

République Tunisienne
Ministère de l’Enseignement Supérieur,

de la Recherche Scientifique
et de la Technologie

Université de Sfax

École Nationale d’Ingénieurs de Sfax

 Cycle de Formation Doctorale
dans la Discipline Génie

Electrique
Ingénierie des Systèmes

Informatiques

Thèse de DOCTORAT

N° d’ordre: 2009− 96

THESE

Présentée à

L’École Nationale d’Ingénieurs de Sfax

En vue de l’obtention du

DOCTORAT

Dans la discipline Génie Electrique
 Ingénierie des Systèmes Informatiques

Nom du Do
Par

Jalel KTARI

(Ingénieur Génie Electrique)

APPROCHE ET ENVIRONNEMENT D'EXPLORATION
ARCHITECTURALE BASSE CONSOMMATION

Soutenu le 5 Mars 2009, devant le jury composé de :

M. Mohamed Adel ALIMI Président

M. Slim BEN SAOUD Rapporteur

M. Jean-Luc DEKEYSER Rapporteur

M. Nouri MASMOUDI Examinateur

M. Mohamed ABID Directeur de thèse

DEDICACE

A mon père & à ma mère
Auxquels

Je dois ce que je suis
Que dieu vous protége

Et vous prête une bonne santé

Et une vie heureuse

A toute ma famille
Pour les encouragements continus

A tous mes amis

A tous ceux que j’aime

Et qui m’aiment

 A toi

REMERCIEMENTS

 C’est avec un grand plaisir que je réserve ces lignes en signe de gratitude et de

reconnaissance à tous ceux qui ont contribué de prés ou de loin à l’élaboration de ce travail.

 Je tiens à exprimer ma vive gratitude à mon directeur de thèse, Monsieur Mohamed

ABID, Professeur à l’Ecole Nationale d’Ingénieurs de Sfax. Ses conseils et encouragements

m’ont permis de surmonter toutes les difficultés du parcours. Qu’il trouve ici l’expression de

mes sentiments sincères.

 Mes remerciements s’adressent aussi à Monsieur Mohamed Adel ALIMI, Professeur

et Directeur de l’Ecole Nationale d’Ingénieurs de Sfax pour l’intérêt qu’il a porté à ce travail

en acceptant de me faire l’honneur de présider le jury de ma soutenance.

J’exprime ma reconnaissance à Monsieur Slim BEN SAOUD, Maître de Conférences

à l'Institut National des Sciences Appliquées et de Technologie, ainsi qu’à Monsieur Jean-Luc

DEKEYSER, Professeur à l’Université des Sciences et Technologies de Lille d’avoir accepté

d’être rapporteurs de ma thèse.

Je remercie également Monsieur Nouri MASMOUDI, Professeur à l’Ecole Nationale

d’Ingénieurs de Sfax, pour sa participation à mon jury.

 Je remercie également Monsieur Mourid MARRAKCHI, Maître Assistant à l’Ecole

Nationale d’Ingénieurs de Sfax, pour ses précieux conseils.

 Par ailleurs, je remercie mon ami Dr. Issam MAALEJ qui m’a largement soutenu. Je

lui suis très reconnaissant pour son aide, ses conseils et ses encouragements.

Je tiens également à remercier tous mes collègues et tous les membres de l’unité de

recherche CES, à qui je souhaite une bonne continuation.

J. Ktari 1

SOMMAIRE

INTRODUCTION GENERALE .. 3

CHAPITRE I. LA CONCEPTION FAIBLE CONSOMMATION 6
I.1 INTRODUCTION.. 6
I.2 LES EXIGENCES DES SYSTEMES EMBARQUES ... 6
I.3 SYSTEME FAIBLE CONSOMMATION .. 7
I.4 LA MAITRISE DE LA CONSOMMATION .. 8
I.5 LA REDUCTION DE LA CONSOMMATION ... 8
I.6 METHODOLOGIES DE REDUCTION DE LA CONSOMMATION... 9
I.7 TECHNIQUES ET OUTILS D’ESTIMATION ... 11

I.7.1 Techniques.. 11
I.7.2 Plate-forme SEQUENCE ... 16
I.7.3 SES Scanner ... 22
I.7.4 ORINOCO .. 24
I.7.5 EPRO.. 26
I.7.6 DSP-PP .. 29

I.8 INTERPRETATION... 30
I.9 CONCLUSION... 30

CHAPITRE II. EXPLORATION DE L’ESPACE DES SOLUTIONS........................ 32
II.1 INTRODUCTION.. 32
II.2 CONCEPTION MIXTE .. 33
II.3 ÉLEMENTS CARACTERISTIQUES DES FLOTS DE CODESIGN .. 34
II.4 METHODOLOGIES ET OUTILS ... 35

II.4.1 Introduction.. 35
II.4.2 Outils de codesign .. 36
II.4.3 L'environnement MOVE... 37
II.4.4 L’outil Codef-LP .. 38
II.4.5 L’outil Mogac... 39
II.4.6 L’outil Cosyn-LP.. 40
II.4.7 Méthodologie de Ghali... 41

II.5 DISCUSSION... 42
II.6 CONCLUSION... 43

CHAPITRE III. APPROCHE ET METHODOLOGIE D’EXPLORATION............... 45
III.1 INTRODUCTION.. 45
III.2 MODELES DE PERFORMANCES ET TECHNIQUE D’EXPLORATION 45

III.2.1 Modèle de graphe... 45
III.2.2 Modèle d’architecture .. 46
III.2.3 Approche .. 47
III.2.4 Modèles de performance temporelle .. 49
III.2.5 Modèles de performance énergétique .. 49
III.2.6 Modèle coût .. 53
III.2.7 L’exploration basse consommation.. 54
III.2.8 Méthodes d’estimation ... 54
III.2.9 Conclusion.. 57

J. Ktari 2

III.3 OUTIL D’EXPLORATION ... 57
III.3.1 Stratégie d’exploration... 59
III.3.2 Résultats et analyse de l’espace d’exploration .. 63

III.4 CONCLUSION... 67

CHAPITRE IV. EXPERIMENTATIONS ET ETUDE DE CAS................................... 69
IV.1 INTRODUCTION.. 69
IV.2 FILTRE A REPONSE IMPULSIONNELLE FINIE.. 69
IV.3 TRANSFORME DE FOURIER RAPIDE ... 73
IV.4 MPEG-2 ... 74

