes à exploiter pour les nouvelles architectures ayant un pipeline profond. Afin de 

surmonter ces problèmes, (Laurent et al., 2007) (Julien et al., 2004) a proposé une méthode 

permettant de réduire la complexité de l’estimation. Cette méthode est basée sur une analyse 

fonctionnelle de la cible du point de vue consommation (Functional Level Power Analysis : 

FLPA) ; elle est indépendante du niveau d’abstraction (assembleur ou C). Grâce à cette 

analyse, un nombre limité de mesures suffit pour déterminer le modèle de consommation de 

la cible. De plus, elle prend en compte toutes les fonctions du processeur que ce soit le 

contrôle du pipeline, les unités de traitement, les mémoires internes ainsi que les défauts de 

cache, ce qui n’est pas le cas avec les méthodes au niveau instruction. 

I.7.1.3.1 Méthodologie 
 

La méthodologie d’estimation de la consommation FLPA, illustrée par la figure 3, est 

constituée de deux parties : la définition du modèle et le processus d’estimation. 

- La définition du modèle de puissance du processeur est réalisée une seule fois par 

cible. Elle est basée sur l’analyse fonctionnelle de l’architecture cible de point de vue 

consommation. Cette analyse permettra de déterminer un modèle de puissance basé sur des 

lois de consommation qui représentent le comportement en courant du cœur du DSP. Ces lois 

sont des fonctions mathématiques déterminées à partir d’un nombre réduit de mesures 

physiques réalisées sur la cible et dépendant de paramètres algorithmiques et de 

configuration. La FLPA permet de déterminer quels sont les paramètres pertinents de point de 

vue consommation pour un processeur donné. Par ailleurs, les paramètres algorithmiques sont 

des ratios (variant de 0 à 1) qui représentent le taux d’activité entre chaque bloc fonctionnel 

du DSP; par exemple, le taux de parallélisme, le taux de défaut de cache…Les paramètres de 

configuration sont définis par le concepteur. 

- Le processus d’estimation est réalisé à chaque fois que la consommation d’un 

algorithme doit être déterminée. Au niveau C, les paramètres algorithmiques sont estimés en 

utilisant un modèle de prédiction. Il suffit ensuite d’utiliser les lois de consommation établies 

pour l’architecture cible pour connaître la consommation de l’application. (Laurent et al., 

2002), (Ktari et al., 2005) 
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I.7.1.3.2   Outil : SoftExplorer 
 

Cet outil (Laurent et al., 2007) automatique a comme entrée le code C ou ASM d’une 

application pour estimer sa consommation en terme de puissance et énergie. La structure de 

SoftExplorer est illustrée dans la figure 4. Il est basé sur trois modèles complémentaires : 

- Le modèle du processeur : également appelé le modèle de puissance  représente la 

manière dont la consommation du processeur change avec son activité.  

- Le modèle de l’algorithme : représentant le lien entre l'algorithme et l'activité qu'il 

induit dans le processeur. 

- Le modèle du compilateur : également appelé le modèle de prédiction qui représente 

le comportement du compilateur qui dépend des options choisies par le programmeur pendant 

la compilation, avec un fort impact sur le code généré, et ainsi sur l'activité du processeur.  
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Modèle de 
prédiction 

Processeur

Figure 3 : Méthodologie de l’estimation FLPA 
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Figure 4 : Flot d’estimation avec SoftExplorer 
 

Cet outil disponible sera exploité dans ce travail (Ktari et al., 2007) lors de la 

modélisation des applications écrites en ANSI-C. Et ceci en parallèle avec les mesures 

réalisées sur cartes DSP.   

I.7.2 Plate-forme SEQUENCE 
 

Sequence Design, Inc fournit un ensemble d'outils commerciaux complémentaires avec 

le flot de conception existant (Synopsys, Cadence). (Figure 5)  

Cette plate-forme permet aux concepteurs des systèmes sur puce de réduire le coût du 

temps de mise sur le marché (time to market) en améliorant la performance et en limitant la 

consommation. En effet, elle permet de tenir compte de l’aspect faible consommation 

(analyse et optimisation de puissance) dans tous les niveaux d’abstractions du flot de 

conception. (Sequence, 2005)    
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I.7.2.1 ESL : (Electronic System Level) 

I.7.2.1.1 Introduction 

Le défi majeur lors de la conception des SoCs est de concevoir et d’implémenter une 

architecture sur puce optimale qui soit performante, faible consommation et de surface réduite 

dans une plate-forme matérielle/logicielle. Cet acte d'équilibrage entre ces diverses 

contraintes  nécessite l'exploration des architectures  aux niveaux d'abstraction plus haut que 

le niveau RTL. C’est pour cette raison, un intérêt est accordé  pour adopter SystemC  comme  

langage de conception au niveau système électronique (Electronic System Level : ESL). 

            La technique d'estimation de puissance ESL doit répondre à des exigences critiques. 

En effet, les architectures des SoCs sont soumises à diverses contraintes. Pour cela, les 

concepteurs ont besoin des résultats rapidement ainsi que le feedback sur la puissance et 

l'énergie consommées de tous les modules de la puce. 
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physique 

Analyse énergétique : 
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logique 
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dynamique et de puissance 

Validation électronique
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Assemblage RTL  

Placement 

Routage 
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conception 
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dynamique 

Figure 5 :  Flot de conception Sequence design 
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I.7.2.1.2 Caractéristiques  
 

La technologie d'estimation ESL fournit les informations énergétiques critiques 

requises par le concepteur de SoC lors de l'évaluation de la consommation au  niveau 

Système-C. En effet, elle intègre avec le synthétiseur de Système-C des outils d'estimation 

exploités par les programmeurs pour optimiser les algorithmes. (Figure 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: ESL: Flot de conception   

I.7.2.2 Power Theater 
 

Réduire la consommation si tôt, avant la synthèse, économise considérablement la 

dissipation de puissance. Power theater est un ensemble d’outils garantissant une efficacité 

maximale de la puissance lors de la conception. (Sequence, 2005)   

À travers Power Theater, Sequence offre des solutions rapides et précises aux niveaux 

RTL et logique qui analysent et réduisent la dissipation de puissance lors de la conception 

d’un SoC. Cet outil analyse, affiche et aide l'utilisateur à réduire la puissance dissipée dans la 

puce entière et au niveau de chaque module. Il a comme entrée du code Verilog, VHDL et  

Synopsys Liberty (.LIB)  

I.7.2.2.1 Avantages 

    Power Theater offre aux concepteurs divers avantages : 

Entrée  
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-  Analyse de la puissance et de l'énergie assez tôt dans le flot de conception facilitant 

ainsi la réduction de la dissipation et le contrôle du coût énergétique. 

-   Assurer l'analyse « Zero-sim » de la puissance des modules RTL, sans recours aux 

vecteurs de tests : testbenchs.  

-  Voir l'impact simultané de tous les modules communiquant (mémoire, I/O, contrôle 

du chemin des données) dans la puce. 

-  Déterminer les cycles critiques de dissipation.  

I.7.2.2.2 Méthodologie de réduction  
 

Cet outil intègre des agents de réduction de la consommation au niveau RTL appelés 

WattBots qui mesurent de façon automatique l'impact de tout changement potentiel de 

l'architecture sur la dissipation. (Figure 7) 

 

 
 

 

Chaque WattBots est conçu pour identifier un type spécifique de possibilité de 

réduction énergétique. En effet, WattBots intègre tous les principaux types de 

circuits pouvant être exploité lors de la conception, y compris le contrôle, le chemin de 

données, l'E/S, la mémoire et l'horloge. Et pour chaque possibilité identifiée, Power Theater 

propose : 

-Des modifications RTL spécifiques,  

            changement suggéré    Gain énergétique  pénalité surfacique   

Hiérarchie logique 

Figure 7 : Analyse de puissance avec le débogueur RTL  Cool PowerTheater 
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        -Une quantification du gain énergétique résultant, en tenant compte des 

diverses contraintes mises en jeu comme la surface. 

De cette façon, le concepteur a la possibilité de choisir l’architecture la mieux adaptée aux 

contraintes de conception.  

I.7.2.3 Cool Time 

I.7.2.3.1 Avantages 
 

CoolTime (Sequence, 2005) est un moyen facilitant l'analyse simultanée de l'intégrité 

de la puce: la  tension d'alimentation électrique et la synchronisation. En regroupant divers 

outils, CoolTime rend l'analyse des effets électriques interdépendants précise et convergente. 

Il partage une plate-forme commune avec CoolPower pour assurer une conception rapide qui 

tient compte des chutes de tension, courants de fuite et la synchronisation. (Figure 8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.7.2.3.2 Caractéristiques 
  

 CoolTime peut être utilisé si tôt dans le flot de conception réduisant ainsi les 

changements exigés dans les étapes postérieures. En partant du placement initial, l'analyse  

du courant statique peut être faite afin de valoriser la consommation lors du routage. Ainsi 

on assure une chute de tension dynamique dans des marges acceptables lors de la 

conception.  
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Figure 8 : Analyse  électrique concurrente avec CoolTime 
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 CoolTime permet l'analyse de la chute de tension dynamique. En effet, un 

modèle de caractérisation intégré dans l'outil  génère des modèles de courant sous forme 

d'onde. Et avec une étude concurrente, CoolTime analyse les effets interdépendants des 

événements, des courants et des tensions lors du régime transitoire. 

 Il supporte les techniques de simulation (testbenchs) avec ou sans vecteurs de 

simulation. Contrairement aux techniques probabilistes, l'algorithme de création des 

stimulus prévoit  la chute de tension au pire des cas. 

 L’outil crée un modèle RLC complet de la puce ainsi que des parasites. Il 

supporte l'inductance mutuelle et les sources contrôlées de courant et de tension. 

I.7.2.4  Cool Power 
 
CoolPower (Sequence, 2005) prévoit et améliore la conception avant et après le 

routage. En effet, il offre à l’utilisateur la capacité d'optimiser de façon interactive la 

conception hiérarchique des millions de portes au niveau blocs.(Figure 9) 

 

 

  

 

 

 

 

 

 

 

 

 

 

En plus, l’outil réduit la dissipation statique et dynamique au niveau physique à 

l'aide de l'analyse concurrente de CoolTime tout en respectant la synchronisation et l'intégrité 

du signal. En effet, il réduit la puissance dynamique en appliquant et en testant divers 

changements sur le netlist qui optimisent les pertes énergétiques. Par ailleurs, CoolPower fixe 

automatiquement les problèmes provoqués par la chute de tension dynamique en insérant des 

capacités de découplage et en modifiant les placements pour éviter les points chauds. 
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Figure 9 : Analyse et optimisation  électrique concurrente avec CoolPower 
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En  résumé, la plateforme Sequence offre une gamme d’outils payants orientée vers la 

conception et l’estimation des performances des SoC et des ASIC, mais non pas vers les DSPs 

commerciaux. Par ailleurs, cette plateforme reste encore un produit en cours de 

développement.  

I.7.3 SES Scanner 
 

SES (Seoul national university Energy Scanner) (Shin et al., 2002) est un outil qui 

fournit des informations sur la puissance et l’énergie consommées par le programme 

embarqué au niveau cycle, en visant son optimisation. Il associe ces informations récupérées 

par mesure sur carte avec le code C. Avec le débogueur GNU, jouant le rôle d’interface, 

diverses informations sur la consommation sont extraites au niveau C facilitant à l’utilisateur 

d’identifier les points chauds de l’application embarquée. SES comporte 3 modules logiques : 

l’estimateur d’énergie, l’analyseur et l’interface utilisateur. (Figure 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.7.3.1 Module d’estimation d’énergie  
 

Ce module comporte une carte de mesure et un estimateur de consommation de la 

mémoire. La carte est connectée au port PCI exploitant un module d’acquisition du profil en 
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Figure 10 : Architecture du SES 
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temps réel facilitant la collection de la trace précise du système au niveau cycle. Cette carte 

comporte un cœur de processeur ARM7TDMI avec son contrôleur, le module d’acquisition et 

la mémoire programme.  

Le module d’acquisition comporte un circuit de mesure de l’énergie au niveau cycle, 

une mémoire d’acquisition et le contrôleur du profil. La carte de mesure d’énergie fonctionne 

comme un émulateur du processeur équipé d’un circuit de mesure de la consommation au 

niveau cycle. Les informations collectées comportent une trace énergétique du cœur du 

processeur ainsi que la trace de la mémoire au niveau cycle. Une fois la trace est collectée, 

elle est transférée via le bus PCI vers l’estimateur de consommation de la mémoire. 

Ce dernier, fonctionnant sur la machine hôte, est un simulateur logiciel qui intègre des 

modèles de consommation au niveau cycle de divers types de caches, de bus et de mémoires. 

Il génère un  profil  général de la consommation.  

I.7.3.2 Module d’analyse et interface utilisateur  
 

Ce module lie le profil énergétique du  processeur cible et la mémoire avec le code 

source à différents niveaux C/ASM. Grâce à l’interface graphique, l’utilisateur peut avoir 

recours à diverses options : compilation, spécification de la partie du code à profiler, ajout des 

breakpoints, et chargement du programme. (Figure 11) 

 

 

 

 

 

 

 

 

 

 

 

La limitation de cet outil est la dépendance envers la plateforme de mesures. En fait, 

pour tout type d’application, l’outil a recours à la carte d’acquisition d’infos sur la 

consommation. Ceci paraît un facteur limitatif pour son utilisation lors de la conception des 

applications.   
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Figure 11 : L’interface graphique de SES 
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I.7.4 ORINOCO 
 

La méthodologie de conception au niveau système de ChipVision permet d’identifier 

les points chauds de l’application aussi tôt dans le processus de conception, spécifiquement au 

niveau ESL (Electronic System Level). Pour cela, l’outil ORINOCO (Stanley et al., 2004) est 

employé dans le flot de conception HW. Il est conçu spécifiquement pour les applications de 

traitement de données et de signal.  

I.7.4.1 ORINOCO : Analyse de la puissance au niveau ESL 
 

L'approche traditionnelle de la conception faible consommation est d’estimer et 

d’analyser la puissance au niveau RTL ou porte, et de modifier la conception en conséquence. 

Dans le meilleur cas, les blocs fonctionnels RTL sont modifiés, et re-synthétisés. Ce 

processus est répété jusqu'à ce que les résultats désirés soient réalisés. Toutefois, les 

réductions désirées en puissance peuvent souvent être réalisées en modifiant seulement 

l’architecture ou bien l'algorithme. Cependant, les modifications à ce niveau affectent non 

seulement la puissance, mais également d’autres métriques de performance ou bien le coût de 

la puce.  

Avec ORINOCO, c’est possible d’optimiser la consommation au niveau système. La 

figure 12 montre le flot de conception et d’optimisation. La spécification du système est écrite 

à un niveau d’abstraction assez élevé (C/C++ ou SystemC). En partant de ces spécifications, 

des algorithmes réalisant la fonctionnalité du système sont développés et optimisés, 

généralement avec le même langage. La description algorithmique se compose d’une 

spécification exécutable ou d’une description fonctionnelle. L'architecture (mémoire, 

contrôleur et la structure de chemin de données) est générée pour implémenter les 

algorithmes. Lors de ce développement, diverses contraintes se présentent comme la 

puissance, la performance et la surface. Le problème qui se pose s’est qu'il y a peu d’outils 

structurés disponibles pour effectuer une telle analyse. 

Au niveau ESL, ORINOCO choisi la plate-forme optimale selon cette méthodologie : 

Les divers algorithmes candidats sont analysés en terme de consommation et points chauds. 

Les algorithmes les plus prometteurs sont alors choisis et optimisés. Ceci est alors suivi par la 

création d'une architecture optimale. Les fonctions dont la consommation est optimale sont 

alors transformées en matériel. Ce processus d’estimation et optimisation de la consommation 

est itératif, et chaque itération nécessite des minutes ou des heures.  
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Figure 12: flot de conception ESL  
 

I.7.4.2 Analyse d'algorithme et Optimisation 
 

Avec ORINOCO, le « meilleur » algorithme est choisi parmi divers « candidats ». 

La puissance de chacun est identifiée selon la méthodologie représentée sur la figure 13. La 

spécification en C/SystemC est d'abord compilée puis profilée. Les informations ainsi 

générées sont réintégrées dans le code source. Les algorithmes sont alors exécutés, et les 

données résultantes du profil d'activité sont employées pour annoter une représentation  

appropriée de contrôle du flot de données (CDF). 

Une architecture optimisée en consommation peut être tirée avec ORINOCO sans 

nécessité de synthèse complète grâce  aux modèles de puissance créés pour chaque composant 

au niveau RTL. Ces modèles dépendent des données en entrée, des caractéristiques des 

composantes telles que le nombre de bits et l'architecture, et de la technologie des cellules. 