IV.4.1 Présentation et spécification .. 74
IV.4.2 Modélisation de l’application .. 77
IV.4.3 Répartition du temps CPU et de la puissance.. 84
IV.4.4 Modèle haut niveau MPEG2 (du pixel à l’image) ... 85
IV.4.5 Du pixel au Standard.. 86
IV.4.6 Conclusion.. 87

IV.5 MPEG2-EXPLORATION DE L’ESPACE DES SOLUTIONS... 87
IV.6 FIABILITE DE L’APPROCHE... 88
IV.7 CONCLUSION... 91

CONCLUSIONS ET PERSPECTIVES... 93

REFERENCES... 95

J. Ktari 3

Introduction générale

La complexité des systèmes embarqués est en pleine croissance afin de répondre aux

exigences et aux critères de performances des nouvelles applications. Ceci rend la conception

de plus en plus difficile en intégrant une multitude de fonctionnalités tout en respectant les

contraintes de l’application. Par ailleurs, l'avènement des nouvelles technologies met en

évidence la nécessité d'établir de nouvelles méthodologies de conception à un haut niveau

d’abstraction. Ces méthodologies servent à mieux guider le concepteur lors du choix de la

solution architecturale afin d’atteindre les objectifs souhaités entre autre la basse

consommation.

En fait, la consommation de puissance et d’énergie est devenue une des contraintes

principales lors de la conception des systèmes embarqués. En effet, les nouvelles applications

nécessitent de plus en plus de puissance de calcul et de précision et par conséquent une

augmentation de la consommation d'énergie et de puissance. Par ailleurs, vu le caractère de

mobilité dans ces applications fonctionnant avec des batteries, la maîtrise de la consommation

s’impose lors de la conception. Ceci permet d’une part d’augmenter la durée de vie des

batteries qui se traduit par un gain en temps de communication d’un GSM par exemple, et de

minimiser la dissipation thermique des composants qui influe sur la fiabilité du système

d’autre part.

Objectif du sujet

• Les nouvelles applications embarquées ont clairement montré l’évolution croissante de

la consommation. Si la consommation n’est pas réduite et maîtrisée, la complexité ou bien la

performance des applications devra être réduite afin d’envisager une solution embarquable.

D’où une dégradation importante, voire inacceptable pour l’utilisateur, de la qualité de service

(QoS) associée aux services fournis.

• On sait que les systèmes mobiles devront atteindre des performances élevées : 100

Mops/mW pour les nœuds mobiles et 10 à 50 Mops/mW pour les stations de base. Si de telles

performances peuvent être atteintes par les ASIC, cela représente une efficacité 10 fois

supérieure aux DSP actuels, 100 fois supérieure aux microprocesseurs généralistes. Pour

garantir l'adaptabilité des systèmes à un environnement hétérogène, il faut donc prospecter de

nouvelles solutions architecturales logicielles et matérielles garantissant une performance

J. Ktari 4

élevée, une grande flexibilité et une faible énergie. Seule une approche globale de haut niveau

permet de caractériser et d'optimiser efficacement la consommation (Benoit et al., 2004).

• L’étape d’exploration architecturale est une étape critique dans le flot de mise en

œuvre du produit. En effet, pour une application donnée, il est possible d’avoir une multitude

d’architectures. Cet espace contient des architectures qui sont non réalisables, d’autres qui ne

satisfont pas les contraintes, d’autres qui les satisfont et des architectures qui ont des

performances optimales. Il incombe à l’étape d’exploration de trouver pour l’application, une

architecture adéquate qui satisfait les contraintes et qui optimise au mieux sa consommation.

Organisation et contribution de ce rapport

Afin de maîtriser l’aspect faible consommation dans les systèmes embarqués, et afin de

voir la possibilité de l’intégration de cet aspect dans l’exploration de l’espace des solutions à

différents niveaux d’abstractions, une étude est faite sur les divers outils et méthodologies.

De plus, une approche d’exploration basse consommation est proposée et validée.

Dans le premier chapitre du rapport, on présente les diverses techniques et

méthodologies d’estimation de la consommation dans les systèmes embarqués à différents

niveaux d’abstractions. Le deuxième chapitre est consacré à l’état de l’art de l’exploration de

l’espace des solutions. On présente aussi les besoins, la nécessité et la complexité de

l’exploration basse consommation lors de la conception.

Dans le troisième chapitre du rapport, on présente notre approche pour faire face aux

difficultés d’exploration et de conception basse consommation. Elle consiste à proposer des

modèles de performances riches et une technique d’exploration dite basse consommation. Un

modèle complet est proposé afin de déduire les performances globales du système qui seront

utilisées lors de l’exploration à travers une technique basée sur le recuit simulé. Cette

heuristique permet d’exploiter la technique d’exploration selon plusieurs niveaux de

granularité et ce afin de pouvoir choisir le niveau qui permet d’assurer une exploration précise

et rapide.

Le dernier chapitre est consacré à l’étude et la modélisation de haut niveau du filtre FIR,

de la FFT et des différentes fonctions de l’application MPEG-2 sur diverses architectures

cibles. Les modèles établis serviront comme bibliothèque de modèles utiles pour bien mener

le choix stratégique de l’architecture cible adéquate lors de l’exploration basse consommation.

Et afin de valider l’approche, une étude probabiliste est proposée.

J. Ktari 5

La conception faible

consommation

(Techniques et Outils)

CChhaappiittrree

II

J. Ktari 6

Chapitre I. La conception faible consommation

I.1 Introduction

Historiquement, les contraintes majeures lors de la conception des systèmes embarqués

étaient essentiellement la performance et le coût. Avec la tendance vers les applications

portatives et la forte densité d’intégration, l'énergie est devenue un facteur critique lors de la

conception. En effet, la consommation est actuellement l’une des importantes métriques lors

de la conception des systèmes embarqués. Il est à signaler que l’objectif essentiel de la

conception faible consommation est non seulement minimiser la puissance, mais aussi

augmenter la durée de vie des batteries et éviter les systèmes de refroidissement encombrants.

Pour cela, plusieurs techniques et technologies sont développées et appliquées dans ce

contexte. Ces différentes techniques seront présentées dans ce chapitre.

I.2 Les exigences des systèmes embarqués

La conception logiciel/matériel de haut niveau permet de maîtriser la conception des

systèmes complexes (Figure 1) et d’approuver leurs continuités. L'analyse des performances

pendant une phase avancée de conception et avant la fabrication permet une exploration

rapide de plusieurs alternatives d'architecture, ce qui offre au concepteur une meilleure

visibilité et une grande réactivité vis-à-vis des changements technologiques (fiabilité,

optimisation, flexibilité, migration etc.).

Figure 1. Architecture d’un système embarqué mixte (HW/SW)

Les prévisions pour l’évolution des applications de traitement de signal et d’image, pour

les systèmes mobiles par exemple, montrent leur impact sur la conception des circuits et des

systèmes embarqués. En particulier, à l’heure actuelle, il est indispensable de tenir compte de

la consommation (en puissance et en énergie) comme critère de développement d’un système

(Tableau 1) au même titre que la surface et la vitesse. En effet, la fréquence de

Processeur Mémoire ASIC

Processeur FPGA Processeur

J. Ktari 7

fonctionnement élevée, le nombre de ressources mises en œuvre et le degré d’intégration,

contribuent à atteindre les limites physiques supportables par les circuits. La maîtrise de la

consommation est donc un problème majeur dans la conception des systèmes embarqués.

On sait que si l’optimisation de la consommation doit intervenir à chaque niveau de la

conception, c’est cependant aux plus hauts niveaux que les gains attendus sont les plus

importants : 20 à 50% au niveau technologique contre 10 à 20x au niveau système (Rabaey et

al., 1996) (Fei et al., 2003). Comme la partie logicielle représente au moins 70% du coût du

développement des systèmes complexes et que la taille du code des applications TDSI double

tous les deux ans, on conçoit qu’il est indispensable de disposer, au plus tôt dans la

conception, de métriques de consommation fiables caractérisant aussi bien les parties

logicielles et les parties matérielles (ITRS, 2004).

Tableau 1. Les exigences fonctionnelles des systèmes PDA (ITRS, 2004)

Année 2004 2007 2 0 1 2 2015
Technologie (nm) 90 65 45 32

 Voltage (V) 1.2 0.8 0.6 0.5
 Fr é quence (MHz) 300 600 900 1200

 Vidéo temps réel Codec
(MPEG4) Interprétation temps réel

Application

Traitement
Image

Web

 E-Mail

TV Téléphone
reconnaissance de voix

Cryptage

TV Téléphone
reconnaissance de voix

 Performa n ce (GOPS) 0.3 2 14 77 461
Puissance (W) 0.1 0.1 0.1 0.1 0.1

 Puissance Sta n dby (m W) 2 2 2 2 2
Capacité batter i e (Wh/Kg) 120 200 400

I.3 Système faible consommation

Diverses méthodes existent afin d’obtenir un système à faible consommation :

- Modéliser le logiciel pour diminuer le coût énergétique de son exécution :

optimisation du code des applications, étude du comportement des applications et des

processeurs en fonction des paramètres du code.

- La seconde méthode consiste à concevoir de composants spécifiques pour

consommer le minimum d'énergie. En fait, c’est avec l’explosion du marché des systèmes

embarqués et l’apparition des problèmes de surchauffe des composants, que cet aspect a été

J. Ktari 8

pris en compte au niveau de la conception. Comme techniques de limitation de consommation

des composants, on cite la diminution de la tension d’alimentation, l’activation séparée des

blocs logiques et le contrôle du taux d’activité des données.

 - La troisième méthode consiste à réaliser une collaboration entre le logiciel et le

matériel afin d'optimiser la consommation totale du système. Elle s'appuie sur des

mécanismes matériels pour diminuer la consommation et utilise le logiciel pour une meilleure

décision en activant ou non ces mécanismes. Cette méthode est décrite dans le cadre de la

mise en veille des périphériques ainsi que sur l'adaptation dynamique de la vitesse du

processeur, etc.

I.4 La maîtrise de la consommation

Les principales sources de dissipation de puissance dans un circuit numérique sont

données dans l'équation suivante (équation 1).

La puissance statique Ps peut être, dans certains cas, négligée pour des circuits de type

CMOS. Mais avec les taux d’intégration actuels et les nouvelles technologies, elle est loin

d’être négligeable.

Pmoy = Pd + Pcc + Pf = α . C . Vdd² . f + Vdd . Icc + Vdd . If (1)

où Pmoy est la puissance moyenne dissipée par le circuit, Pd la puissance dynamique causée

par la charge et la décharge de la capacité C. Pcc et Pf reflètent la puissance dissipée due aux

courants de court-circuit et de fuite respectivement.

Avec Vdd la tension d'alimentation, f la fréquence d'horloge, C la capacité physique du circuit

et α le taux de commutation du circuit. Ces deux derniers paramètres sont souvent regroupés

en un terme Ceff.

I.5 La réduction de la consommation

La consommation moyenne dans un circuit dépend de :

 La tension d’alimentation, son impact quadratique en ce qui concerne la

consommation permet d'envisager un gain important. Il faudra cependant rester avec

Vdd > 2*la tension de seuil (VT) (Rabaey et al.,1996) ou même plus actuellement. Et ceci

pour éviter une augmentation importante du temps de propagation, qui est proportionnel à
Cl*Vdd/(Vdd-VT)², ce qui cause un ralentissement du fonctionnement.

 La fréquence d'horloge peut être réduite en se basant sur des techniques

d'optimisation du chemin critique logique (arbre de l’horloge) ou bien des méthodes

J. Ktari 9

(parallélisme, pipeline) aux niveaux algorithmiques et architecturaux. De cette manière, on

évite le fonctionnement à des fréquences plus élevées.

 L’activité du circuit qui se manifeste par le nombre de commutations au niveau

des portes. Afin de réduire cette activité, il est utile de bien codifier les données de telle

façon qu’on minimise les changements de niveau logique et éventuellement minimiser les

commutations parasites.