Ainsi, les modèles de puissance peuvent être générés automatiquement pour une technologie 

donnée. Et en utilisant l'activité des composants et les modèles de puissance, la puissance d'un 

composant peut être estimée. 

C/System C 

Analyse de puissance et 
optimisation 

OK?

Synthèse  

Design RTL 

Analyse Finale  

OK?

Gain : 15% 
Temps : Jours 

Gain : 75% 
Temps : Minutes

Gain : 30% 
Temps : Minutes 

Fin de conception 



 

J. Ktari 26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Algorithme d’estimation de la  puissance avec le flot de contrôle de donnée 
 

Par ailleurs, les mémoires sont utilisées dans ce cas pour le stockage intermédiaire de 

l'information et la communication inter-blocs. Ainsi, elles ont un effet significatif sur la 

consommation. Diverses techniques d'optimisation des accès aux mémoires incluant les 

transformations de boucles et le co-emplacement de code peuvent être affectées simplement 

en réécrivant le code. Toutefois, l’outil n’est pas conçu pour estimer la consommation des 

processeurs et des bus commerciaux, de plus il ne tient pas compte de l’interaction avec 

l’environnement externe.      

I.7.5 EPRO 
 

EPRO (Beak et al., 2004) est un outil fournissant des informations sur la performance et 

la consommation pour diverses applications réelles embarquées. Avec cet outil, des études de 

cas ont montré une réduction de 5,4 % sur la consommation de l’énergie et une amélioration 

de 4,4% au niveau performance. L’avantage majeur de ePRO est l’aptitude de faire le co-

profiling (consommation et performance) en même temps. 
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I.7.5.1 Architecture générale 
 

EPRO nécessite trois modules physiques : la cible embarquée, un multimètre numérique 

et la machine hôte. Cet outil est conçu pour le processeur PXA255 de la famille TynuxBox 

basée sur l’architecture Xscale. L’avantage de cette architecture est la présence d’une unité 

monitrice de performance (PMU) présente au niveau architectural. Ceci mène à bien contrôler 

divers comportements du système : efficacité de la mémoire cache (instruction, donnée), la 

latence de l’étage fetch. 

Afin d’effectuer des profils matériels sur l’énergie, on doit avoir recours à un 

multimètre digital fonctionnant à des fréquences élevées. Ce dernier est contrôlé à la fois par 

la machine hôte et la carte cible afin de collecter le profile énergétique via des triggers E/S. 

 EPRO inclus 3 modules : le profiler d’énergie, le profiler de performance et l’interface 

graphique utilisateur (GUI). (Figure 14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.7.5.2 Le profiler d’énergie  
 

Ce profiler d’énergie comporte un moniteur système, un multimètre et un analyseur 

d’énergie. La trace énergétique est faite en deux étapes : 

- La collection de données : Durant cette phase, le moniteur système collecte 

périodiquement les valeurs échantillonnées du courant pour les envoyer à la machine hôte via 
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                Figure 14: Architecture de ePRO 
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une interface Ethernet. En plus, il collecte les informations sur le système comme le compteur 

programme (PC), l’identificateur de processus (PID) à la même période. 

- L’analyseur des données : Durant cette phase, l’analyseur énergétique analyse les 

valeurs échantillonnées du courant et les informations du système pour générer la trace 

énergétique. Et à l’aide d’une table de symbole générée par le compilateur croisé, la trace est 

mappée avec les diverses fonctions de l’application embarquée. 

I.7.5.3   Le profiler de performance 
 

L’analyseur de performance comporte un modificateur de code qui a comme entrée un 

code à un haut niveau d’abstraction comme le langage C, et a comme sortie un code modifié. 

Le PAC (Analyse de Performance de Code) est inséré à ce nouveau code. 

Le code généré par le PAC est compilé et exécuté sur le processeur cible. Ceci permet 

de générer le profil de performance (efficacité de la cache d’instruction et de donnée, les 

requêtes sur le bus).  (Figure 15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.7.5.4 L’interface utilisateur  
 

Les traces de l’énergie et de performance sont présentées à travers une interface 

graphique facilitant l’identification des points chauds de l’application embarquée. En effet, les 

caractéristiques énergétiques de chaque fonction sont présentées à travers cette interface.  

L’inconvénient majeur de cet outil est son recours à la plateforme pour le profiling. Ce 

qui impose sa présence dans tous les tests.  
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I.7.6 DSP-PP 
 

Il a été largement accepté que la simulation, au niveau porte et circuit, est infaisable 

pour évaluer la consommation d'une exécution logicielle pour des systèmes de calcul 

complexes. Pour cela, un jeu complémentaire d'approches basé sur l'utilisation de simulateurs 

architecturaux de consommation au niveau cycle précis est apparu. Ces simulations peuvent 

être applicables aux processeurs modernes super scalaire (avec les pipelines assez profonds). 

(Li et al., 2003). 

On peut citer le DSP-PP (Minh et al., 2003) qui est un outil de simulation RTL 

permettant l’estimation de la puissance dissipée pour les DSPs. Il est écrit en C++ afin de 

profiter de ce haut niveau d’abstraction. (Figure 16) 

 

 

 

 

 

 

 

 

 
Figure 16:  Diagramme de l’estimateur DSP-PP  

 

DSP-PP emploie la simulation détaillée au niveau cycle de tous les composants du 

DSP: les chemins de données et l'interconnexion et estime exactement la valeur de puissance 

dynamique, de court circuit et de fuite de chaque composant du DSP. Les composants du DSP 

sont modélisés comme des objets intégrants le modèle de consommation.  

Le DSP-PP est composé de deux composants: le simulateur de performance au niveau 

cycle (CPS) et l'estimateur de dissipation de puissance (PDE). 

- Le CPS est un simulateur "piloté par l’exécution" il accepte comme entrée 

l'exécutable obtenu par compilation et la configuration architecturale du DSP. Il simule cycle 

par cycle l'exécution de l'instruction ainsi que les données. Il génère comme sortie des 

statistiques sur la performance, et le nombre d'accès matériels cycle par cycle. 

 - Le PDE est constitué de modèles de consommation des différents composants. Il 

accepte comme entrée le nombre d'accès matériels du CPS et la configuration de 

l’architecture du DSP afin de  générer une estimation de la puissance 
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Cependant, la simulation au niveau cycle-précis entraîne une vitesse de simulation 

extrêmement lente, empêchant l'efficacité de la recherche d'espace de conception. C'est 

particulièrement vrai en simulant des applications complexes employant des modèles de 

processeur détaillés. À cause de cela, la simulation basée sur le modèle de puissance ne peut 

pas être employée pour l'évaluation de puissance de logiciel pendant l'exécution.   

I.8 Interprétation 

De nombreux travaux se sont focalisés sur la modélisation de la consommation au 

niveau instruction, où la consommation du code est obtenue en estimant celle de chaque 

instruction du code. Ces méthodes sont généralement inefficaces pour les architectures 

complexes ayant diverses unités de traitement communicantes. De plus, certains outils ne 

ciblent pas les DSP commerciaux traités dans ce travail (C62, C55 et le C67). Par ailleurs, les 

gains importants en terme de consommation sont réalisés aux hauts niveaux d’abstraction où 

les décisions d’implantations logicielles et/ou matérielles sont faites. Ceci permet de 

compenser la complexité croissante des applications et d’intégrer la consommation au début 

du flot de conception mixte. Par ailleurs, afin de pouvoir dimensionner le système dés le 

début du flot de conception, des modèles de performances temporelles et énergétiques sont 

nécessaires afin de caractériser l’influence des paramètres de l’application et de l’architecture 

sur la consommation.             

I.9 Conclusion 
 

Dans ce chapitre, on a présenté les diverses techniques et outils d’estimation et 

d’optimisation de la consommation. Grâce à ces outils, le concepteur a la possibilité 

d’exploiter plus de ressources ‘faible consommation’ et d’offrir les performances maximales 

aux utilisateurs. Par ailleurs, les décisions de conception les plus efficaces dérivent du choix 

et de l’optimisation des architectures et des algorithmes aux niveaux les plus hauts. Et afin de 

mieux guider le concepteur lors de la conception des architectures complexes, il est 

nécessaire d’adopter une méthodologie d’exploration de l’espace des solutions possibles qui 

soit plus globale (toute l’architecture). Cette méthodologie permettra d’avoir une solution 

optimale qui respecte les diverses contraintes de l’application. 
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Chapitre II. Exploration de l’espace des solutions 

II.1 Introduction 
 

Les futurs systèmes mobiles ne cessent d’évoluer en intégrant de plus en plus de 

nouvelles fonctionnalités. A titre d’exemple, les téléphones portables actuels intègrent de la 

musique, la vidéo, les jeux, le GPS, la capture d’image, l’accès à Internet, le stockage de 

données, etc. Et ceci, tout en gardant une bonne autonomie et une masse ne dépassant pas les 

150 grammes. Cette multitude de fonctionnalités favorise généralement des architectures 

multiprocesseurs ayant des performances élevées. Pour garantir la faisabilité de ces systèmes, 

il faut donc prospecter de nouvelles solutions architecturales logicielles et matérielles 

garantissant une performance élevée, une grande flexibilité et une faible consommation 

(Figure 17). Seule une approche globale permettra de caractériser et d'optimiser efficacement 

ces systèmes. (Maalej, 2007) 

De plus, l'optimisation d'un système ne s'effectue pas seulement au niveau de la 

conception de ces composants, mais également au niveau du choix d'une architecture 

générale. Le choix d'une technologie par rapport à une autre et le choix des unités de 

traitement, peuvent devenir des problèmes critiques lorsque la gestion de la consommation 

représente un critère essentiel. Ainsi au lieu de rechercher un périphérique, entre autre une 

architecture, plus performante, il peut parfois être préférable de changer complètement de 

technologie.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17 : Flexibilité des architectures vis à vis de leurs performances (Benoit et al., 2004) 

Fl
ex

ib
ili

té
 

Performances

ASIC

Microprocesseurs

Architectures 
reconfigurables 



 

J. Ktari 33

Dans ce chapitre, on présente les méthodes d’exploration de l’espace des solutions, le 

flot de conception général des systèmes embarqués en terme d’outils, de métriques et de 

modèles d’exploration architecturale (Hw/Sw). Ce chapitre s’intéresse aussi aux algorithmes 

d’exploration de l’espace des solutions.  

II.2 Conception mixte 
 

L’exploration de l’espace de conception est entreprise à partir des descriptions de haut 

niveau tel que le C/VHDL en tenant compte éventuellement d’une architecture cible. Cela 

permet de considérer un compromis des réalisations logicielles/matérielles pour satisfaire les 

performances et les contraintes à travers les bons choix de l'architecture logicielle/matérielle. 

Par ailleurs, l’exploration de l’espace des solutions est parmi l’une des étapes 

nécessaires lors de la conception des systèmes embarqués. Elle permet de surmonter le 

problème de la complexité de l’espace afin d’atteindre la solution adéquate rapidement. Il est 

à signaler que le choix de la meilleure solution à un haut niveau d’abstraction n’est pas assez 

simple vu le nombre de combinaisons architecturales possibles. Par ailleurs, la complexité de 

l’exploration est liée à la complexité de l’application. En effet, pour une application contenant 

n tâches fonctionnant sur une architecture monoprocesseur, le nombre de solutions possibles 

U est établi par la loi suivante (Bagdadi et al.,2002):   

 

         (5) 

 

Pour le cas d’une architecture multiprocesseur (p processeurs), le problème se 

complique plus. Le nombre de solutions possibles sera : 

 

         (6) 
 
 

Prenons le cas d’un problème composé de 10 tâches fonctionnant sur 3 processeurs, 

l’espace des solutions possibles dépasse dans ce cas 107 combinaisons possibles. Le 

concepteur d’un tel système est incapable généralement de gérer et d’évaluer cet ensemble de 

solutions ni manuellement ni d’une manière exacte.    

 Il est à signaler que la problématique d’exploration de l’espace des solutions ne se 

limite pas à l’étude des combinaisons possibles (ordonnancement et partitionnement). En fait, 
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consommation sont  parmi les exigences de ces systèmes vu qu’ils sont toujours en interaction 

avec leur environnement extérieur et qu’ils nécessitent beaucoup de calcul.  

II.3 Éléments caractéristiques des flots de codesign 
 

L’exploration de l’espace des solutions basse consommation nécessite un certain nombre 

d’informations relatives à l’application d’une part  et aux modèles de performances d’autre 

part. Par ailleurs, un besoin de modèles d’estimation et de performance suffisamment riches et 

paramétrables s’impose lors de l’exploration. Dans ce qui suit, on présente les points clés de 

cette dernière:  

- La spécification : elle est un point important du flot de conception dont le choix peut 

avoir un impact sur les résultats. Il existe une variété de modèles et de langages utilisés 

(Lustre, SDL, CDFG, System-C, etc). Ils permettent d'exprimer des notions telles que : la 

concurrence, la hiérarchie, les communications, la synchronisation, le temps, etc. 

- La simulation : elle se retrouve à plusieurs niveaux d'abstraction dans le flot de 

conception. Le niveau de détails est plus important au niveau d'abstraction le plus bas et il 

diminue au fur et à mesure que l'on remonte vers le niveau système. Plus le niveau de détails 

est élevé plus les temps de simulation sont longs. Au niveau système, la simulation est de type 

fonctionnel, elle permet de vérifier que le système est fonctionnellement correct sans se 

préoccuper des détails d'implantations.  

- L’architecture : Un flot de codesign est souvent orienté vers un type d’architecture. La 

modélisation des architectures permet d'évaluer les performances et les coûts 

d'implémentation de la spécification et ainsi de guider les choix de partitionnement. Les 

premières méthodes de codesign considéraient des modèles d'architecture simples composés 

d'un processeur et d'un accélérateur matériel dédié (ASIC). D’autres méthodes permettent de 

cibler des architectures hétérogènes composées de plusieurs types de processeurs et 

d'accélérateurs ainsi que des hiérarchies de mémoires (Bianco et al., 1998), (Auguin et al., 

2001), (Marteil et al,.2006). Enfin, il existe des méthodes permettant de gérer les architectures 

reconfigurables (souvent à base de FPGA), (Li et al., 2000), (Bossuet et al., 2003) (Elleouet et 

al., 2006).   

- Les métriques : Les étapes du processus d'exploration et plus particulièrement le 

partitionnement, peuvent être guidées par des métriques caractérisant l'application. Ces 

métriques permettent de guider le concepteur et les outils quant aux choix de l'architecture et 

du partitionnement. Dans (Sciuto et al., 2002), des métriques relativement fines sont définies 
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pour caractériser l'affinité entre les fonctions d'une application et trois types de cibles 

architecturales : processeur à usage général (GPP), processeur de signal numérique (DSP) et 

ASIC. Les métriques, qui résultent de l'analyse du code 'C' de l'application, permettent de 

repérer les séquences d'instructions qui peuvent être soit orientées DSP, orientées ASIC 

(instructions de niveau bit,...) ou orientées GPP (structure de test, ratio d'instructions 

d'entrées/sorties,...). Ces métriques servent ensuite pour guider l’outil de partitionnement 

logiciel/matériel. 

- Partitionnement : que celle-ci soit manuelle ou automatique, son but est de répartir les 

"fonctions" de l'application sur les parties logicielles et matérielles de l'architecture cible. Ce 

processus est réitéré jusqu'à ce qu'une solution ou un ensemble de solutions satisfaisantes ait 

été trouvé.  

- Exploration de l’espace de solutions : Le résultat de l'exploration de l'espace de 

conception peut prendre la forme, soit d'une solution unique, soit d'un ensemble de solutions. 

Les méthodes qui fournissent à l'utilisateur une solution unique à partir d'un sous-ensemble 

restreint de possibilités, visent le plus souvent à trouver la solution optimale au problème 

alors que les méthodes qui fournissent un ensemble de solutions visent en général à trouver 

des solutions qui respectent l'ensemble des contraintes sans forcément être optimales. En 

effet, à un niveau d'abstraction élevé, la précision n'est pas assez suffisante pour garantir avec 

certitude que la solution soit optimale (car trop de détails d'implantation sont inconnus). Il est 

ainsi plus judicieux de conserver un ensemble de solutions "prometteuses" qui seront ensuite 

estimées à un niveau inférieur, conduisant à un ensemble de solutions plus réduit. La 

réitération de ce principe permet ainsi de converger vers une solution unique. 

Dans cette partie, les étapes essentielles du flot de conception mixte typique sont 

présentées. Dans la section suivante, quelques outils de codesign seront présentés. 