 La capacité effective qui est un paramètre technologique : les connexions aux

composants externes ont typiquement une capacité beaucoup plus élevée que les

connexions aux ressources sur la puce. Donc pour économiser l'énergie, la minimisation de

l’utilisation des accès externes et de la commutation est sollicitée. En fait, l’accès à la

mémoire externe consomme beaucoup d'énergie. Ainsi, une façon de réduire la capacité est

de réduire ces accès et d’optimiser le système en employant des ressources internes comme

la mémoire cache et les registres.

I.6 Méthodologies de réduction de la consommation

Il est possible d’utiliser des techniques de conception basse consommation à différentes

étapes de la conception d’un système. La conception descendante consiste à partir du niveau

le plus abstrait d’atteindre le niveau le plus bas. Pour ces systèmes, on distingue cinq niveaux

différents: (Havinga et al., 2000) (Nikolaidis et al., 2005)

- Le niveau système

- Le niveau algorithmique

- Le niveau architectural (RTL: Register Transfert Level)

- Le niveau logique

- Le niveau électrique et physique

Par exemple, au niveau système : les modules inactifs peuvent être désactivés afin de

minimiser les pertes énergétiques. Au niveau architectural, le parallélisme matériel peut être

employé pour réduire les interconnections sans dégrader la sortie du système. Au niveau

technologique, plusieurs optimisations peuvent être appliquées au niveau porte.

Les gains en consommation à chaque niveau de conception sont détaillés avec les outils

dans le tableau 2: (Rabaey et al., 1996) (Laurent, 2002) (Beak et al.,2004) (Sequence, 2005)

(Stanley et al.,2004) (Xilinx, 2006) (Minh et al., 2003) (Shin et al., 2002).

J. Ktari 10

Tableau 2 : Techniques et outils de réduction de la consommation

Niveau Domaine Outils Intervention

Système Processeur travaillant avec
plusieurs fréquences - ORINOCO

-Mises en veille
-Voltage scaling
-Partitionnement (hw/sw)
-Contrôle d’activité

Algorithmique

-Sources de consommation
mal maîtrisées

-Architecture peu connue

-GAUT_LP
-Orinoco (Offis)
-SoftExplorer
-ePRO
-SES

-Réduire les accès
mémoire
-Réduire les ruptures de
pipeline
-Diminuer le taux de
défaut de cache

RTL

-Sources de consommation à
peu près maîtrisées

-Implantation réelle inconnue

-Design Powe (Synopsys)
-Power Theater Sequence
-GAUT_LP
- Wattch, Simplepower
-DSP-PP

-Parallélisme/Pipeline
-Encodage de bus
-Eteindre les modules
inutilisés

Logique

-Nature des signaux entrés
influence fortement la
consommation du circuit

-Cooltime
-QuickPower (Mentor)
-DesignPower(Synopsys)
PowerTheater(Sequence)
-Accupower
-Xpower(Xilinx)

-Format de codage
-Extraction des sous-
fonctions communes
-Partage de ressources
-Eliminer les transitions
parasites

Physique

Source de consommation
clairement identifiée

-Coolpower
-Spice
-Accupower

-Transistor sizing
-Actions sur les seuils
-Actions sur Vdd

Etant donné une spécification de conception, le concepteur a plusieurs choix sur les

différents niveaux d'abstraction. Le designer doit choisir par exemple un algorithme

particulier, concevoir ou exploiter une architecture qui peut être employée, et déterminer les

divers paramètres influants comme la tension et fréquence d'horloge. Cet espace de

conception multidimensionnel offre une grande gamme de compromis possibles. Et

l'influence la plus remarquable sur la propriété de conception est obtenue aux plus hauts

niveaux.

Donc les décisions de conception les plus efficaces dérivent du choix et de

l’optimisation des architectures et des algorithmes aux niveaux les plus hauts. Plusieurs

chercheurs (Havinga et al., 2000)(Garcia et al., 2005) ont montré que la conception au niveau

architectural et système peut avoir un fort impact sur la consommation. Cependant en

concevant au niveau système, le problème est de prévoir l'efficacité des décisions de

conception. En fait, les détails d’implémentation peuvent être exactement estimés seulement

au niveau technologique et pas aux niveaux d’abstraction plus hauts.

J. Ktari 11

I.7 Techniques et outils d’estimation

I.7.1 Techniques

Diverses techniques d’estimation sont basées sur une méthode appelée Analyse de la

Puissance au niveau Instructions (ILPA). L’ILPA a été développé à l’université de Princeton

par Vivek Tiwari et al (Tiwari et al.,1996). Cette méthode était souvent considérée comme

référence dans l’estimation de la consommation. Elle est applicable théoriquement à tous les

processeurs que ce soit les processeurs généraux (Pentium, Athlon,…) ou les processeurs

spécifiques (DSP).

Dans les systèmes basés sur microprocesseur, on peut modéliser la dissipation comme

une fonction du logiciel (des instructions) étant exécutée sur une plate-forme matérielle. Les

techniques d'évaluation de consommation du logiciel dans la littérature peuvent être triées

dans ces catégories :

I.7.1.1 Analyse de la puissance au niveau instructions (ILPA)

Cette méthode est proposée afin d’évaluer la dissipation d’une partie du logiciel.

L’idée de base est d’associer la puissance consommée avec l'exécution d'une instruction

individuelle. La modélisation de cette méthode est décrite généralement par :

∑ ∑∑ ++=
ji K

kijiji
i

i SNONBE
,

)*()*((2)

Avec Bi l’énergie dissipée par l’instruction individuelle i, Oij reflète la puissance due au

changement entre deux instructions consécutives (i,j). En effet, il apparaît un surcoût dû au

passage d’une instruction à l’autre c à d qu’un certain nombre de bits commutent du fait du

changement du code de l’instruction (Brandolese et al., 2000). Le modèle doit donc tenir

compte de cette consommation inter-instruction ce qui oblige à mesurer les consommations de

toutes les combinaisons possibles deux à deux. Sk représente l’énergie due aux ruptures de

pipeline et aux défauts de cache.

 La figure 2 représente une plate forme utilisée afin de matérialiser cette méthode

(Russell et al.,1998). Pour mesurer la puissance, une résistance de précision a été placée en

série avec l’alimentation du processeur.

La consommation du processeur est calculée par cette formule (3) :

)(*)()()()()(2
21 tVR

tVtVtVtItP −== (3)

J. Ktari 12

Pour déterminer Bi et Oij de l’équation 2 il faut faire un ensemble de tests des cas

possibles. Mais ça engendre un nombre important de mesures ≈110 000 mesures pour un

processeur Intel de 331 instructions (Li et al., 2003).

Figure 2 : Plate forme expérimentale pour la mesure

 V. Tiwari dans (Tiwari et al.,1996) a fait l’expérience sur les processeurs

commerciaux :

• Intel 486 DX2-S, 40 MHz, c’est un processeur CISC (Complex Instruction Set

Computer) basé sur l’architecture du X86.

• FujiTsu SPARClite MB86934, 20 MHz, c’est un processeur 32 bits, RISC

(Reduced Instruction Set Computer)

L’expérience est faite par le procédé décrit au-dessus, le tableau 3 montre quelques résultats

obtenus :

 RAM Interface

Oscilloscope numérique
à mémoire

CPU

Alimentation
 externe

J. Ktari 13

Tableau 3 : Le coût des instructions de bases du 486 et ‘934

 Intel 486DX2 FujiTsu SPARClite MB86934

N° Instruction Courant (mA) Cycles Energie(nJ) Instruction Courant (mA) Cycles Energie(nJ)

1

2

3

4

NOP

Mov dx,bx

Jmp

Add dx,bx

276

302

373

314

1

1

3

1

22.7

24.9

92.3

25.9

NOP
St %io,[%IO]

Ld [%IO],%io

198

346

213

1

2

1

32.6

114

35.1

 Cette méthode est assez efficace et fiable pour les architectures ayant un jeu

d’instructions limité. Par contre, pour les architectures VLIW (Very Long Instruction

Word), le nombre de mesures à réaliser devient important [O(N2k) avec N le nombre

d’instructions et k l’ordre du VLIW]. Pour cela d’autres méthodes ont été développées afin

de surmonter ce problème.

I.7.1.2 Caractérisation par macro-modélisation

Au lieu d'évaluer la puissance au niveau instruction, le niveau fonctionnel logiciel, qui

est une technique de macro-modélisation, traite les fonctions ou les sous-routines comme "des

boîtes noires" et construit les macro-modèles qui corrèlent la puissance avec un jeu de

caractéristiques. Telles caractéristiques de puissance peuvent être obtenues et rassemblées en

employant une structure de simulation d'énergie à bas niveau (Li et al., 2003). La puissance

dans ce cas est :

i
i

i CWP *∑= (4)

Avec Wi sont les coefficients du macro-modèle à déterminer. Des méthodes

mathématiques de régression sont mises en jeu afin d’identifier les Wi optimales, basées par

l’application de paires d’entrée/sortie bien connues. Le problème-clé de cette macro-

modélisation est comment choisir les Ci qui représentent une corrélation de la puissance avec

ces boites noires, qui peuvent efficacement capturer les caractéristiques de puissance d'une

sous-routine logicielle donnée dans des circonstances diverses.

J. Ktari 14

I.7.1.3 FLPA

Les techniques d’estimation classiques ont souvent leurs limites. En effet, avec ces

méthodes, la consommation due à la communication avec l’extérieur (accès à la mémoire

externe, défaut de cache) n’est pas considérée. Par ailleurs, ces techniques sont assez

complexes à exploiter pour les nouvelles architectures ayant un pipeline profond. Afin de

surmonter ces problèmes, (Laurent et al., 2007) (Julien et al., 2004) a proposé une méthode

permettant de réduire la complexité de l’estimation. Cette méthode est basée sur une analyse

fonctionnelle de la cible du point de vue consommation (Functional Level Power Analysis :

FLPA) ; elle est indépendante du niveau d’abstraction (assembleur ou C). Grâce à cette

analyse, un nombre limité de mesures suffit pour déterminer le modèle de consommation de

la cible. De plus, elle prend en compte toutes les fonctions du processeur que ce soit le

contrôle du pipeline, les unités de traitement, les mémoires internes ainsi que les défauts de

cache, ce qui n’est pas le cas avec les méthodes au niveau instruction.

I.7.1.3.1 Méthodologie

La méthodologie d’estimation de la consommation FLPA, illustrée par la figure 3, est

constituée de deux parties : la définition du modèle et le processus d’estimation.

- La définition du modèle de puissance du processeur est réalisée une seule fois par

cible. Elle est basée sur l’analyse fonctionnelle de l’architecture cible de point de vue

consommation. Cette analyse permettra de déterminer un modèle de puissance basé sur des

lois de consommation qui représentent le comportement en courant du cœur du DSP. Ces lois

sont des fonctions mathématiques déterminées à partir d’un nombre réduit de mesures

physiques réalisées sur la cible et dépendant de paramètres algorithmiques et de

configuration. La FLPA permet de déterminer quels sont les paramètres pertinents de point de

vue consommation pour un processeur donné. Par ailleurs, les paramètres algorithmiques sont

des ratios (variant de 0 à 1) qui représentent le taux d’activité entre chaque bloc fonctionnel

du DSP; par exemple, le taux de parallélisme, le taux de défaut de cache…Les paramètres de

configuration sont définis par le concepteur.

- Le processus d’estimation est réalisé à chaque fois que la consommation d’un

algorithme doit être déterminée. Au niveau C, les paramètres algorithmiques sont estimés en

utilisant un modèle de prédiction. Il suffit ensuite d’utiliser les lois de consommation établies

pour l’architecture cible pour connaître la consommation de l’application. (Laurent et al.,

2002), (Ktari et al., 2005)

J. Ktari 15

I.7.1.3.2 Outil : SoftExplorer

Cet outil (Laurent et al., 2007) automatique a comme entrée le code C ou ASM d’une

application pour estimer sa consommation en terme de puissance et énergie. La structure de

SoftExplorer est illustrée dans la figure 4. Il est basé sur trois modèles complémentaires :

- Le modèle du processeur : également appelé le modèle de puissance représente la

manière dont la consommation du processeur change avec son activité.

- Le modèle de l’algorithme : représentant le lien entre l'algorithme et l'activité qu'il

induit dans le processeur.

- Le modèle du compilateur : également appelé le modèle de prédiction qui représente

le comportement du compilateur qui dépend des options choisies par le programmeur pendant

la compilation, avec un fort impact sur le code généré, et ainsi sur l'activité du processeur.