II.4 Méthodologies et outils 

II.4.1 Introduction 
Bien que les méthodes de réduction de puissance et d'énergie soient plus efficaces une 

fois adressées le plutôt possible dans le processus de conception (globalement au niveau 

système); la majorité des travaux existants sur l'optimisation de puissance adressent 

séparément les parties logicielles, matérielles et de communications après avoir décidé de 

l'architecture cible du système.  Quelques approches de co-design tiennent compte d'un tel but 

à un niveau d'abstraction plus élevé. Ces approches commencent en général par une étape 
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d'estimation de la consommation des parties du système (tâches, fonctions, communications 

etc.) pour déterminer ensuite, et le plutôt possible, la consommation totale du système.  

II.4.2 Outils de codesign 
 

Le tableau 4 présente quelques environnements de codesign développés soit par les 

groupes de recherche universitaires, soit dans l'industrie  

Tableau 4 : Comparatif des environnements de codesign (Abdennour, 2004) 
 

 Type 
d’application 

Langage de 
spécification 

Approche de conception Architecture cible

Ptolemy TSI Flot de donnée 
synchrone 

Découpage automatique 
orienté logiciel 

Multi-processeur 
+ ASIC 

Vulcan Systèmes temps 
réel 

HardwareC 
(extension de C)

Découpage automatique 
orienté matériel (contrainte 

de temps et coût) 

Mono-processeur, 
ASIC, bus et mémoire 

Cosyma 
systèmes temps 
réel embarqué 

 

Cx (extension 
de C) 

 

Découpage automatique 
orienté logiciel 

(contraintes de temps+ 
coût en surface) 

 

processeur+ co-
processeur ou 

multi-processeur et 
Mémoire 

partagée pour les Coms
 

SpecSyn 
Système de 

contrôle et de 
communication 

 

SpecCharts 
 

-pré-estimation 
- découpage automatique 

ou manuel 
- raffinement 
- implantation 

 

Multi-processeur 
processseurs+ 

ASICs+ASIP + 
et Bus, mémoire pour 

lesComs 
 

Polis 
systèmes temps 
réel embarquées 

de contrôle 
 

CFSMs 
 

- découpage manuel,  
-ordonnancement, 

- implantation 
 

Multi-processeur 
microcontrôleurs avec 
des RTOS + ASICs et 

Ports d’E/S 
(Automatiquement 

générés) 
pour les coms 

 

Cosyn 
Système 

temps réel 
embarqués 

 

Graphe de 
tâche s 

 

- Estimation  
-Découpage automatique 
contraintes de temps + 
coût en surface et en 

consommation 
 

Multi-processeur 
processeurs+ 

ASICs+FPGAs 
et point-à-point, bus, 

réseaux de 
communication locale 
LAN) pour les coms 

 

CODES 
Les systèmes de 
communication 

 

RDP,  
StateCharts 

 

- modélisation  
-partitionnement 

- simulation 
- intégration 

 

Multiprocesseur 
Processeurs + mémoire 

+ 
ASICs + FPGA  

 

CoWare 

Traitement de 
signal et système 

de 
communication 

 

C (SystemC) 
HDL (VHDL, 

Verilog) 
 

- découpage manuel 
- synthèse d’interface, - 

ordonnancement, - 
cosimulation 

 

Multiprocesseur 
Processeurs + DSPs+ 

ASICs 
et des coms Point-à-

point 
avec un protocole de 

rendez-vous 
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Dans ce tableau les aspects de comparaison sont : 

 Les types d'applications ciblées, 

 Le langage de spécification du système,  

 L'approche de conception, 

 L'architecture cible, 

 Les types des communications logicielle/matérielle utilisées. 
 

Dans la section suivante, on va présenter en détails d’autres outils d’exploration basse 

consommation ainsi que les limitations de ces environnements. 

II.4.3  L'environnement MOVE  
 

Cet outil permet de réaliser automatiquement un ASIP pour le traitement d’image à 

partir d'une spécification haut niveau (Heikkinen et al., 2002). L’architecture cible est la TTA 

(Transport Triggered Architecture). Son principe est semblable à l’architecture VLIW : elle 

permet d’effectuer plusieurs opérations en un seul cycle d’horloge en utilisant un réseau de 

transport (9 bus) de données, couplé à des unités fonctionnelles (multiplieurs, accumulateurs, 

registres…). Les avantages de cette technique sont la flexibilité, la simplicité et la facilité 

d’extension du système. La conception se base sur l’utilisation d’une plateforme (appelée 

MOVE) pour la conception automatique de processeurs, formée par un système de 

développement HW/SW et  un optimiseur. (Figure 18). 

 

Figure 18 : L’architecture MOVE 
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Le système explore l’espace de solutions (combinaison de plusieurs choix 

d’architecture) pour trouver la meilleure solution selon le critère rapport coût/performance. Le 

système permet ainsi d’ordonnancer l’application envisagée sur plusieurs architectures. 

L’aspect faible consommation n’est pas traité clairement dans cette approche.  

II.4.4 L’outil Codef-LP 
 

Codef-LP (figure 19) (Guitton et al., 2003) développé à l’université de Nice propose 

une méthodologie permettant d’extraire une architecture monoprocesseur qui satisfait les 

contraintes temps, surface et qui minimise les pics de courants. La description de l’application 

en graphe de tâche ainsi que les contraintes et la librairie de modèles sont l’entrée de l’outil 

Codef. Ce dernier génère un mapping de l’application en utilisant une heuristique 

d’exploration basée sur le glouton. Afin d’optimiser davantage la consommation, des 

raffinements manuels en variant la fréquence sont faits suite à l’exploration automatique. 

L’estimation de la consommation des modules matériels est faite avec l’outil WattWatcher 

qui nécessite une synthèse. Alors que celle en logicielle est faite avec Vestim qui est basé sur 

la méthode d’estimation au niveau assembleur ce qui nécessite la compilation du code C. Par 

ailleurs, le modèle de consommation considère que la consommation suit la loi P=KCFreqV2. 

L’exploration dans cette méthodologie se limite au changement manuel de la fréquence/Vcc 

ou au changement du processeur. 

 

 

 

 

 

 

 

 

 

 

Figure 19 : Description de l’outil Codef 
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assembleur lors de l’estimation de la consommation de la partie logicielle, ce qui est 

compliqué pour les architectures VLIW. Par ailleurs, l’heuristique du glouton adoptée pour 

l’exploration n’est pas assez efficace vu qu’elle construit la solution pas à pas sans revenir sur 

ses décisions de choix. En plus, l’outil repose sur une librairie de modèles non paramétrable. 

En effet, une tâche peut avoir plusieurs modèles de performances selon les paramètres 

algorithmiques et/ou architecturales (taille de l’image, fréquence, cadence, etc.).    

II.4.5 L’outil Mogac 
 

Mogac (Dick et al., 1998) développé à l’université de Princeton est un outil de co-

synthèse logicielle/ matérielle. Il partitionne et ordonnance la spécification de l’application 

décrite en graphe de tâche périodique. Pour cela l’outil exploite un algorithme génétique 

multiobjectif qui échappe des minimums locaux. Le coût et la consommation sont optimisés 

sous des contraintes de temps réel. Par ailleurs, l’outil tient compte de la consommation de la 

communication. Par contre, l’outil ne tient compte ni de l’influence de la tension 

d’alimentation ni de la fréquence. Par ailleurs, il ne traite ni la surface ni la consommation des 

mémoires. (Figure 20) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20 : Description de l’outil Mogac 
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l’algorithme génétique. Toutefois, cet outil, conçu au départ pour optimiser essentiellement le 

 Initialisation des solutions 

Evaluation de la solution 

Rangement 
Croisement/mutation 

Rapport 

Reproduction de nouvelles solutions Arrêt

Oui

Non



 

J. Ktari 40

coût, n’est pas disponible. Aucune indication sur les méthodes d’estimation des performances 

n’est indiquée ni au niveau tâche ni au niveau système.  

 

II.4.6 L’outil Cosyn-LP 
 

          L’outil Cosyn-LP (Bharat et al., 1999) développé à l’université de Princeton est un outil 

de co-synthèse qui part d’une spécification en graphe de tâche périodique avec des contraintes 

de temps réel afin de générer une architecture à faible coût qui respecte les contraintes. Ces 

contraintes ainsi qu’une bibliothèque de modèles sont fournies à l’outil. L’approche se base 

sur une combinaison d’ordonnancement préemptif et non préemptif afin d’ordonnancer les 

tâches. La technique d’exploration se base sur le regroupement de tâches (Clustering). (Figure 

21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 : Description de l’outil Cosyn-LP 

L’étude exploratrice est faite sur des processeurs de type Motorola 68360, 68040, des 

ASICs et un FPGA Xilinx 3195. Vu que la technique est basée sur le clustering, tous les 

clusters et les allocations sont considérés lors de l’exploration. Ceci rend la méthode exacte et 

par conséquent assez complexe. Par ailleurs, le concepteur de cet outil suppose que les 

modèles de performance sont déjà prêts et non paramétrables. Donc pour chaque tâche 

s’exécutant sur une cible donnée, lui correspond une performance temporelle et énergétique 
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unique. En plus, la granularité des modèles de performances de l’application n’est pas 

considérée dans cette approche.    

II.4.7 Méthodologie de Ghali 
 
         Cette méthodologie d’exploration développée à l’université Paris XI Orsay (Ghali et al., 

2004), repose sur l’évaluation du temps, de la surface et de la consommation d’une 

architecture monoprocesseur. L’évaluation du temps d’exécution est déduite par simulation 

grâce à l’outil SimpleScalar ou par exécution directe. La surface silicium est évaluée avec les 

deux outils CACTI et FUPA pour estimer la surface du cache d’instruction et la surface des 

unités de calcul flottant respectivement. Les outils SimplePower et Xpower sont exploités 

pour évaluer la consommation des architectures superscalar et des FPGA respectivement. Il 

est à noter que cette méthodologie repose sur l’exploration avec les algorithmes génétiques 

multi objectives NSGA II (Figure 22). Et afin d’extraire les solutions les plus prometteuses, le 

concepteur a eu recours à 100 stations de travail pour émuler les diverses solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 : Description de la méthodologie 
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 A travers cette méthodologie, la possibilité de tailler le processeur selon les besoins et 

les contraintes se présente. En fait, l’algorithme génétique permet de modifier les 

caractéristiques de la cible (taille de la cache de données et d’instructions, le nombre de ALU, 

de MULT, de registre RUU, de pipeline) pour étudier leurs influences sur les performances. 

Aucune considération des paramètres algorithmiques de l’application n’est faite. Par ailleurs, 

cette exploration se limite au niveau configuration architecturale d’un processeur 

SuperScalaire générique ainsi que la configuration d’un processeur particulier « Leon ».  

 

II.5 Discussion 
 

En se basant sur ces travaux ci dessus, diverses constatations sont établies :  
 
1. Disponibilité : les outils déjà présentés ne sont pas généralement disponibles pour être 

exploités. Ce qui nécessite le développement d’un environnement d’exploration basse 

consommation qui intègre les modèles de performances souhaités afin d’extraire la 

solution qui répond aux besoins. Ainsi l’outil peut être étendu et enrichi avec d’autres 

modèles selon les besoins.   

2. Architecture cible : la plus part de ces approches explorent une architecture prédéfinie ou 

monoprocesseur, c’est le cas de l’outil Codef et la méthodologie de ghali. Par ailleurs avec 

l’outil Codef-LP, on peut explorer l’espace des solutions mais sans tenir compte de la 

consommation de la communication qui peut être significative. Codef-LP se limite lors de 

l’optimisation de la consommation à la partie logicielle en variant la tension et la 

fréquence du processeur sans toucher explicitement la partie matérielle. 

3. Modèles de performances : pour une architecture multiprocesseur, 2 outils existent pour 

explorer l’espace des solutions (Cosyn & Mogac). Chaque outil gère les lois de 

consommation en se basant sur des outils ou sur des modèles prêts non paramétrables. 

Concernant l’intégration d’un modèle de consommation de la communication dans le 

modèle général, la question qui se pose : est-ce qu’elle est significative par rapport à la 

consommation de la plate-forme. Si la consommation de la communication est de l’ordre 

de quelques μW par rapport à la consommation des DSP (quelques mW), serait t’il 

intéressant d’y tenir compte. Par ailleurs, il est à signaler que les paramètres de 

l’application et de l’architecture influent sur la performance du système. 
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       Ainsi, il paraît important d’étudier et de mettre en place une méthodologie 

d’exploration d’architecture multiprocesseur qui tient compte des diverses contraintes entre 

autre la consommation à partir d’une description au niveau système. Le travail consiste donc 

à : 

      - Niveaux de granularité : il s’agit de spécifier l’application et les contraintes à plusieurs 

niveaux de granularités. Cela permet de donner la possibilité d’explorer l’espace des solutions 

plus efficacement.  

      - Modèles paramétriques de consommation : il s’agit d’établir des modèles 

paramétriques qui englobent la consommation de tout le système 

logiciel/matériel/communication. En fait, les paramètres de l’application ainsi que ceux de 

l’architecture seront considérés dans les modèles de performance afin d’avoir des modèles 

assez riche.  

        - Exploration efficace d’architecture basse consommation : il s’agit d’être capable de 

choisir d’une façon efficace la solution architecturale adéquate où le nombre de ressources à 

exploiter n’est pas connu à priori. En effet, le concepteur peut être confronté au problème du 

choix du nombre de ressources : est ce qu’il implémente son application sur 2 ou 3 DSPs par 

exemple.  

II.6 Conclusion 

Dans cette étude, on a présenté l’impact du choix aux différents niveaux d’abstraction 

sur la consommation (Système, algorithme, RTL, logique, physique). Étant donné que la 

consommation a un fort impact sur la conception des systèmes embarqués, un intérêt est 

accordé pour limiter cette dissipation à travers des méthodologies de réduction de la 

consommation et des outils mis en œuvre. Ces divers outils d’estimation et d’optimisation de 

la consommation sont évalués dans ce chapitre. Par ailleurs, afin de répondre à l’ensemble des 

contraintes de plus en plus pressantes, de nouvelles méthodes de conception doivent être 

utilisées. Ces méthodes doivent permettre l’adéquation entre l’application et son architecture 

cible pour bien exploiter les caractéristiques de l’application et garantir une bonne 

performance du système, ainsi que l’adaptation à l’environnement. Le problème de 

l’exploration de l’espace de conception logiciel/matériel a été étudié. Cette étude a permis de 

dégager les caractéristiques et les mécanismes nécessaires afin de formuler une approche 

globale de l’exploration de l’espace des solutions.  

Dans le chapitre suivant, on présente la nouvelle méthodologie d’exploration basse 

consommation ainsi que l’environnement paramétrique développé. 
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Chapitre III. Approche et Méthodologie d’exploration  

III.1 Introduction 
 

     L’objectif de ce chapitre est de présenter la méthodologie et l’approche 

d’exploration basse consommation. Des modèles de performances riches et paramétriques 

ainsi qu’une technique d’exploration dite basse consommation sont proposés. Cette approche 

permet de considérer un certain nombre de paramètres algorithmiques et architecturaux sur la 

consommation. Un modèle complet est proposé afin de déduire les performances globales du 

système qui seront utilisées lors de l’exploration à travers une technique basée sur le recuit 

simulé. Cette heuristique permet d’exploiter la technique d’exploration selon plusieurs 

niveaux de granularité et ce afin de pouvoir choisir le niveau qui permet d’assurer une 

exploration précise et rapide. 

III.2 Modèles de performances et technique d’exploration 
 

L’exploration de l’espace des solutions basse consommation nécessite un certain nombre 

d’informations relatives à l’application d’une part, et des modèles de performances d’autre 

part. En fait, il s’agit de déduire les informations nécessaires sur l’application pour bien mener 

la phase d’exploration. Par ailleurs, on a besoin de modèles d’estimation et de performance 

suffisamment riches et paramétrables.  

     Cette section traite successivement le modèle du graphe et de l’architecture, la 

méthodologie d’obtention des modèles de performances temporels et énergétiques ainsi que le 

modèle du coût. On présente aussi la méthode d’estimation et la technique d’exploration de 

l’espace de solution adoptée.   

III.2.1 Modèle de graphe 
 

 Le modèle de spécification doit permettre de décrire le fonctionnement de toute 

l’application tout en étant indépendant de son implémentation finale. Le modèle de 

spécification est utilisé par le concepteur pour décomposer le système en un ensemble de sous 

systèmes (le modèle du graphe de tâche décrit le système par des tâches). Ensuite, chaque 

sous système peut être décrit par le concepteur par un langage de spécification. Les sous 

systèmes résultant d’un modèle de spécification peuvent être décrits par plusieurs langages de 

spécification, c’est le cas des spécifications hétérogènes. Concernant la spécification de 

l’application, elle est souvent représentée à base de graphe de tâche (Guitton et al., 2003) 
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(kappagantula et al., 2003) (tmar et al., 2007) (Abdennour et al., 2002). Cette représentation 

permet de modéliser les tâches ainsi que les dépendances inter-tâches de l’application qui sont 

nécessaires lors de l’ordonnancement et l’estimation des performances. De telles informations 

sont généralement définies par le concepteur à partir du cahier de charge de l’application afin 

de développer l’application, ou bien fournies dans le datasheet de l’application.  