Algorithme C

Modèle de
prédiction

Processeur

Figure 3 : Méthodologie de l’estimation FLPA

Processus d’estimation
Définition d’un modèle

 Paramètres

Modèle de
puissance

Estimation
de puissance

FLPA

Mesures

J. Ktari 16

Figure 4 : Flot d’estimation avec SoftExplorer

Cet outil disponible sera exploité dans ce travail (Ktari et al., 2007) lors de la

modélisation des applications écrites en ANSI-C. Et ceci en parallèle avec les mesures

réalisées sur cartes DSP.

I.7.2 Plate-forme SEQUENCE

Sequence Design, Inc fournit un ensemble d'outils commerciaux complémentaires avec

le flot de conception existant (Synopsys, Cadence). (Figure 5)

Cette plate-forme permet aux concepteurs des systèmes sur puce de réduire le coût du

temps de mise sur le marché (time to market) en améliorant la performance et en limitant la

consommation. En effet, elle permet de tenir compte de l’aspect faible consommation

(analyse et optimisation de puissance) dans tous les niveaux d’abstractions du flot de

conception. (Sequence, 2005)

Parser

Modèles de
prediction

Parser
Fichier

Mapping
mémoire

Modèles de consommation

Pseudo-code

Paramètres
Algorithmiques

Code C

Paramètres de
configuration

SoftExplorer

Puissance & Energie
estimés

J. Ktari 17

I.7.2.1 ESL : (Electronic System Level)

I.7.2.1.1 Introduction

Le défi majeur lors de la conception des SoCs est de concevoir et d’implémenter une

architecture sur puce optimale qui soit performante, faible consommation et de surface réduite

dans une plate-forme matérielle/logicielle. Cet acte d'équilibrage entre ces diverses

contraintes nécessite l'exploration des architectures aux niveaux d'abstraction plus haut que

le niveau RTL. C’est pour cette raison, un intérêt est accordé pour adopter SystemC comme

langage de conception au niveau système électronique (Electronic System Level : ESL).

 La technique d'estimation de puissance ESL doit répondre à des exigences critiques.

En effet, les architectures des SoCs sont soumises à diverses contraintes. Pour cela, les

concepteurs ont besoin des résultats rapidement ainsi que le feedback sur la puissance et

l'énergie consommées de tous les modules de la puce.

Analyse énergétique :
physique

Analyse énergétique :
architecturale et
logique

Analyse de puissance ESL

Compromis architecture% puissance RTL

Analyse de puissance RTL

Analyse de la chute de tension
dynamique

Voltage % temps

Optimisation temporelle

Optimisation de la chute de tension
dynamique et de puissance

Validation électronique

Conception système

Synthèse logique

Assemblage RTL

Placement

Routage

Achèvement de
conception

Conception blocs
RTL

ESL

Power

Theater

Cool Time

Cool Power

Cool Time

- Compromis HW/SW
- Architecture faible
consommation

- Conception module
faible consommation

Validation
concurrente de la
puissance

- Distribution
énergétique % surface
- Impact de I(t) et de la
chute de tension sur les
signaux

- Réduction de la
puissance et de la
chute de tension
dynamique

Figure 5 : Flot de conception Sequence design

J. Ktari 18

I.7.2.1.2 Caractéristiques

La technologie d'estimation ESL fournit les informations énergétiques critiques

requises par le concepteur de SoC lors de l'évaluation de la consommation au niveau

Système-C. En effet, elle intègre avec le synthétiseur de Système-C des outils d'estimation

exploités par les programmeurs pour optimiser les algorithmes. (Figure 6)

Figure 6: ESL: Flot de conception

I.7.2.2 Power Theater

Réduire la consommation si tôt, avant la synthèse, économise considérablement la

dissipation de puissance. Power theater est un ensemble d’outils garantissant une efficacité

maximale de la puissance lors de la conception. (Sequence, 2005)

À travers Power Theater, Sequence offre des solutions rapides et précises aux niveaux

RTL et logique qui analysent et réduisent la dissipation de puissance lors de la conception

d’un SoC. Cet outil analyse, affiche et aide l'utilisateur à réduire la puissance dissipée dans la

puce entière et au niveau de chaque module. Il a comme entrée du code Verilog, VHDL et

Synopsys Liberty (.LIB)

I.7.2.2.1 Avantages

 Power Theater offre aux concepteurs divers avantages :

Entrée

Sortie

Stimulus Code C

RTL optimal (puissance,
surface, vitesse)

Débogage et statistique
sur la puissance

Modèle de
puissance de l’IP

SEQUENCE
ESL

Synthétiseur
ESL

Simulateur
ESL

Trace de
transaction

Trace de
puissance

Essai
d’implémentation

Compromis de
puissance

J. Ktari 19

- Analyse de la puissance et de l'énergie assez tôt dans le flot de conception facilitant

ainsi la réduction de la dissipation et le contrôle du coût énergétique.

- Assurer l'analyse « Zero-sim » de la puissance des modules RTL, sans recours aux

vecteurs de tests : testbenchs.

- Voir l'impact simultané de tous les modules communiquant (mémoire, I/O, contrôle

du chemin des données) dans la puce.

- Déterminer les cycles critiques de dissipation.

I.7.2.2.2 Méthodologie de réduction

Cet outil intègre des agents de réduction de la consommation au niveau RTL appelés

WattBots qui mesurent de façon automatique l'impact de tout changement potentiel de

l'architecture sur la dissipation. (Figure 7)

Chaque WattBots est conçu pour identifier un type spécifique de possibilité de

réduction énergétique. En effet, WattBots intègre tous les principaux types de

circuits pouvant être exploité lors de la conception, y compris le contrôle, le chemin de

données, l'E/S, la mémoire et l'horloge. Et pour chaque possibilité identifiée, Power Theater

propose :

-Des modifications RTL spécifiques,

 changement suggéré Gain énergétique pénalité surfacique

Hiérarchie logique

Figure 7 : Analyse de puissance avec le débogueur RTL Cool PowerTheater

J. Ktari 20

 -Une quantification du gain énergétique résultant, en tenant compte des

diverses contraintes mises en jeu comme la surface.

De cette façon, le concepteur a la possibilité de choisir l’architecture la mieux adaptée aux

contraintes de conception.