Dans l’approche proposée, on part d’une spécification de l’application sous forme de 

graphe de tâches acyclique orienté (DAG) constitué par les tâches Ti du système (les nœuds 

du graphe) et les dépendances entre elles (les arcs). On associe à chaque arc Aij du graphe, la 

quantité de données en octets que la tâche Ti doit transférer à la tâche Tj.  (Figure23) 

 
 
 
 
 
 
 
 
 
 

Figure 23 : Graphe de tâches 
 

Avec ces informations présentent dans le graphe, les dépendances entre les tâches sont 

considérées. Ceci servira à l’ordonnancement des tâches et à l’extraction du temps 

d’exécution total de l’application. Par ailleurs, pour chaque tâche du graphe, des modèles 

d’estimation sont associés. Ces modèles paramétrables, présentés sous forme de valeurs de 

performances temporelles et énergétiques, sont attribués à chaque tâche de l’application.    

III.2.2 Modèle d’architecture 
 

 L’architecture cible sera une architecture hétérogène (majoritairement du Soft et du 

Hard) sous forme de composants discrets (DSPs & FPGA) communiquant via un bus et 

possédant une mémoire commune (Figure 24). Le nombre d’unité de traitement entre autre les 

DSPs sera paramétrable. Ainsi, le concepteur ne sera pas dans l’obligation de travailler sur 

une architecture prédéfinie et figée. C’est à l’approche de choisir la solution architecturale 

adéquate en fixant le nombre de ressources utiles ainsi que le mapping des tâches.  

 

 

 

Figure 24 : Architecture cible 
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 Les Divers DSPs de la plate-forme peuvent fonctionner à diverses fréquences chacun. 

 Les travaux d’exploration de l’espace des solutions, traitent la consommation du bus 

par des modèles de type (P=K.V².F.C). Ce modèle peut être exploité dans les futurs travaux. 

En fait, vu le niveau d’abstraction assez élevé de l’exploration, un tel modèle serait une 

solution envisageable.  

 La re-configuration dynamique du matériel ne sera pas tenue en compte pour le 

moment. 

Comme déjà cité, cette cible n’exclut pas la possibilité d’intégrer des tâches en matériels. 

C’est le cas de l’exemple MPEG2, où on peut implanter l’estimation du mouvement en 

matériel et explorer les différentes possibilités des autres tâches. 

III.2.3 Approche 
 

 NB: Comme déjà cité, dans ce travail, on cible une architecture essentiellement logicielle 

(DSP1, DSP2,..DSPn). On traite en premier lieu ce type d’architecture pour profiter du travail 

établi précédemment au niveau de l’équipe consommation. En fait, les travaux déjà faits au 

cours de cette thèse se sont focalisés sur les cibles logicielles, et exploitent des plates-formes 

logicielles. En plus, ce type d’architecture est utilisé dans les logiciels embarqués notamment 

par les concepteurs des automobiles. Ce travail peut être ensuite étendu à une architecture 

mixte. 

 L’approche repose sur une spécification en graphe de tâches de l’application (Figure 

25-A). Pour chaque tâche présente dans la spécification de l’application, la connaissance des 

paramètres et des performances est nécessaire.  

Concernant l’estimation de la consommation des tâches (Figure 25-B), chaque tâche est 

évaluée en terme de temps et de consommation en fonction de la cible et de ses paramètres. 

L’étape suivante (Figure 25-C) consiste à élaborer une bibliothèque de modèles de temps, 

consommation des diverses tâches de l’application sur diverses cibles. Une librairie de 

modèles de performances temporelles et de consommation sera mise en place. Un exemple de 

librairie de modèles de performances est proposé dans (ktari et al., 2005). Cette librairie 

traitant la partie logicielle, est établie à travers la méthodologie FLPA (Functional Level 

Power Analysis) étendue. 
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Figure 25 : Flot d‘exploration de l’espace 
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            L’étape suivante est l’exploration des solutions architecturales (Figure 25-D) : Elle est 

basée sur l’analyse des solutions disponibles et la recherche d’une solution qui répond à 

l’objectif. L’analyse des solutions  consiste à évaluer chaque solution à part et à estimer sa 

performance et sa consommation (Figure 25-E). Bien entendu des modèles de performance 

des unités de traitement et de communication (DSP, FPGA, mémoire, communication) sont 

nécessaires afin d’évaluer la performance de tout le système. 

Suite à l’analyse des diverses solutions, il faut rechercher la solution « optimale » 

(Figure 25-F) qui minimise la consommation et respecte les contraintes. En effet, une ou 

plusieurs architectures peuvent être éligibles et respectent les contraintes du temps réel, de la 

surface et de la consommation. C’est à ce moment que l’algorithme d’exploration intervient 

afin de choisir la meilleure solution. 

III.2.4 Modèles de performance temporelle 
 

Concernant les performances temporelles, on introduit le partitionnement et 

l’ordonnancement afin d’extraire le modèle temporel. En fait, le partitionnement et 

l’ordonnancement de tâches sont deux problèmes récurrents dans le domaine des systèmes 

temps réel. Le partitionnement consiste à attribuer à chacune des tâches d’un programme un 

processeur sur lequel se fera l’exécution. On désigne par ordonnancement, le fait d’allouer des 

ressources et du temps aux tâches sur un processeur donné, de telle manière que certaines 

conditions soient remplies. Souvent, dans les systèmes embarqués, chaque processeur dispose 

de son propre ordonnanceur (Noseda, 2002).  

Actuellement divers travaux (Bandyopadhyay et al., 2004) (Emmanuel et al., 2001) 

(Ktari et al, 2008a)  traitent ce problème pour des architectures multiprocesseurs. Dans cette 

étude, l’exploitation d’un ordonnanceur prêt et validé est une solution envisageable. En effet, 

le gain en consommation paraît surtout lors du partitionnement en attribuant les tâches de 

calcul aux processeurs faible consommation. Le temps d’exécution total qui dépend de 

l’ordonnancement et du partitionnement influe sur la consommation totale de l’application.  

III.2.5 Modèles de performance énergétique 
 

Dans cette section on propose des modèles de consommation paramétriques. Ces 

modèles peuvent tenir compte de divers paramètres : 

- Les caractéristiques des ressources en veille, 

- La fréquence de fonctionnement 
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- La tension d’alimentation, la fréquence et la taille du bus, 

- La taille des données à transmettre, 

- La consommation statique et dynamique des modules matériels 

 Afin de faciliter la compréhension, on l’introduit à travers un exemple. En effet, prenons le 

cas du graphe suivant: 

 
 
 
 
 
 
 
 
 
 
 

Figure 26 : Graphe de tâche 
 

On a ici 8 tâches dépendantes, essayons de proposer manuellement un partitionnement 

et un ordonnancement pour cette application qu’on désire implanter sur trois DSPs et un 

FPGA. Les temps d’exécution et la consommation de chaque tâche sont fournis pour chaque 

cible. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 27 : Chronogramme 
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de temps réel ou non. On a aussi les informations concernant la répartition des charges sur les 

différentes cibles, le temps de début et de fin de chaque tâche. 

  Afin d’évaluer la consommation de l’application, prenons le cas d’un DSP, un FPGA, 

le bus et la mémoire : 

III.2.5.1 Modèle de consommation d’un DSP 
 
Etudions la consommation de ce DSP3 : 
 
 
 
 
 
 
 
 
 
 

• Dans la 1ère phase, le DSP est en état de veille. Aucune tâche ne lui est attribuée, mais 

il consomme une énergie en veille. 

•  Dans la 2eme phase, le DSP accède à la mémoire centrale pour rechercher la tâche 3 

ainsi que les données fournies par la tâche1. 

• Dans la 3ème phase, le processeur traite la tâche 3. 

• Dans la 4ème phase, le DSP accède à la mémoire centrale pour enregistrer les données. 

etc. 

Ainsi, le modèle de consommation de ce DSP, peut être établi de la façon suivante :  

 

Energie(DSP3)=P_Veille*T_veille1+P_tâche3*Texe_T3+P_tâche8*Texe_T8+ P_Veille*T_veille2 

D’une façon plus générale, la consommation d’un DSP(i) sera : 

 

Energie(DSPi)= 

 

Avec Texe_totale= 

 

 Le temps de réveil du processeur n’est pas considéré pour le moment, ce temps ne 

dépasse pas 10 cycles pour un TMS320C6000 à titre d’exemple. 
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III.2.5.2 Modèle de consommation de la communication 
  

Dans cette étude, la communication est gérée via un bus partagé. Les travaux de 

modélisation de la consommation d’un bus discret ne sont pas nombreux. Un modèle de 

consommation d’un bus  PCI décrit dans (Kappagantula et al., 2003) peut être exploité à titre 

d’exemple. 

P_bus=1/2*C_bus*V²*N_bits* M  

 

Avec N_bits : la largeur du bus. C_bus, V et N_bits sont fournis par le concepteur du bus. Le 

temps de communication est :  

 

              Tcomm= 

 

Ainsi l’énergie consommée par le bus sera : 

 

Energie_bus= 1/2*C_bus*V²*N_bits* M*  

 

Vu le niveau d’abstraction assez élevé, il est assez difficile d’avoir un modèle de bus plus 

précis. 

III.2.5.3 Modèle de consommation d’une mémoire 
 
 Concernant la consommation de la mémoire, vu que sa taille est en pleine croissance 

dans les systèmes embarqués (90% de la surface en 2011), il est utile de la modéliser et de 

l’intégrer dans la consommation générale. En fait, lors de l’accès à la mémoire en lecture ou 

écriture, ce périphérique va consommer de l’énergie qui s’ajoute à la consommation statique. 

(Marteil, 2006) 

Energie_memoire=Texe_totale*Pstat+ 

 

Avec P_accès : la puissance consommée par la mémoire lors de l’accès en lecture ou en 

écriture. Cette information est généralement fournie par le concepteur de la mémoire.  
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III.2.5.4 Modèle de consommation du matériel : FPGA 
 

Concernant la consommation des architectures FPGA, le modèle de puissance doit 

tenir compte de la consommation statique et dynamique. En effet la consommation d’un 

FPGA est due à la consommation des tâches actives en traitement ainsi qu’à la consommation 

de toutes les tâches synthétisées que se soit en veilles ou actives.  

 

P(FPGA)=  

 

E(FPGA)=  

III.2.5.5 Modèle global 
 

   Le modèle de consommation globale de l’architecture, qui est composé de divers 

modules, doit tenir compte des diverses sources de dissipation d’énergie. Pour être proche de 

la réalité, le modèle développé tient compte de la consommation des unités de traitements 

implantés, du bus et de la mémoire. Ainsi 

 

Energie (Totale)= 
 

Il est à noter que ces équations tiennent compte des divers paramètres de l’application et de 

l’architecture. En effet, à travers cette méthodologie, les modèles de performances de chaque 

tâche sont modélisés en fonction de divers paramètres (fréquence, type de DSP, taille de 

l’image, cadence…). L’avantage de cette méthode consiste à proposer une tâche pouvant 

avoir plus qu’un modèle de performance sur une cible donnée en jouant sur les paramètres.  

III.2.6 Modèle coût  
 

Vu la présence dominante de la partie logicielle (DSPs) vis à vis des FPGA, le coût 

sera une contrainte un peu figée, qu’on ne peut améliorer qu’on modifiant le nombre de 

ressources. Par ailleurs, le coût de chaque ressource est pondéré par un coefficient vu la 

diversité des coûts technologiques (un mm² de surface de DSP peut coûter moins cher que 

celui d’un FPGA).   

Cout_tot= 
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III.2.7  L’exploration basse consommation 
 

La solution architecturale proposée pour cette application a trois caractéristiques : 

énergie, coût, temps (figure 27). Comme ces trois paramètres interagissent ensemble, il y a 

une nécessite pour faire une étude exploratrice globale de la solution. Parmi les points clefs de 

l’exploration de l’espace, on cite la performance globale de l’application. Pour cela, des 

modèles d’estimation sont nécessaires afin d’évaluer de l’application en sa globalité. 

 

 

 

 

 

 

 

 

Figure 27 : Champs d’exploration de l’espace des solutions 

 

Ces modèles d’estimation seront de haut niveau et tiennent compte des paramètres 

architecturaux et algorithmiques. Dans le cadre de ce travail, l’étude est menée sur des 

applications écrites en langage C. Pour cela, la méthode d’estimation basée sur la FLPA 

étendue, détaillée dans les chapitres précédents, a été exploitée afin de proposer des modèles 

paramétriques de haut niveau. Ces modèles d’estimation seront présentés dans la section 

suivante. 

III.2.8 Méthodes d’estimation 
A partir de l'analyse fonctionnelle de l’application, la méthodologie FLPA permet de 

développer un modèle paramétrique, qui représente le comportement de consommation d'une 

cible. (Figure 28) 

En fait, cette méthodologie se compose de quatre étapes.  

- L'analyse fonctionnelle: qui détermine les paramètres influant sur le modèle de puissance.  

- La caractérisation de chaque paramètre est accordée pour qualifier son influence sur la 

consommation de l'application.  

- Le modèle général est établi selon les paramètres disponibles.  

- Validation du modèle par mesures. 

Temps

Consommation 

Coût
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Ainsi, on peut tenir compte des caractéristiques algorithmiques, afin d'évaluer la 

consommation à ce niveau selon les variations des paramètres de IP (Intellectual Propriety). 

En fait, cette méthodologie part de l’extraction des paramètres algorithmiques, architecturaux 

Figure 28 :(a) FLPA : Méthodologie pour les  processeurs  (b) FLPA  transposée pour IP(SW) 
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et technologiques qui ont une influence directe sur la consommation de l’application (taille de 

l’image, résolution, nombre  d’images par seconde, précision du calcul, DSP cible, fréquence 

de fonctionnement). L’étape suivante consiste à extraire la variation de la consommation en 

fonction de chaque paramètre extrait à travers des estimations ou mesures grâce à des 

scénarios. Enfin, la formulation de lois de consommation mathématiques en fonction  de ces 

paramètres est établie. Une confrontation des modèles établis avec les mesures sur carte DSP 

est envisageable afin d’avoir une idée sur la précision de ces modèles. Ces modèles établis 

pour diverses applications de traitement de signal grâce à cette méthodologie seront intégrés 

dans la librairie de performances nécessaire lors de l’exploration.  

Avec cette librairie, on a la possibilité d’avoir des modèles paramétriques des diverses 

tâches. Ces modèles peuvent tenir compte : 

- des paramètres de l’application : taille de l’image, résolution, cadence, 

chrominance, ordre du filtre,…   

- des paramètres architecturales et technologiques : fréquence de 

fonctionnement, tension d’alimentation de la cible, la cible… 

Cette bibliothèque sera une base de modèles prêts et paramétrables exploitable pour les 

diverses applications. Ainsi, en cas de modification de la spécification d’une tâche de 

l’application, on n’a pas besoin de tout re-modéliser. Toutefois, cette bibliothèque n’est pas 

toujours complète et nécessite souvent des mises à jour. En effet, un problème se pose si une 

nouvelle tâche se présente dans l’application que ce soit par ajout par le concepteur ou par 

modification. Dans ce cas, diverses solutions sont possibles afin de proposer un modèle 

d’estimation des performances de la nouvelle tâche  et ceci: 

- à travers des outils comme Softexplorer, Design trotter, l’environnement ISE-

Xpower, Code Composer, Max II power, Quartus power play analyser, les 

simulateurs des processeurs. 

- à travers : les datasheets des cibles indiquant la consommation moyenne, les 

abaques de consommation, des modèles de consommation simplistes du 

type : P=0.063 Freq Area. Avec ces techniques, on a la possibilité d’avoir des 

modèles de performance assez rapidement avec une précision relativement 

moyenne.   

- à travers : des mesures sur carte en cas de disponibilité.  
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III.2.9 Conclusion  
 

  La formulation d’une méthode d’abstraction de l’architecture et de l’application a permis 

la mise en œuvre de modèles de performances à un haut niveau. Ces modèles de performances 

temporelles et énergétiques sont combinés et évalués à travers une approche d’exploration de 

l’espace de solution. Cette étape représente une étude exploratrice du système embarqué en sa 

globalité permettant d’aboutir à des solutions qui respectent les diverses contraintes en 

mettant une attention particulière à la consommation. L’environnement d’exploration sera le 

sujet de la section suivante. 

III.3 Outil d’exploration 
    

    On présente dans cette section l’environnement d’exploration. La présentation est 

accompagnée d’un exemple d’illustration. L’environnement repose sur deux outils, le premier 

sert pour la saisie de la spécification à partir du graphe, et des performances à partir de la 

librairie, le second pour l’évaluation des performances de toute l’architecture et l’exploration 

de l’espace des solutions afin d’extraire la solution adéquate (Figure 29).  

 

 

 

 

 

 

 

 

 

 

Figure 29 : Environnement d’exploration 

   Les informations nécessaires pour l’exploration englobent les diverses implémentations 

possibles de chaque tâche. Vu qu’une tâche peut avoir plusieurs performances selon ces 

paramètres, chaque implantation tient compte des paramètres algorithmiques et architecturaux 

lors de la saisie du temps d’exécution, la puissance moyenne, la puissance maximale, la taille 

des données résultantes. Cette description est gérée par une interface graphique écrite en java. 
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Elle permet de générer un fichier .txt contenant ces informations sur le graphe. Ce fichier de 

description textuelle de l’application sera l’entrée principale pour le calcul sous Matlab.  

Cette interface (Figure 30) permet de simplifier la saisie des informations, et d’avoir 

un affichage et une lecture plus lisible des informations caractérisant l’application.  

 

 
Figure 30 : Interface de description de l’application 

 

Pour le moment, la saisie des performances de chaque tâche est faite manuellement. 

Une « intégration » automatique des performances des tâches est possible en exploitant 

directement la base de donnée. (Figure 31)    

 

 

 

 

 

 

Figure 31 : génération automatique des performances des tâches 

 

Par ailleurs, les diverses caractéristiques des cibles (DSPs, FPGA et bus) peuvent être  

saisies dans un fichier de matériels utilisé comme entrée par Matlab tel que : la puissance en 

veille du DSP, les caractéristiques spécifiques du bus (Vcc, Freq, capacité). 

Une fois que les diverses informations sont récupérées et intégrées dans Matlab, 

l’évaluation et l’exploration basée sur l’heuristique du recuit simulé se déroulent.   
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III.3.1 Stratégie d’exploration 
III.3.1.1 Heuristique 

Afin d’extraire une solution adéquate parmi celles présentes dans le large espace des 

solutions tout en respectant les contraintes du système, l’utilisation d’une méta heuristique est 

nécessaire afin de résoudre ce problème d’optimisation NP complet. En fait, avec les 

algorithmes d’améliorations itératifs classiques, le processus de recherche est itéré jusqu'à ce 

que toute modification rende la solution moins bonne. La figure 32 montre que cet 

algorithme d’amélioration itérative ne conduit pas en général au minimum absolu, mais 

seulement à un minimum local «A », qui constitue la meilleure des solutions accessibles 

compte tenu de l’hypothèse initiale. 

 

 

 

 

 

 

 

Figure 32 : Allure de la fonction  « objectif » d’un problème d’optimisation difficile 

 

 Avec les métaheuristiques dites de voisinage (recuit simulé, méthode tabou) : il s’agit 

d’autoriser, de temps en temps, des mouvements de remontée, autrement dit d’accepter une 

dégradation temporaire de la situation, lors du changement de la configuration courante. Un 

mécanisme de contrôle des dégradations permet d’éviter la divergence du procédé. Il devient 

dès lors possible de s’extraire du piège que représente un minimum local, pour partir explorer 

une autre « vallée » plus prometteuse. (Lacomme et al., 2003) 

    Au cours de ce travail, on a exploité l’algorithme du « recuit simulé ». L’avantage 

de cette méthode c’est son aptitude de procurer une solution de bonne qualité. En outre, c’est 

une méthode générale : elle est applicable et facile à programmer, pour la majorité des 

problèmes qui relèvent des techniques d’optimisation itérative. Par ailleurs, elle offre une 

grande souplesse d’emploi, car de nouvelles contraintes peuvent être facilement incorporées. 

Il s’agit d’une méthode où l’exploration complète du voisinage de la solution actuelle est 

remplacée par le tirage au sort d’une solution voisine. On passe sur cette solution si la 

variation D du coût est négative. Sinon, on va quand même sur la solution de coût supérieur 

avec une probabilité exp(-D/T) paramétrée par un réel positif T appelé température. On 

Objectif 

Solution(i) A
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recommence le processus sur la nouvelle solution après avoir baissé légèrement la 

température T. (Lacomme et al., 2003) 

On s’arrête quand T devient négligeable, c’est-à-dire inférieure à un petit réel positif 

dont la probabilité d’acceptation correspondante soit presque nulle. A ce moment, la 

probabilité de remonter sur une moins bonne solution est quasi-nulle, et la méthode se 

comporte comme une recherche locale. Le recuit simulé peut donc échapper aux minima 

locaux puisqu’il accepte d’augmenter le coût. Il donne de très bons résultats s’il est conduit 

assez lentement : Tn+1=f(Tn). En effet, Le choix du schéma de décroissance est crucial dans 

cet algorithme car une décroissance trop rapide peut piéger la solution dans le voisinage d'un 

minimum local.    

Algorithme: 
 
choose an initial solution (Sol_Initial[1..N ])  
choose an initial & final temperature T0 & Tf;   
 
Current_solution=Sol_initial 
 While(T(i)<Tf) 
{ 
            New_solution=find a near current_solution  
 Calculate Δ cost =Cost(NewSol) - Cost(Current_solution)  
  If Δ  cost ≤ 0 
        Current_solution= New_solution  
  Else 
     R=rand[0..1];  
     if R≤ exp (- Δcost  /T(i) )  
     Current_solution= New_solution  

   end 
end 

     T(i+1)=decreasing function (T(i))           //cooling function 
 } 
 
 

Pour démarrer la recherche par le recuit simulé, les paramètres de l’algorithme doivent 

être bien choisis. C’est le cas de la température initiale, le taux de décroissance de la 

température et le critère d’arrêt du programme.  

 Température initiale T0 : on peut la calculer au préalable à l’aide de 

l’algorithme suivant : 

- Faire 100 perturbations au hasard ; évaluer la moyenne Δcost des variations 

correspondantes. 

- Choisir un taux initial d’acceptation R0 de 50% par exemple afin d’explorer le 

maximum d’espace. 

- Déduire T0 de la relation  R0= exp (- Δcost  /T0 ) 
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 Décroissance de la température :  peut être effectuée selon la loi géométrique : 

T(k+1)=0.9*T(k) 

 Arrêt du programme : peut être opéré après 2 ou 3 paliers de température 

successifs sans aucune nouvelle acceptation (figure 33). De cette façon, on 

garantit que la solution choisie n’est pas locale. 

 Vérification indispensables lors des premières exécutions du programme :  

- Le générateur de nombre réels aléatoires dans [0,1] doit être bien uniforme. 

- La « qualité » du résultat doit varier peu lorsque le programme est lancé plusieurs fois 

avec des configurations initiales différentes. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 33 : Condition d’arrêt du programme 
 

III.3.1.2 Implémentation 
 

Dans le cadre de l’implémentation de l’outil sous Matlab, une exploration mono-

objective est mise en place. Elle a permis selon le choix, d’atteindre des solutions 

architecturales faible consommation sous des contraintes de temps réel ou bien des solutions 

performantes en terme de temps d’exécution sous des contraintes énergétiques. Comme le 

concepteur a la possibilité d’imposer seulement le nombre maximal de processeurs dans 

l’architecture sans fixer le nombre exact, le nombre de processeurs ne sera pas figé. 

L’algorithme va explorer les solutions les plus prometteuses parmi celles qui respectent les 

contraintes de temps réel et le nombre maximal de processeurs (Figure 34). C’est à l’outil 
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d’extraire le nombre de processeurs utiles ainsi que le mapping architectural adéquat et les 

performances de tout le système. Ce paramétrage du nombre des unités de traitement 

permettra au concepteur d’une part, de ne pas se limiter à une architecture unique lors de la 

conception du produit et d’être guidé par l’outil lors du choix de la solution matérielle d’autre 

part.  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34  : Description de l’exploration  

 

Dans la figure 34, on détaille la méthode exploitée lors de l’implémentation. Cette  

méthode repose sur : 

- Les performances paramétriques des tâches présentes dans la description 

textuelle du fichier en entrée: Avec la diversité des valeurs de performances existantes en 

fonction des paramètres algorithmiques et architecturales établies, une librairie de modèles 

peut être analysée par l’outil. Ceci permet l’évaluation d’une multitude de performances pour 

chaque tâche et l’ajustement de ses paramètres selon l’objectif. 

- Les caractéristiques de la technologie cible: Les caractéristiques de chaque 

technologie cible sont nécessaires afin de pouvoir estimer la performance globale de tout le 
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système. Parmi ces caractéristiques, on peut citer : la tension d’alimentation, la fréquence et la 

taille du bus, la puissance en veille des ressources à exploiter, etc. 

- Les contraintes : Les contraintes de l’application sont définies par le concepteur du 

produit. Elles seront fournies à l’outil afin d’accepter ou de refuser les solutions extraites au 

cours de l’exploration. 

Vu que l’architecture cible est paramétrable avec un nombre de ressources variables et 

vu les contraintes de surface, de technologie, de coût ou autres, le nombre maximal « Nmax » 

d’unités de calcul sera fixé dés le départ par le concepteur. Grâce à l’heuristique 

d’optimisation qui va explorer l’espace de solutions, le nombre de ressources utiles va être 

choisi. Pour cela, l’outil balaye plusieurs configurations en évaluant la performance globale 

de chacune en exploitant les informations en entrée. A la fin de l’exploration, l’outil fournit la 

solution qui répond à l’objectif avec des détails sur sa performance temporelle et énergétique. 

Le mapping architectural est géré par l’outil, il associe à chaque unité de traitement les tâches 

adéquates afin d’atteindre l’objectif choisi.    

Dans la figure 35 on présente, à titre d’exemple, les modèles de performances des 

tâches et les informations architecturales requises. Pour chaque tâche de l’application, on 

associe un ensemble de valeurs de performances temporelles et énergétiques relatives à 

chaque cible. Ces informations seront traitées et exploitées afin d’évaluer la performance de 

tout le système lors de l’exploration selon l’objectif visé afin d’extraire une solution adéquate. 

III.3.2 Résultats et analyse de l’espace d’exploration 
 

 Une initialisation des paramètres d’exploration de l’espace de solutions est nécessaire. 

En fait, l’utilisateur ou le concepteur a la possibilité de choisir une solution initiale aléatoire 

ou une solution particulière selon ses connaissances sur le comportement de l’application en 

terme de consommation. Les contraintes du système seront considérées lors de l’évaluation de 

chaque solution afin de satisfaire le besoin. Dans cette étude de cas, la contrainte de temps 

ainsi que le nombre maximal de ressources à exploiter sera imposé par le concepteur à l’outil. 

Ceci va limiter le champ d’exploration à Nmax unités de traitement dés le départ selon les 

contraintes. Par ailleurs, l’algorithme d’exploration permet d’extraire la solution la plus 

prometteuse selon l’objectif en précisant les différentes unités et le partitionnement de 

l’architecture finale qui peut contenir un nombre d’unités N’<Nmax. 



 

J. Ktari 64

 

Figure 35 : Description de l’application sous Matlab 
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Ainsi, on extrait le nombre de ressources nécessaires à exploiter pour implémenter 

l’application. L’outil guide ainsi le concepteur lors du choix de l’architecture cible en terme 

de nombre et de type de ressources à un niveau avancé lors de la conception du produit. 

 La figure 36 présente les résultats de l’exploration dans un espace contenant 6 unités 

de traitement (DSPs) avec un objectif d’extraire une solution faible consommation respectant 

une contrainte temps réel stricte. L’algorithme converge « rapidement : 1000 itérations» vers 

une solution contenant 3 processeurs seulement dont la description est présentée dans la 

figure 36-F. C’est grâce à l’heuristique du recuit simulé que le problème de complexité de 

l’espace est réduit. Ainsi, l’utilisateur peut à priori connaître le nombre de DSP adéquat à son 

application et le mapping architecturale qui minimisent la consommation de tout le système 

tout en respectant les contraintes.  

Dans la figure 36-A, on présente le résultat de l’exploration de l’espace de solution en 

se basant sur la heuristique du recuit simulé. L’outil explore l’espace à travers cette 

heuristique et converge vers une solution dont la consommation est moins de 75 mJ et dont 

les détails architecturaux sont présentés dans la figure 36-F. Avec cette heuristique 

d’exploration, l’outil atteint une solution assez bonne et rapidement en la comparant à celle 

extraite par une recherche « assez complète ». D’ailleurs, dans la figure 36-B, on présente à 

titre indicatif l’espace de solutions « globale » exploré à travers une recherche aléatoire. Il est 

à signaler qu’avec cette heuristique « intelligente », un gain de temps dans la recherche de la 

bonne solution est prouvé. Pour plus de lisibilité, la figure 36-D montre l’évolution de la 

surface et de la consommation pour diverses solutions architecturales dont le nombre de 

ressources de traitement est variable : de deux à six processeurs.    

La figure 36 C-D  montre aussi l’évolution de l’énergie en fonction de la surface et/ou 

le temps permettant ainsi une connaissance détaillée sur le domaine de variation de la 

consommation selon le nombre d’unités de la solution.  
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Figure 36 : Résultats de l’exploration 
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Ainsi, le concepteur a la possibilité d’extraire d’une part l’architecture cible adéquate 

pour son produit avec un minimum d’informations paramétrables à un niveau d’abstraction 

assez élevé lors de la conception. Par ailleurs, l’outil propose un mapping adéquat des tâches 

de l’application afin d’avoir un système qui répond à l’objectif et aux contraintes. Parmi les 

points clefs de cette exploration:  

- Le paramétrage du nombre de ressources de l’architecture cible à 

implémenter et le paramétrage des modèles d’estimation en fonction de 

l’architecture et de l’application,  

- La mutli granularité des modèles d’estimation : en fait, au cours de ce travail, 

les modèles, proposés dans le chapitre suivant, tiennent compte de la 

granularité de l’application. C’est le cas de l’application MPEG-2 où on a 

proposé des modèles d’estimation au niveau tâches, au niveau application 

pour l’étendre au niveau standard vidéo (Pal, Secam et NTSC).     

 

III.4 Conclusion  
 

Dans ce chapitre, on a traité l’aspect faible consommation dans les systèmes embarqués. 

Une méthodologie et un environnement d’exploration basse consommation de l’espace de 

solutions sont  proposés et mis en place. Cet environnement exploite des modèles 

d’estimation et de performances temporels et énergétiques riches qui tiennent compte de 

nombreux paramètres algorithmiques et architecturaux. Ceci a permis de dégager les 

caractéristiques et les mécanismes nécessaires afin d’extraire une solution architecturale qui 

répond aux besoins. Les points clés de ce problème sont abordés à travers une méthode 

d’analyse paramétrique et une heuristique d’exploration de l’espace basée sur le recuit simulé.  

Comme suite, il est intéressant d’exploiter cet environnement pour explorer l’espace de 

solutions d’une application plus significative comme MPEG2 afin de valider l’approche. 

D’ailleurs au cours de ce travail, des modèles paramétrables de MPEG2 sont établis à divers 

niveaux de granularité. Ils seront détaillés dans le chapitre suivant. 
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Chapitre IV. Expérimentations et étude de cas 

IV.1 Introduction 
 
Dans les chapitres précédents, on a présenté les approches de modélisation et 

d’estimation de la consommation, ainsi que la nouvelle méthodologie d’exploration basse 

consommation de l’espace des solutions. L’objectif de ce chapitre est d’une part, partir de 

quelques applications de traitement de signal standards et d’extraire les paramètres existants 

et influants sur la consommation et d’autre part, estimer la consommation (énergie & 

puissance) des DSPs et FPGA afin d’explorer l’espace des solutions. Par la suite, ces 

estimations seront validées par mesures pratiques sur carte tout en jouant sur les paramètres 

dégagés. Ceci permet d’explorer l’espace des solutions possibles et d’envisager la meilleure 

solution dans le cadre de l’adéquation algorithme architecture. Dans ce chapitre, les lois ou 

modèles de consommation sont établis au début pour des applications « classiques » : la 

Transformé en Cosinus Discret (DCT) et la Transformé de Fourier Rapide (FFT). Ensuite, 

une étude énergétique détaillée sur MPEG-2 est menée afin d’explorer son espace de 

conception. Et afin de valider l’approche proposée, une formulation mathématique basée sur 

la probabilité est établie. 