I.7.2.3 Cool Time

I.7.2.3.1 Avantages

CoolTime (Sequence, 2005) est un moyen facilitant l'analyse simultanée de l'intégrité

de la puce: la tension d'alimentation électrique et la synchronisation. En regroupant divers

outils, CoolTime rend l'analyse des effets électriques interdépendants précise et convergente.

Il partage une plate-forme commune avec CoolPower pour assurer une conception rapide qui

tient compte des chutes de tension, courants de fuite et la synchronisation. (Figure 8)

I.7.2.3.2 Caractéristiques

 CoolTime peut être utilisé si tôt dans le flot de conception réduisant ainsi les

changements exigés dans les étapes postérieures. En partant du placement initial, l'analyse

du courant statique peut être faite afin de valoriser la consommation lors du routage. Ainsi

on assure une chute de tension dynamique dans des marges acceptables lors de la

conception.

Chute de
tension

Puissance

Intégrité
du signal

Calcul
du délai

Electro-
Migration

Temps,
synchro-
nisation

Figure 8 : Analyse électrique concurrente avec CoolTime

Distribution énergétique

Placement

Analyse pré-routage

Routage

Verification C
oo

lP
ow

er
 :

op
tim

is
at

io
n

ph
ys

iq
ue

J. Ktari 21

 CoolTime permet l'analyse de la chute de tension dynamique. En effet, un

modèle de caractérisation intégré dans l'outil génère des modèles de courant sous forme

d'onde. Et avec une étude concurrente, CoolTime analyse les effets interdépendants des

événements, des courants et des tensions lors du régime transitoire.

 Il supporte les techniques de simulation (testbenchs) avec ou sans vecteurs de

simulation. Contrairement aux techniques probabilistes, l'algorithme de création des

stimulus prévoit la chute de tension au pire des cas.

 L’outil crée un modèle RLC complet de la puce ainsi que des parasites. Il

supporte l'inductance mutuelle et les sources contrôlées de courant et de tension.

I.7.2.4 Cool Power

CoolPower (Sequence, 2005) prévoit et améliore la conception avant et après le

routage. En effet, il offre à l’utilisateur la capacité d'optimiser de façon interactive la

conception hiérarchique des millions de portes au niveau blocs.(Figure 9)

En plus, l’outil réduit la dissipation statique et dynamique au niveau physique à

l'aide de l'analyse concurrente de CoolTime tout en respectant la synchronisation et l'intégrité

du signal. En effet, il réduit la puissance dynamique en appliquant et en testant divers

changements sur le netlist qui optimisent les pertes énergétiques. Par ailleurs, CoolPower fixe

automatiquement les problèmes provoqués par la chute de tension dynamique en insérant des

capacités de découplage et en modifiant les placements pour éviter les points chauds.

Puissance
dynamique

Puissance
dissipée

Intégrité
du signal

Electro-
Migration

Chute
dynamique
de tension

Temps,
synchro-
nisation

Figure 9 : Analyse et optimisation électrique concurrente avec CoolPower

Synthèse

 Cool Power

Placement

Verification

Routage

Optimisation après
placement

Optimisation après
routage

J. Ktari 22

En résumé, la plateforme Sequence offre une gamme d’outils payants orientée vers la

conception et l’estimation des performances des SoC et des ASIC, mais non pas vers les DSPs

commerciaux. Par ailleurs, cette plateforme reste encore un produit en cours de

développement.

I.7.3 SES Scanner

SES (Seoul national university Energy Scanner) (Shin et al., 2002) est un outil qui

fournit des informations sur la puissance et l’énergie consommées par le programme

embarqué au niveau cycle, en visant son optimisation. Il associe ces informations récupérées

par mesure sur carte avec le code C. Avec le débogueur GNU, jouant le rôle d’interface,

diverses informations sur la consommation sont extraites au niveau C facilitant à l’utilisateur

d’identifier les points chauds de l’application embarquée. SES comporte 3 modules logiques :

l’estimateur d’énergie, l’analyseur et l’interface utilisateur. (Figure 10)

I.7.3.1 Module d’estimation d’énergie

Ce module comporte une carte de mesure et un estimateur de consommation de la

mémoire. La carte est connectée au port PCI exploitant un module d’acquisition du profil en

Programme C Compilateur

Information: Energie et exécution Contrôle d’entrée Chargeur programme

PC

Module d’analyse énergétique

Profile/ Module

Analyse d’énergie CPU Estimation de l’énergie
de la mémoire

 Interface PCI Matérielle/ logicielle

Mémoire
Carte de mesure d’énergie ARM7TDMI

Contrôleur Module d’acquisition

Figure 10 : Architecture du SES

J. Ktari 23

temps réel facilitant la collection de la trace précise du système au niveau cycle. Cette carte

comporte un cœur de processeur ARM7TDMI avec son contrôleur, le module d’acquisition et

la mémoire programme.

Le module d’acquisition comporte un circuit de mesure de l’énergie au niveau cycle,

une mémoire d’acquisition et le contrôleur du profil. La carte de mesure d’énergie fonctionne

comme un émulateur du processeur équipé d’un circuit de mesure de la consommation au

niveau cycle. Les informations collectées comportent une trace énergétique du cœur du

processeur ainsi que la trace de la mémoire au niveau cycle. Une fois la trace est collectée,

elle est transférée via le bus PCI vers l’estimateur de consommation de la mémoire.

Ce dernier, fonctionnant sur la machine hôte, est un simulateur logiciel qui intègre des

modèles de consommation au niveau cycle de divers types de caches, de bus et de mémoires.

Il génère un profil général de la consommation.

I.7.3.2 Module d’analyse et interface utilisateur

Ce module lie le profil énergétique du processeur cible et la mémoire avec le code

source à différents niveaux C/ASM. Grâce à l’interface graphique, l’utilisateur peut avoir

recours à diverses options : compilation, spécification de la partie du code à profiler, ajout des

breakpoints, et chargement du programme. (Figure 11)

La limitation de cet outil est la dépendance envers la plateforme de mesures. En fait,

pour tout type d’application, l’outil a recours à la carte d’acquisition d’infos sur la

consommation. Ceci paraît un facteur limitatif pour son utilisation lors de la conception des

applications.