 

IV.2 Filtre à réponse impulsionnelle finie 
 
             Un filtre numérique non récursif aussi appelé filtre RIF pour "Réponse Impulsionnelle 

Finie" est un filtre numérique dont la sortie ne dépend que des échantillons d'entrées présents 

et passés. Un tel filtre a une fonction de transfert de type polynomiale. L’expression de celle-

ci est la suivante : 

∑
−

=
−=

1

0
][*][][

N

k
knxkbny     (18) 

 

x[n] : représente l’entrée du filtre, 

b[k] : représente les coefficients du filtre, 

y[n] : représente la sortie du filtre, 

N : l’ordre du filtre. 

La firme Texas Instrument fournit avec son outil Code Composer le cœur de cette 

application. Son étude montre qu’elle est paramétrable en fonction de l’ordre du filtre. Ce 
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paramétrage permet d’expertiser l’espace des solutions possibles de l’application. Et afin 

d’étudier l’influence de ce paramètre sur la consommation, les outils SoftExplorer et 

CodeComposer sont utilisés.   

La figure 37 montre la tendance de la consommation sur le C6201 en fonction de 

l’ordre et de la fréquence. Le tableau 5 montre la variation du temps d’exécution selon les 

paramètres de l’application sur 3 cibles C6201, C6701 & C5510. Une fois ces valeurs sont 

dégagées par SoftExplorer, un modèle peut être établi en fonction de l’ordre du filtre pour 

chaque cible relativement aux estimations de SoftExplorer. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37 : Tendance de  la consommation sur un C6201 
 
 
 

48
163264

12
8

25
6

50
100

200

0,0

2,0

4,0

6,0

8,0

10,0

12,0

temps_us

ordre

frequence(Mhz)

C6201

0,000

2,000

4,000

6,000

8,000

10,000

12,000

40 90 140 190 240

freq_Mhz

En
er

gy
_u

J
4
8
16
32
64
128
256

C6201

0

2

4

6

8

10

12

40 90 140 190 240

Freq_Mhz

Te
xe

_u
s

4

8

16

32

64

128

256



 

J. Ktari 71

 
Tableau 5 : Temps d’exécution estimé et modélisé de l’application en fonction de l’ordre  

 
 
On remarque bien que le temps nécessaire à l’exécution du code sur le DSP varie 

quasi-linéairement avec l’ordre. En fait, le temps double si on double l’ordre. Le rapport 

Texe*freq/ordre se stabilise au fur et à mesure que l’ordre monte, d’où une erreur moins 

importante. Pour l’ordre 8, l’erreur max de modélisation est de 7,5% alors que à partir de 

l’ordre 16, l’erreur max de 3,6%. Cette erreur par rapport à SoftExplorer est due à la difficulté 

de trouver une loi de variation qui est linéaire.  

Le tableau 6 montre l’évolution de la puissance consommée par les 3 DSPs en 

fonction de l’ordre et la fréquence. 

 

Ordre 4 8 16 32 64 128 256 
 C6201&C6701  Modèle : Texe(uS) = 2,006*ordre/freq(Mhz) 

50Mhz ----------------------------------------------------------------------------------------------------------------- 
Texe_SE_uS 0,180 0,340 0,665 1,300 2,580 5,140 10,260 

Texe_modele_uS 0,160 0,320 0,641 1,283 2,567 5,135 10,270 
Erreur % 10,844% 5,600% 3,471% 1,243% 0,478% 0,090% -0,104% 

100Mhz ------------------------------------------------------------------------------------------------------------------------------ 
Texe_SE_uS 0,090 0,170 0,330 0,654 1,290 2,570 5,130 

Texe_modele_uS 0,080 0,160 0,320 0,641 1,283 2,567 5,135 
Erreur % 10,844% 5,600% 2,739% 1,847% 0,478% 0,090% -0,104% 

200Mhz ------------------------------------------------------------------------------------------------------------------------------ 
Texe_SE_uS 0,046 0,084 0,166 0,326 0,646 1,285 2,565 

Texe_modele_uS 0,040 0,080 0,160 0,320 0,641 1,283 2,567 
Erreur % 12,78% 4,48% 3,33% 1,55% 0,63% 0,09% -0,10% 

 
 C5510  Modèle : Texe(uS) = 3,013*ordre/freq(Mhz) 

50Mhz ------------------------------------------------------------------------------------------------------------------------------ 
Texe_SE_uS 0,280 0,520 1,000 1,960 3,880 7,72 15,400 

Texe_modele_uS 0,240 0,481 0,963 1,926 3,852 7,705 15,411 
Erreur % 14,000% 7,385% 3,680% 1,714% 0,701% 0,187% -0,073% 

100Mhz ------------------------------------------------------------------------------------------------------------------------------ 
Texe_SE_uS 0,140 0,260 0,500 0,980 1,940 3,860 7,705 

Texe_modele_uS 0,120 0,240 0,481 0,963 1,926 3,852 7,705 
Erreur % 14,00% 7,38% 3,68% 1,71% 0,70% 0,19% -0,01% 

200Mhz ------------------------------------------------------------------------------------------------------------------------------ 
Texe_SE_uS 0,070 0,130 0,250 0,490 0,970 1,930 3,85 

Texe_modele_uS 0,060 0,120 0,240 0,481 0,963 1,926 3,852 
Erreur % 14,00% 7,38% 3,68% 1,71% 0,70% 0,18% -0,08% 
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Tableau 6 : Puissance estimée et modélisée de l’application en fonction de l’ordre et la fréquence 
 

 
 

Le tableau 7  récapitule les modèles énergétiques estimés du FIR pour les 3 cibles en 

fonction de l’ordre et la fréquence. Il est bien clair selon ces modèles que la puissance varie 

Ordre 4 8 16 32 64 128 256 
 C6201  Modèle : P(W)=0,021* freq(Mhz) 

50Mhz ----------------------------------------------------------------------------------------------------------------- 
P_SE_W 1,087 1,103 1,087 1,084 1,084 1,08 1,082 

P_modele_W 1,050 1,050 1,050 1,050 1,050 1,050 1,050 
Erreur % 3,404% 4,805% 3,404% 3,137% 3,137% 2,778% 2,957% 
100Mhz ------------------------------------------------------------------------------------------------------------------------------ 
P_SE_W 2,101 2,132 2,101 2,100 2,100 2,095 2,090 

P_modele_W 2,1 2,1 2,1 2,1 2,1 2,1 2,1 
Erreur % 0,048% 1,501% 0,048% 0% 0% -0,239% 0,478% 
200Mhz ------------------------------------------------------------------------------------------------------------------------------ 
P_SE_W 4,23 4,189 4,13 4,12 4,12 4,114 4,112 

P_modele_W 4,2 4,2 4,2 4,2 4,2 4,2 4,2 
Erreur % 0,709% -0,263% -1,695% -1,942% -1,942% -2,090% -2,140% 

 
 C6701  Modèle : P(W) = 0,007*freq(Mhz) 

50Mhz ------------------------------------------------------------------------------------------------------------------------------ 
P_SE_W 0,33 0,35 0,351 0,365 0,365 0,369 0,370 

P_modele_W 0,35 0,35 0,35 0,35 0,35 0,35 0,35 
Erreur % -5,11% 0% 0,28% 4,11% 4,11% 5,15% 5,41% 
100Mhz ------------------------------------------------------------------------------------------------------------------------------ 
P_SE_W 0,698 0,689 0,698 0,698 0,698 0,701 0,701 

P_modele_W 0,7 0,7 0,7 0,7 0,7 0,7 0,7 
Erreur % -0,29% -1,6% -0,29% -0,29% -0,29% 0,14% 0,14% 
200Mhz ------------------------------------------------------------------------------------------------------------------------------ 
P_SE_W 1,432 1,367 1,420 1,421 1,421 1,418 1,366 

P_modele_W 1,4 1,4 1,4 1,4 1,4 1,4 1,4 
Erreur % 1,62% -2,41% 1,41% 1,48% 1,48% 1,27% -2,49% 

 
 C5510  Modèle : P(W) = 0,0027882*freq(Mhz)  

50Mhz ------------------------------------------------------------------------------------------------------------------------------ 
P_SE_W 0,146 0,147 0,148 0,148 0,148 0,148 0,148 

P_modele_W 0,144 0,144 0,144 0,144 0,144 0,144 0,144 
Erreur % 1,26% 1,39% 2,59% 2,59% 2,59% 2,59% 2,59% 
100Mhz ------------------------------------------------------------------------------------------------------------------------------ 
P_SE_W 0,268 0,270 0,271 0,271 0,271 0,272 0,272 

P_modele_W 0,278 0,278 0,278 0,278 0,278 0,278 0,278 
Erreur % -3,66% -2,90% -2,52% -2,52% -2,52% -2,14% -2,14% 
200Mhz ------------------------------------------------------------------------------------------------------------------------------ 
P_SE_W 0,513 0,514 0,517 0,518 0,518 0,518 0,518 

P_modele_W 0,514 0,514 0,514 0,514 0,514 0,514 0,514 
Erreur % -0,12% 0,07% 0,65% 0,84% 0,84% 0,84% 0,84% 
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surtout en fonction de la fréquence et que l’énergie qui est produit de la puissance avec le 

temps dépend principalement de l’ordre.  

 
Tableau 7 : Modèles de l’application FIR en fonction de l’ordre et la fréquence 

 

RQ: fréq (Mhz) Texe (uS) Puissance (W) Energie(uJ) 

C6201 2,006*ordre/freq 0,021*freq 0,0421*ordre 

C6701 2,006*ordre/freq 0,007*freq 0,014*ordre 

C5510 3,013*ordre/freq 0,002788*freq  0,831 10-2 *ordre 

 

IV.3 Transformé de Fourier Rapide  
 

La transformation de Fourier Rapide (TFR), ou encore Fast Fourier Transform (FFT), a 

été retenue comme deuxième application. L’étude de cette application montre qu’elle est 

paramétrable en fonction du nombre de points d’entrée (8, 16, 32,…,4096). Ce paramétrage 

permet d’expertiser l’espace des solutions possibles de l’application. (Ktari et al., 2007) 

 Des tests sur cette application sont élaborés avec l’environnement Code Composer 

afin de valider le code et d’extraire le nombre de cycles nécessaires à l’exécution du 

programme en fonction du nombre de points. Et afin d’estimer la consommation (puissance & 

énergie) du code de la FFT, on a exploité l’outil SoftExplorer (Version C) permettant de 

fournir ces informations. La validation des estimations est faite par mesure sur carte DSP.  

 Tableau 8 : Modèle temporel et énergétique de la FFT  
 

DSP N_points Texe (uS) Puissance (W) Energie(uJ) 

8..64 1668*N_points/freq 

64..512 2120* N_points /freq C6201 
 

512..2048 2880*N_points /freq 

0,0194*freq produit 

C6701 Même que C6201 0,0049*freq  

8..64 2469* N_points /freq 

64..512 3180* N_points /freq C5510 
 

512..2048 4320* N_points /freq 

0,0025*freq produit 
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Validation par mesure 
 
            Afin de valider cette méthodologie d’estimation de consommation en temps 

d’exécution et en puissance, des essais sur carte ont été faits. On a exploité la carte C6701 

disponible afin de tester le modèle de l’application FIR.  

          La mesure du courant alimentant le cœur du DSP est faite à l’aide de l’oscilloscope 

numérique de l’analyseur logique, Tektronix TLA 704 avec une sonde de courant.  

 A partir du moment où une mesure est effectuée, il faut la refaire 6 fois, de cette façon 

on réduit le risque d’erreur et on affine la moyenne obtenue (Loi de Student). Ces tests sont 

faits pour chaque ordre et fréquence.   

IV.4 MPEG-2 

IV.4.1 Présentation et spécification 
  Le principe fondamental de la vidéo est que l’œil humain a la faculté de retenir 

pendant un certain temps (de l’ordre d’un dixième de seconde) toute image imprimée sur la 

rétine. Il suffit donc de faire défiler un nombre suffisant d’images par seconde, pour que l’œil 

ne se rende pas compte qu’il s’agit d’images distinctes. La télévision couleur balaye l’image 

avec trois faisceaux, un par couleur primaire : rouge, vert et bleu. Ces signaux RVB sont 

ensuite combinés linéairement en un signal de luminance (Y) et deux signaux de chrominance 

(U et V). Concernant la vidéo numérique, elle est une suite de trames formées d’une matrice 

rectangulaire de pixels. Pour la vidéo numérique couleur, 8 bits sont utilisés pour chaque 

couleur RVB, soit donc 24 bits par pixel. (Sohn et al., 2007) 

IV.4.1.1  Les standards et les formats des images  
 

Dans une image, chaque pixel est représenté par la luminance et la chrominance. Les 

composantes de chrominances sont souvent sous-échantillonnées de manière à avoir une seule 

valeur de la composante U (resp. V) pour deux ou quatre pixels. Cette première réduction de 

la quantité d'informations se base sur le fait que la perception humaine est plus sensible à  

l'intensité de la lumière qu'à la couleur. On parle alors de format d'échantillonnage. Différents 

formats d’échantillonnage ont été définis tels que : les formats 4 :4 :4, 4 :2 :2 et 4 :2 :0 (Figure 

38).  

Si nous prenons le 4 :2 :2 comme exemple, ce format indique que chaque pixel est 

échantillonné en luminance, tandis qu’un pixel sur deux est échantillonné en chrominances. 
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Figure 38 : Les formats d’échantillonnage 

 

IV.4.1.2 L’algorithme du codage  
 

La norme MPEG définit un ensemble d'étapes de codage qui permettent de transformer un 

signal vidéo (numérisé dans un format normalisé) en un flux binaire (bitstream) destiné à être 

stocké sur un support ou transmis dans un réseau. Le flux binaire est décrit selon une syntaxe 

codée d'une manière normalisée pour pouvoir être restituée par n'importe quel décodeur 

respectant la norme MPEG. 

 L'algorithme du codage définit une structure hiérarchique (figure 39). Le groupe d'images 

ou GOP est constitué d'une suite périodique d'images compressées. On distingue trois types 

d'images compressées:  

-Une image de type I (ou intra) est compressée d'une manière indépendante des autres 

images, elles subissent donc un codage spatial ou intra, 

-Une image de type P (ou prédite) est codée en utilisant une prédiction d'une image 

antérieure de type I ou P d’où ce qu’on appelle le codage prédictif (codage inter)  

-Une image de type B (ou bidirectionnelle) codée par double prédiction (ou interpolation) 

qui utilise comme référence une image antérieure de type I ou P et une image future de type I 

ou P obtenues par un codage bidirectionnel (codage inter).  

Un GOP commence par une image I, puis une suite périodique d'images P séparées par un 

nombre constant d'images B. La structure du GOP est alors définie par deux paramètres ; le 

nombre d'images du GOP (N) et la distance entre images I/P (M). A l'entrée du codage, les 

données vidéo sont présentées sous forme numérique où chaque pixel est codé par les trois 

composantes (Y, U et V). 
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Figure 39 : Structure hiérarchique du codage MPEG 
 

Le grand principe du codage vidéo MPEG est «Ne jamais transmettre un élément 

d'image déjà transmis», ce principe est réalisé par l’exploitation de deux types de 

redondances : la redondance spatiale, qui exprime la corrélation entre les pixels d’une même 

image et la redondance temporelle définissant  la corrélation entre les pixels de deux images 

successives. 

    A cause de la différence des caractéristiques du signal vidéo dans les deux domaines spatial 

et temporel, deux techniques de codage existent pour réduire ces redondances : le codage 

Intra pour exploiter les redondances spatiales et le codage Inter qui vise à réduire la 

corrélation temporelle. 

En codage Intra, la première étape consiste à effectuer une analyse de la fréquence 

spatiale à l’aide de la Transformée en Cosinus Discrète (DCT). Le résultat de cette 

transformée est une suite de coefficients décrivant l’amplitude de chaque composante 

fréquentielle présente dans le signal. Une transformée inverse reproduit le signal initial. La 

DCT n’effectue pas de compression par elle-même. Après la DCT, les coefficients  subissent 

une quantification ce qui correspond à une première compression. Les coefficients sont 

ensuite scrutés (soit en zigzag soit avec un balayage alternatif) pour accroître la probabilité de 

commencer par les coefficients les plus significatifs (dont l’énergie est plus grande). Après le 

dernier coefficient non nul, un code de fin de bloc (EOB = End of Block) est généré. 
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En codage Inter, la réduction des redondances temporelles repose sur le principe de  

transmettre uniquement les différences entre les images. 

A l’entrée, le codeur inter reçoit une image (c’est l’image présente), l’estimation et la 

compensation du mouvement s’effectuent en se référant à l’image précédente ou de référence. 

Une image de différence qui contient l’erreur de prédiction est ainsi produite ainsi que des 

vecteurs de mouvement  

Cette image de différence est compressée en tant que telle par le codeur spatial 

(codage intra). Elle subit ensuite avec les vecteurs de mouvement un codage entropique. Le 

décodeur inverse le codage spatial et ajoute l’image de différence à l’image précédente pour 

obtenir l’image suivante.  

IV.4.1.3  Le codeur MPEG-2  
 

Le codeur MPEG-2 est décomposé de : la DCT, l’IDCT, la quantification, la 

quantification inverse, l’estimation de mouvement et la compensation de mouvement et le 

codage entropique. Cette décomposition est illustrée dans la figure 40 suivante : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 40 : Le codeur MPEG-2 

IV.4.2 Modélisation de l’application 
IV.4.2.1 Décomposition 

Afin de modéliser la consommation du codeur MPEG-2, une décomposition de 

l’application en module est faite. Avec le graphe (Figure 40-41), les fonctions qui 
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correspondent à chaque bloc du codeur MPEG-2 sont distinguées. Ces fonctions seront 

étudiées selon leurs importances. Les fonctions principales de MPEG-2 sont les suivantes : 

 Estimation et compensation de mouvement 

 Prédiction 

 DCT et I-DCT  

 Quantification et I-Quantification 

 Des traitements divers (VLC et MUX) 

IV.4.2.2 Le graphe de tâches 
 

La décomposition en tâches de l’application du décodage MPEG-2 a permis l’obtention 

du graphe (Figure 41). Les données échangées entre les tâches sont constituées de données, 

d’images et de paramètres de codage. Diverses études sur MPEG-2 ont montré que plus que 

90% du traitement (temps CPU) est dans les blocs (estimation et compensation de 

mouvement, la DCT et la quantification). Donc ces fonctions sont les plus importantes à 

étudier. (Kerman et al., 2003) 

IV.4.2.3 Lois de consommation 
 

Le tableau 9 montre l’évolution de la consommation pour 3 cibles de TI des diverses 

tâches de MPEG.   
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Figure 41: Des blocs du codeur MPEG-2 identifiés dans le code 
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Tableau 9 : Tableau récapitulatif  
 

 C6201 
F(MHz)/ Mapped T(mS) P(W) E(mJ) 

DCT  1,700/F  0,0242 F 0,042 
IDCT 1,107/F 0,0334 F 0,037 

Quantification INTRA 6,760/F 0,0284 F 0,192 
Quantification N-INTRA 4,525/F 0,0316 F 0,143 

I-Quantification N-INTRA-MPEG1 2,298/F 0,0261 F 0,060 
I-Quantification INTRA-MPEG1 2,420/F 0,0219 F 0,053 
I-Quantification INTRA-MPEG2 4,489/F 0,0196 F 0,088 

I-Quantification N-INTRA-MPEG2 4,310/F 0,0348 F 0,150 
Erreur max(model % SoftExplorer) 5,4% 6,4% 8% 

 
 C6701 

F(MHz) / Mapped T(mS) P(W) E(mJ) 
DCT 1,700/F  0,007 F-0,055 0,011 
IDCT 1,107/F 0,0094 F-0,3199 0,007 

Quantification INTRA 6,760/F 0,0074 F 0,050 
Quantification N-INTRA 4,525/F 0,0093 F-0,365 0,042-1,651/F 

I-Quantification N-INTRA-MPEG1 2,298/F 0,0079 F-0,1424 0,015 
I-Quantification INTRA-MPEG1 2,420/F 0,0071 F 0,017 
I-Quantification INTRA-MPEG2 4,489/F 0,0086 F- 0,220 0,038-0,987/F 

I-Quantification N-INTRA-MPEG2 4,310/F 0,0096 F-0,3322 0,041-1,431/F 
Erreur max(model % SoftExplorer) 5,4% 4,3% 5% 

Erreur max(model % measure) 13,71% 7,5% 14,94% 
 C5510 

F(MHz) / Mapped T(mS) P(W) E(mJ) 
DCT 3,30/F  0,00265 F 0,009 
IDCT 06,25/F 0,00240 F 0,015 

Quantification INTRA 14,07/F 0,00270 F 0,038 
Quantification N-INTRA 9,285/F 0,00280 F 0,026 

I-Quantification N-INTRA-MPEG1 5,0/F 0,00250 F 0,0125 
I-Quantification INTRA-MPEG1 5.0/F 0,00250 F 0,0125 
I-Quantification INTRA-MPEG2 9,230/F 0,00258 F 0,0235 

I-Quantification N-INTRA-MPEG2 9,230/F 0,00260 F 0,024 
Erreur max(model% SoftExplorer) 6,1% 8,4% 10% 

 
      Ainsi on a établi divers modèles de consommation de chaque bloc de l’application 

MPEG2 en fonction de la fréquence et de la cible (C55, C67 et C62). Les modèles temporels 

dépendent seulement de la fréquence et de la cible vu qu’on travaille sur des blocs 8*8 (taille 

fixe). En plus, on montre bien avec ces résultats que le C55 est un DSP faible consommation 

qui est très efficace pour les applications soumises à une contrainte de puissance maximale. 

Ces modèles d’estimation sont confrontés à des mesures sur carte DSP pour le C67. Par 

ailleurs, ces modèles établis pour ce DSP présentent une erreur maximale de 14,9% sur 
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l’énergie et 13,7% sur le temps. Pour les deux autres DSPs (C55 et C62), l’erreur présentée 

est par rapport à l’outil SoftExplorer. 

       Dans la section suivante, on présente les modèles énergétiques de l’estimation du 

mouvement, du codage entropique et de la prédiction. 

IV.4.2.4 Estimation de mouvement 
 

Divers types d’images sont présentes dans un GOP (Group Of Picture) : I, P, B. Pour 

chacun de ces types, un traitement spécifique est fait. Dans la majorité des cas, le type I 

occupe 8,3% du GOP, 25% pour les P et 66,6% pour les B. (Figure 42) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 42 : Les cas d’estimation de mouvement 
 
Par ailleurs le format de la chrominance joue un rôle important dans la modélisation de 

l’estimation de mouvement. En fait, plus on a d’information à traiter (Cb,Cr), plus ça 

nécessite du temps. 

Figure 43 : Format des chrominances 
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Dans le tableau suivant, on présente les divers modèles énergétiques de l’estimation de 

mouvement pour le C67, C55 et le C62. Les validations sur carte DSP sont faites pour le C67. 

    

Tableau 10 : Estimation de consommation de l’estimation de mouvement (Mode Mapped) 
 

 C6701 (mesures) 

F(MHz) T(mS) P(W) E(uJ) 
 
 
 

Estimation de  mouvement  

4:4:4 
 

4:2:2 
 

4:2:0 

2,452*height 
*width /F 

1,635*height 
*width /F 

1,226*height 
*width /F 

0,0079F 

19,370*height*width
 
12,916*height*width
 
9,685*height*width 

Erreur max (modele % mesure) 3% 4,3% 5,8% 
 C6201  

F(MHz) T(mS) P(W) E(uJ) 
 
 
 

Estimation de  mouvement 

4:4:4 
 

4:2:2 
 

4:2:0 

2,452*height 
*width /F 

1,635*height 
*width /F 

1,226*height 
*width /F 

 
 

0,0256 F 

62,77*height*width 
 
41,85*height*width 
 
31,38*height*width 

Erreur max (modele % mesure) - - - 

 
 C5510  

F(MHz) T(mS) (Code Composer) P(W) E(uJ) 
 
 
 

Estimation de  mouvement 

4:4:4 
 

4:2:2 
 

4:2:0 

6,924*height 
*width /F 

 4,616*height 
*width /F 

 3,462*height 
*width /F 

0,00249 F 

 17,24*height*width
 
 11,49*height*width 
 
 8,62*height*width 

Erreur max (modele % mesure) - - - 

 
IV.4.2.5 Codage entropique 

 
Après la quantification, la matrice de coefficients de la DCT comporte donc des 

termes nuls. Le codage permet de gérer plus efficacement ces coefficients. Quand une suite de 

valeurs identiques se présente, comme des zéros, le codage émet simplement le nombre de 

zéros plutôt que toute la suite de bits nuls. Le tableau 11 montre à titre d’exemple la 

consommation de ce codage. 
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Tableau 11 : Estimation de consommation du codage entropique (8*8) 
 

 C6201 
F(MHz) T(mS) P(W) E(mJ) 

VLC  5,660/F  0,0283 F 0,160 
 C6701 

VLC  5,660/F  0,0074 F 0,041 
 C5510 

VLC  10,890/F  0,00259 F 0,028 
 

IV.4.2.6 Prédiction et compensation  
De même que l’estimation de mouvement, le modèle de la prédiction et la 

compensation dépend de la fréquence, la dimension de l’image et de la chrominance. (Tableau 

12)                

 Tableau 12 : Estimation de consommation de la prédiction et compensation 

 C6701 

F(MHz) T(mS) P(W) E(uJ) 
 
 
 

Predi-Comp   

4:4:4 
 

4:2:2 
 

4:2:0 

0,201*height 
*width /F 

0,134*height 
*width /F 

0,101*height 
*width /F 

0,0074F 

1,487*height*width
 
0,991*height*width
 
0,747*height*width

Erreur max (modele % mesure) 3,21% 5% 7,4% 

 
 C6201 

F(MHz) T(mS) P(W) E(uJ) 
 
 
 

Predi-Comp   

4:4:4 
 

4:2:2 
 

4:2:0 

0,201*height 
*width /F 

0,134*height 
*width /F 

0,101*height 
*width /F 

0,0295 F 

5,929*height*width
 
3,953*height*width
 
2,979*height*width

Erreur max (modele % mesure) - - - 

 
 C5510 

F(MHz) T(mS) P(W) E(uJ) 
 
 
 

Predi-Comp   

4:4:4 
 

4:2:2 
 

4:2:0 

0,529*height 
*width /F 

0,352*height 
*width /F 

0,264*height 
*width /F 

0,0029 F 

1,534*height*width
 
1,022*height*width
 
0,767*height*width

Erreur max (modele % mesure) - - - 
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MPEG2 Function Consumption /  C6701 / 100 MHz
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IV.4.3    Répartition du temps CPU et de la puissance 
 

En se basant sur les divers modèles proposés en temps et en puissance, une répartition 

du temps CPU et de la puissance des diverses tâches sont établies. Le bloc « estimation de 

mouvement » occupe la plus grande part du temps CPU. Pour une image de taille 128*128 

4 :2 :2  s’exécutant sur un C6701 à 100 MHz, l’estimation de mouvement occupe 70,6% du 

temps. (Figure 44)   

 
Figure 44 : Répartition du temps CPU 

 
Pour la puissance, la différence de consommation entre les diverses taches varie de 10 à 20% 

à une fréquence donnée. (Figure 45)   

 
 
 
 
 
 
 
 
 
 
 

Figure 45 : Répartition de la puissance 
 

Pour la consommation en énergie, l’estimation de mouvement est la tâche la plus 

importante. En effet, l’énergie suit la même répartition temporelle de la figure 44 puisque la 

puissance varie légèrement à une fréquence fixe. L’énergie consommée par cette tâche est de 

l’ordre 74%.   
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Energy C6701 MPEG2 4:2:2 128*128
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Figure 46 : Répartition de dissipation énergétique 

IV.4.4 Modèle haut niveau MPEG2 (du pixel à l’image) 
 

Une fois que toutes les applications nécessaires sont modélisées, le modèle de 

l’application MPEG2 peut être obtenu en cumulant tous les modèles (Tableau 13). Prenons le 

cas du traitement d’un GOP (12 I/S) avec des images 4 :2 :2 de taille 128*128. Dans chaque 

image, il y a 256 blocs de taille 8*8, et puisque la chrominance est généralement de type 

4 :2 :2, une matrice supplémentaire de taille 128*128 pour (Cr et Cb) va être ajoutée au 

traitement.   

Tableau 13 : Modèle général de MPEG2 
 
Mapped C6701 

F(MHz) T(mS) P(W) E(mJ) 
 
 
 

MPEG2 

4:4:4 
 

4:2:2 
 

4:2:0 

41,713*height* width 
*N_GOP /F 

 
27,809*height* width 

*N_GOP /F 
 

20,856*height* width 
*N_GOP /F 

0,0076 F 

0,317*height*width*N_GOP
 
 
0,211*height*width*N_GOP
 
 
0,158*height*width*N_GOP

    
 C6201 

F(MHz) T(mS) P(W) E(mJ) 
 
 
 

MPEG2 

4:4:4 
 

4:2:2 
 

4:2:0 

41,713*height* width 
*N_GOP /F 

 
27,809*height* width 

*N_GOP /F 
 

20,856*height* width 
*N_GOP /F 

0,0286 F 

1,192*height*width*N_GOP
 
 
0,795*height*width*N_GOP
 
 
0,596*height*width*N_GOP
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            C5510 

F(MHz) T(mS) P(W) E(mJ) 
 
 
 

MPEG2 

4:4:4 
 

4:2:2 
 

4:2:0 

111,669*height* width 
*N_GOP /F 

 
74,446*height* width 

*N_GOP /F 
 

55,834*height* width 
*N_GOP /F 

0,00265 F 

0,295*height*width*N_GOP
 
 
0,197*height*width*N_GOP
 
 
0,147*height*width*N_GOP

 
 
           Les modèles temporels obtenus pour l’application MPEG2 sont fonction de la 

dimension de l’image, du nombre de GOP, de la cible et de la fréquence. Alors que les 

modèles de puissance sont fonction de la fréquence du DSP. 

IV.4.5 Du pixel au Standard 
 

Le modèle de l’application MPEG2 est ainsi établi en fonction de la taille de l’image, 

du nombre de GOP, de la cible et de la fréquence de fonctionnement. Un modèle général de la 

consommation de MPEG2 sera établi en changeant la granularité de modélisation (du block 

(8*8) à la norme (PAL, SECAM, NTSC…)). Ces modèles seront basés sur le modèle de 

consommation de MPEG2. (Tableau 14) 

Tableau 14 : Modèle général de la consommation pour les standards 
 

Standard Caractéristiques T(mS) P(W) E(mJ) 
ITU-R BT.601 

NTSC 
720*484, 30fps, 4:2:2   9,69 106 N_GOP /F  7,36 104 N_GOP

ITU-R BT.601 
PAL/SECAM 

720*575, 25fps, 4 :2 :2 11,51 106 N_GOP /F 8,74 104 N_GOP 

SIF NTSC 352*240, 30fps, 4 :2 :0  1,76 106 N_GOP /F  1,33104 N_GOP 
SIF PAL/SECAM 352*288, 25fps, 4 :2 :0 2,11 106 N_GOP /F 

 
 
 

0,0076 F 
 

1,59 104 N_GOP 
    C6701 Mapped 
Standard T(mS) P(W) E(mJ) 

ITU-R BT.601 NTSC   9,69 106 N_GOP /F    2,56104 N_GOP 
ITU-R BT.601 PAL/SECAM 11,51 106 N_GOP /F  3,04 104 N_GOP 

SIF NTSC 1,76 106 N_GOP /F  0,46 104 N_GOP 
SIF PAL/SECAM 2,11 106 N_GOP /F 

 
 
 

0,00265 F 
 

 0,55 104 N_GOP 

   C6201 Mapped 
Standard T(mS) P(W) E(mJ) 

ITU-R BT.601 NTSC 25,9 106 N_GOP /F 6,89 104 N_GOP 
ITU-R BT.601 PAL/SECAM 30,8 106 N_GOP /F 8,18 104 N_GOP 

SIF NTSC 4,71 106 N_GOP /F 1,24 104 N_GOP 
SIF PAL/SECAM 5,65 106 N_GOP /F 

 
 
 

0,00265 F 
 

1,48 104 N_GOP 

   C5510 Mapped 
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 Les modèles ainsi établis montrent bien que chaque norme vidéo a ses propres 

caractéristiques, en terme de performance, de consommation. Par ailleurs, plus la taille de 

l’image est importante, plus son traitement est long et nécessite plus de temps et d’énergie. Le 

standard PAL/SECAM est le plus gourmand en calcul vu que la taille de l’image est plus 

grande. Par contre, la puissance dépend essentiellement de la fréquence de fonctionnement du 

DSP. La solution SIF PAL /SECAM paraît la moins coûteuse en terme d’énergie et temps de 

calcul vu la petite dimension d’images à traiter. Ce qui implique une image moins nette. Ici, le 

critère QoS(Qualité de Service) intervient afin de gérer le compromis qualité d’images/ 

performance et énergie. 

IV.4.6 Conclusion 
 

Le modèle de l’application MPEG2 est ainsi établi en fonction de la taille de l’image, 

du nombre de GOP, de la cible et de la fréquence de fonctionnement.  Et ceci bien entendu en 

se basant sur des mesures et des simulations pour les différents blocs de l’application. Et par 

la suite extraire un modèle général de la consommation de MPEG2 en changeant la 

granularité de modélisation (du block (8*8) à la norme (PAL, SECAM…)). Une fois ces 

modèles sont établis, il est intéressant de les exploiter lors de l’exploration de l’espace des 

solutions logicielles. En se basant sur les résultats trouvés, et en supposant que le DSP permet 

de stocker l'ensemble des données en mémoire interne, on remarque bien que les temps 

d’exécution sur une architecture monoprocesseur seront importants. En effet, avec une telle 

architecture, les contraintes temporelles ne seront pas respectées pour des images de grandes 

tailles. D’où l’intérêt d’exploiter et explorer des architectures multiprocesseurs.  

IV.5 MPEG2-Exploration de l’espace des solutions 
 

Afin de concrétiser l’approche d’exploration à travers l’environnement développé au 

cours de ce travail, une deuxième étude sur MPEG 2 est menée. En fait, une telle application 

nécessite généralement une architecture multiprocesseur voir avec un ASIC comme 

accélérateur. D’ailleurs, une telle application est généralement implémentée avec d’autres 

fonctionnalités dans les applications mobiles actuelles (exemple : GSM). Pour cela, un espace 

de conception multiprocesseur est exploité, cet espace se compose d’une bibliothèque six 

DSPs (2*C5510, 2*C6701 et 2*C6201) communicant via un bus PCI partagé. L’objectif de 

cette exploration est d’extraire une solution basse consommation avec une contrainte stricte 
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sur le temps. C’est à l’environnement d’extraire le meilleur mapping architectural ainsi que le 

nombre de ressources (DSPs) adéquat (de deux à six ressources). Le tableau suivant montre 

les résultats de l’exploration basse consommation où chaque tâche est affectée à un DSP 

parmi les trois choisis par l’outil. 

 
Tableau 15: Les meilleures solutions choisies par l’environnement 

 
 

 
 
Ce tableau montre bien que l’architecture adéquate pour cette application est de 

préférence composée de trois DSPs. Le C62 n’est pas à priori adéquat pour cette application, 

en fait il n’est pas orienté pour les applications basse consommation. Par ailleurs, cette 

exploration montre bien que la consommation de l’application peut changer en variant le 

mapping des tâches. (Ktari et al., 2008a) 

Une fois l’exploration basse consommation est faite, la question qui se pose est : Est 

ce que les résultats sont précis ou pas tellement. Afin de répondre à cette question, on présente 

dans la section suivante la technique de validation de l’approche basée sur la probabilité et les 

statistiques.  

IV.6 Fiabilité de l’approche  
 

Lorsqu’on parle de mesures ou de résultats des instruments de mesure, il y a plusieurs 

concepts qui sont souvent confondus avec d’autres comme la distinction entre la justesse et la 

précision. En fait, la justesse se réfère à la différence entre la mesure et la valeur réelle. Elle 

ne peut être discutée de façon significative que si la valeur réelle soit connue. Mais la 

précision se réfère à la distribution de la mesure. Par ailleurs, dans tout type d’estimation, des 

erreurs se présentent que ce soit à cause du processus d’estimation ou bien à cause des 

moyens de mesures. (Figure 47) 

 

MPEG2    - 1 GOP (Group of Picture) 
Architecture 2*C5510 & C6701 1*C5510 &2*C6701 2*C5510 & C6701 
Temps (mS) 70.61 53.36 65.67 

Puissance moyenne (W) 1.13 1.61 1.22 
Energie (mJ) 86.57 85.91 80.12 

Mapping /(DSP) 
 

1erC5510 :   (A) 
2eme C5510 :  (B) 
1er C6701 :  (C) 
2eme C6701:  (D) 

 

MPC / (C) 
DCT  / (A) 
IDCT / (B) 
Quant / (A) 
IQuant / B) 
VLC / (B) 

MPC / (C) 
DCT  / (D) 
IDCT / (D) 
Quant / (A) 
IQuant / (A) 
VLC / (D) 

MPC / (C) 
DCT  / (B) 
IDCT / (B) 
Quant / (A) 
IQuant / (C) 
VLC / (A) 
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Mathématiquement, lorsque plusieurs mesures d'une distribution normale sont faites, 

la justesse peut être estimée en calculant la moyenne m et l’écart moyen σ. (Figure 48) 

 

 

 
 
 
 
 
 
 

        Il est parfois possible d'identifier un intervalle de telle sorte qu’on peut affirmer que 

cet intervalle "couvre" la valeur réelle de la mesure avec une certaine probabilité donnée P. 

Cet intervalle est alors appelé un intervalle de confiance. Il indique la précision d’une 

estimation car pour un risque α donné, l’intervalle est d’autant plus grand que la précision est 

faible. Par ailleurs, dans la construction d'intervalle de confiance, 3 éléments interviennent: la 

taille de l'échantillon, la fiabilité du résultat représentée par le coefficient de confiance et la 

précision du résultat représentée par l'amplitude de l'intervalle de confiance. Ceci mène à faire 

une étude faisant appel à la probabilité et les statistiques. 

Rappelons que l’intervalle de confiance de l’espérance µ pour un coefficient de risque 

α est :   
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           Figure 47 : Différence entre la précision et la justesse  
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            Figure 48 : Distribution normale des mesures  
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Quelque soit la valeur de n si X → N(µ , σ)  et σ2 est inconnue, avec tα  la variable de student 

avec N-1 degrés de liberté.  

Il est à noter aussi que la somme de deux variables gaussiennes indépendantes est elle-

même une variable gaussienne. Plus explicitement : Soient X1, X2 deux variables aléatoires 

indépendantes suivant respectivement les lois N(m1,σ1²) et N(m2,σ2²). Alors, la variable 

aléatoire X1+X2 suit la loi normale N(m1+m2, σ1²+σ2²). Cette propriété se démontre 

directement (par convolution), ou indirectement (au moyen des fonctions caractéristiques). De 

cette façon, on a un moyen pour estimer la consommation de 2 DSPs fonctionnant ensemble.  

Supposons qu’on a la densité de probabilité du temps d’exécution Ft d’une tâche I ainsi 

que la densité de probabilité de la puissance Fp, dans ce cas la densité de probabilité de 

l’énergie (Ktari et al, 2008b) sera: 
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Avec mt et mp la moyenne de la distribution du temps et de la puissance 

respectivement. σt et σp représentent l’écart de la distribution du temps et de la puissance 

respectivement 

 Dans ce contexte, on se propose de déterminer un intervalle [m1, m2] qui a une 

probabilité 1-α de contenir la moyenne m des estimations de la consommation globale. Pour 

certaines tâches, la modélisation de la consommation de chaque processeur est faite par six 

mesures sur carte. Pour d’autres taches, elle est faite avec l’outil SoftExplorer dont l’erreur est 

±7% avec une confiance de 95%. (Figure 49) 

 

      

 

 
 
 

 
 
 
   Des résultats (Ktari et al, 2008b) dans ce sens sont dégagés sur MPEG2. Les 

estimations obtenues présentent une erreur de 2.3% pour un intervalle de confiance de 90%. 

Ainsi, à partir des estimations de performance de chaque tâche, une validation de l’approche 

globale d’estimation est montrée.  

Application 1 / 
DSP1..N 

Tache1 
Tache2 
Tache3 
Tache4 

(20)

Outil Softexplorer 

6 Mesures 

Estimation ±7% avec une confiance de 95%. 

Estimation ±k% avec une confiance de 95% 
suivant la loi de student 

           Figure 49 : Méthodologie de validation des estimations globales  



 

J. Ktari 91

En fait, dans le tableau 16 on présente l’intervalle de confiance des diverses tâches 

importantes de MPEG2 s’exécutant sur les DSPs (le 1er : C5510, le 2eme : C6201 et le 3eme 

C6701).  

Tableau 16: Précision de l’estimation globale de l’énergie consommée par MPEG2 

 
Tâche 

        DSP 
Estimation 

avec: 
Intervalle de confiance 

(Joule) Confiance  X et σ estimés

Motion 
estimation/ 

1 
SoftExplorer 4J±7%  

[4-0.28   4+0.28] 95% X  =4 
σ =0.27 

Prédiction 
/ 1 SoftExplorer 2J±7%  

[2-0.14   2+0.14] 95% X  =2 
σ =0.13 

DCT/ 3 6 Mesures [2.3-0.12   2.3+0.12] 
2.3J±5.6% 95% X =2.30 

σ=0.128 
Quantif/ 2 6 Mesures [4.27-0.16   4.27+0.16] 

4.27J±3.8% 95% X  =4.27 
σ=0.164 

MPEG2 
Estimation probabiliste 

 
[12.57-0.297    12.57+0.297] 

12.57J±2.3% 90% X =12.57 
σ=0.712^0.5 

           
 

Avec cette méthode, on a plus besoin d’acheter et d’exploiter des cartes multiprocesseur 

pour estimer la consommation globale de l’application. Ceci permet de valider l’application 

en terme de performance et de consommation tout en réduisant le time to market et le coût du 

produit final. Ainsi, le concepteur sera guidé lors du choix de la plateforme adéquate pour son 

application sans avoir recours à faire des manipulations sur carte pour connaître l’avantage 

d’une telle solution par rapport à une autre. Ce qui simplifie le problème surtout pour les 

nouvelles cartes dont l’alimentation des cœurs des DSPs n’est pas toujours accessible pour 

faire des mesures. 

IV.7 Conclusion 
 

Dans ce chapitre, une étude sur la consommation de diverses applications est menée 

afin de proposer des lois de performance de haut niveau caractérisant l’influence des 

paramètres algorithmiques et architecturales sur l’énergie et sur la performance. Ces modèles 

permettent d’élever le niveau de prise en compte de la consommation afin de permettre au 

concepteur de pouvoir estimer la consommation du système au début du flot de conception. 

Le concepteur peut ainsi paramétrer et dimensionner son système de façon à respecter les 

diverses contraintes. Ce qui évite ainsi les retours en arrière intempestifs durant la conception 

et permet de réduire le temps et le coût de développement. 



 

J. Ktari 92

 

Et afin de réduire la complexité de l’espace des solutions, il est primordial de 

développer dans les premières étapes du flot de conception des méthodes de partitionnement 

et d’exploration pour compenser la croissance de la complexité des applications tout en 

intégrant la consommation comme critère lors de la conception de ces systèmes autonomes. 

Pour cela, une approche d’exploration basse consommation est présentée à travers un 

environnement de conception. Cette approche est expérimentée sur l’application MPEG2, 

puis validée à travers une étude probabiliste.  
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Conclusions et perspectives 
 

Le problème de la consommation d’énergie est devenu prédominant lors de la 

conception des systèmes embarqués actuels. Dans ce contexte, ce travail étudie les méthodes 

de conception basse consommation des systèmes. Il est à noter que l’un des problèmes de la 

conception système est le partitionnement d’applications qui requiert l’utilisation de méthodes 

complexes. En effet, le partitionnement sous contrainte de temps, basé sur un algorithme 

d’ordonnancement avec un objectif de minimisation de la consommation est un problème NP-

difficile. 

 On a étudié dans ce rapport les défis imposés par les architectures soumises à diverses 

contraintes en particulier la consommation. Une méthodologie d’exploration basse 

consommation est proposée ainsi qu’un environnement de conception. L’approche proposée 

dans ce travail a permis de spécifier l’application et les contraintes à plusieurs niveaux de 

granularités. Cette approche a permis aussi d’établir des modèles paramétriques de l’énergie 

qui englobent la consommation de tout le système logiciel /matériel/communication. En fait, 

les paramètres de l’application ainsi ceux de l’architecture seront considérés dans les modèles 

de performance afin d’avoir des modèles assez riches. Et finalement, l’approche a permis 

d’explorer efficacement l’espace des solutions basse consommation afin d’être capable de 

choisir d’une façon efficace la solution architecturale adéquate où le nombre de ressources à 

exploiter n’est pas connu à priori. En effet, le concepteur peut être confronté au problème du 

choix du nombre de ressources à exploiter lors de la conception de son produit. Par ailleurs à 

travers cette approche, le concepteur pourra paramétrer et dimensionner son système de façon 

à respecter les diverses contraintes au début du flot de conception. 

 

Perspectives 

 

Malgré les gains obtenus avec les techniques développées, certaines améliorations 

peuvent être apportées à ce travail, telle que la prise en compte dans l’estimation et 

l’optimisation de la consommation des systèmes sur puce aussi bien les réseaux sur puce. 

Cette prise en compte complexe nécessite une étude préalable.  

Comme perspectives ouvertes par ce travail, citons l’intérêt d’étudier la gestion de la 

puissance possible par les systèmes d’exploitation qui sont amenés à prendre de plus en plus 

d’importance dans le domaine de la gestion de l’énergie. Ainsi, ils se situent à un niveau 

stratégique de l’architecture pour gérer finement la puissance durant les ordonnancements des 
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tâches. De plus, les architectures hétérogènes nécessitent parfois de répartir des systèmes 

d’exploitation temps réel sur plusieurs unités. Là encore, il est nécessaire d’étudier des 

approches de gestion/réduction de la consommation dans une telle architecture 

logicielle/matérielle. Par ailleurs, la contrainte de puissance maximale supporté par 

l’architecture cible n’est pas encore considérée lors de l’exploration de l’espace, elle sera 

intégrée dans la nouvelle version de l’outil. Un raffinement des paramètres de l’heuristique est 

aussi envisageable, ceci permettra d’éviter efficacement les minimums locaux et de converger 

vers une solution assez performante. 
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APPROCHE ET ENVIRONNEMENT D'EXPLORATION 

ARCHITECTURALE BASSE CONSOMMATION 
 

Jalel KTARI 
 

 
نحن مهتمون في هذا العمل  .مستويات عدةبحث يعالج على   أصبح موضوع الطاقيالتحسين من الاستهلاك :الخلاصة
نقدم نماذج عالية الأداء ونقترح . نعتبر هذه المشكلة في مجملها على النظام برمته.  الطاقةمنخفضةال الإلكترونياتلاستكشاف 

قترح ون. على الاستهلاك التقنية والعوامل الخوارزمية نهج للنظر في عدد من ويسمح هذا ال. الإستهلاكتقنية تسمى منخفضة 
  على عدة مستوياتالحلولويسمح هذا الكشف عن .  البحثوضع نموذج للاستدلال على الأداء الكلي للنظام لاستخدامها عند

 . الحلختيار المستوى الذي يضمن دقة وسرعة بإ
 

Résumé : L’optimisation de la consommation est devenue un sujet de recherche traité à 
plusieurs niveaux. Nous nous intéressons dans ce travail à l’exploration d’architecture basse 
consommation afin de déduire celle qui répond au mieux aux besoins. Pour cela divers travaux 
focalisent sur un aspect particulier à savoir l’estimation de la consommation, modèle de 
performance, technique d’exploration. En plus plusieurs travaux traitent l’exploration 
d’architecture au niveau composant. Nous considérons ce problème dans sa globalité au niveau 
de tout le système. Nous proposons des modèles de performances riches et nous proposons une 
technique d’exploration dite basse consommation. Cette approche permet de considérer un 
certain nombre de paramètres algorithmiques et architecturaux sur la consommation. Un modèle 
complet est proposé afin de déduire les performances globales du système qui seront utilisées 
lors de l’exploration à travers une technique basée sur le recuit simulé. Et afin de valider 
l’approche, une étude probabiliste est faite afin de montrer la fiabilité des résultats trouvés.  
 
Abstract: Power consumption is nowadays a critical design constraint for circuits and systems. 
To guide efficiently early choices in the design flow, high-level estimations must be available. 
In order to address the different abstraction levels and the various targets, a global methodology 
is proposed here to elaborate suitable models. In this work we are interested in exploring low 
consumption architectures in order to deduce that which meet(s) the constraints most. For this 
aim, several low power methodologies were established. They treat the energy consumption 
optimization problem at several levels especially on specific components like the hardware, or 
on the software, or on the communication or on the memory separately, and seldom on the 
whole system. However, as target architectures become complex, a global methodology that 
offers more efficient low power exploration become necessary. In fact, we propose a low power 
methodology based on rich performances models as well as a low power exploration technique. 
A complete model is proposed in order to deduce the total performances of the system 
according to the architecture and the application parameters.  

 المفاتيح:الاستهلاك الطاقي،تصميم، معالج،بحث مجال إلكتروني
Mots clés: Faible consommation, Exploration de haut niveau, Co-design, FLPA, heuristique. 
Key-words :  Low power design, Space exploration co-design, High level models, Accuracy 
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