Graphe de distribution de
l’énergie

Résume du profiling de
l’énergie

Code source

Région choisie du
code

Information sur l’énergie
(consommation du CPU,
la mémoire, le défaut de

cache)

Breakpoints

Figure 11 : L’interface graphique de SES

J. Ktari 24

I.7.4 ORINOCO

La méthodologie de conception au niveau système de ChipVision permet d’identifier

les points chauds de l’application aussi tôt dans le processus de conception, spécifiquement au

niveau ESL (Electronic System Level). Pour cela, l’outil ORINOCO (Stanley et al., 2004) est

employé dans le flot de conception HW. Il est conçu spécifiquement pour les applications de

traitement de données et de signal.

I.7.4.1 ORINOCO : Analyse de la puissance au niveau ESL

L'approche traditionnelle de la conception faible consommation est d’estimer et

d’analyser la puissance au niveau RTL ou porte, et de modifier la conception en conséquence.

Dans le meilleur cas, les blocs fonctionnels RTL sont modifiés, et re-synthétisés. Ce

processus est répété jusqu'à ce que les résultats désirés soient réalisés. Toutefois, les

réductions désirées en puissance peuvent souvent être réalisées en modifiant seulement

l’architecture ou bien l'algorithme. Cependant, les modifications à ce niveau affectent non

seulement la puissance, mais également d’autres métriques de performance ou bien le coût de

la puce.

Avec ORINOCO, c’est possible d’optimiser la consommation au niveau système. La

figure 12 montre le flot de conception et d’optimisation. La spécification du système est écrite

à un niveau d’abstraction assez élevé (C/C++ ou SystemC). En partant de ces spécifications,

des algorithmes réalisant la fonctionnalité du système sont développés et optimisés,

généralement avec le même langage. La description algorithmique se compose d’une

spécification exécutable ou d’une description fonctionnelle. L'architecture (mémoire,

contrôleur et la structure de chemin de données) est générée pour implémenter les

algorithmes. Lors de ce développement, diverses contraintes se présentent comme la

puissance, la performance et la surface. Le problème qui se pose s’est qu'il y a peu d’outils

structurés disponibles pour effectuer une telle analyse.

Au niveau ESL, ORINOCO choisi la plate-forme optimale selon cette méthodologie :

Les divers algorithmes candidats sont analysés en terme de consommation et points chauds.

Les algorithmes les plus prometteurs sont alors choisis et optimisés. Ceci est alors suivi par la

création d'une architecture optimale. Les fonctions dont la consommation est optimale sont

alors transformées en matériel. Ce processus d’estimation et optimisation de la consommation

est itératif, et chaque itération nécessite des minutes ou des heures.

J. Ktari 25

Figure 12: flot de conception ESL

I.7.4.2 Analyse d'algorithme et Optimisation

Avec ORINOCO, le « meilleur » algorithme est choisi parmi divers « candidats ».

La puissance de chacun est identifiée selon la méthodologie représentée sur la figure 13. La

spécification en C/SystemC est d'abord compilée puis profilée. Les informations ainsi

générées sont réintégrées dans le code source. Les algorithmes sont alors exécutés, et les

données résultantes du profil d'activité sont employées pour annoter une représentation

appropriée de contrôle du flot de données (CDF).

Une architecture optimisée en consommation peut être tirée avec ORINOCO sans

nécessité de synthèse complète grâce aux modèles de puissance créés pour chaque composant

au niveau RTL. Ces modèles dépendent des données en entrée, des caractéristiques des

composantes telles que le nombre de bits et l'architecture, et de la technologie des cellules.

Ainsi, les modèles de puissance peuvent être générés automatiquement pour une technologie

donnée. Et en utilisant l'activité des composants et les modèles de puissance, la puissance d'un

composant peut être estimée.

C/System C

Analyse de puissance et
optimisation

OK?

Synthèse

Design RTL

Analyse Finale

OK?

Gain : 15%
Temps : Jours

Gain : 75%
Temps : Minutes

Gain : 30%
Temps : Minutes

Fin de conception

J. Ktari 26

Figure 13: Algorithme d’estimation de la puissance avec le flot de contrôle de donnée

Par ailleurs, les mémoires sont utilisées dans ce cas pour le stockage intermédiaire de

l'information et la communication inter-blocs. Ainsi, elles ont un effet significatif sur la

consommation. Diverses techniques d'optimisation des accès aux mémoires incluant les

transformations de boucles et le co-emplacement de code peuvent être affectées simplement

en réécrivant le code. Toutefois, l’outil n’est pas conçu pour estimer la consommation des

processeurs et des bus commerciaux, de plus il ne tient pas compte de l’interaction avec

l’environnement externe.

I.7.5 EPRO

EPRO (Beak et al., 2004) est un outil fournissant des informations sur la performance et

la consommation pour diverses applications réelles embarquées. Avec cet outil, des études de

cas ont montré une réduction de 5,4 % sur la consommation de l’énergie et une amélioration

de 4,4% au niveau performance. L’avantage majeur de ePRO est l’aptitude de faire le co-

profiling (consommation et performance) en même temps.

Code source

Données

Compilation,
profiling, extraction

CDF

Execution de
l’algorithme

Annotation CDF

EstimationModèle de puissance

Profile d’activité

Executable

Information CDF

Résultats

J. Ktari 27

I.7.5.1 Architecture générale

EPRO nécessite trois modules physiques : la cible embarquée, un multimètre numérique

et la machine hôte. Cet outil est conçu pour le processeur PXA255 de la famille TynuxBox

basée sur l’architecture Xscale. L’avantage de cette architecture est la présence d’une unité

monitrice de performance (PMU) présente au niveau architectural. Ceci mène à bien contrôler

divers comportements du système : efficacité de la mémoire cache (instruction, donnée), la

latence de l’étage fetch.

Afin d’effectuer des profils matériels sur l’énergie, on doit avoir recours à un

multimètre digital fonctionnant à des fréquences élevées. Ce dernier est contrôlé à la fois par

la machine hôte et la carte cible afin de collecter le profile énergétique via des triggers E/S.

 EPRO inclus 3 modules : le profiler d’énergie, le profiler de performance et l’interface

graphique utilisateur (GUI). (Figure 14)

I.7.5.2 Le profiler d’énergie

Ce profiler d’énergie comporte un moniteur système, un multimètre et un analyseur

d’énergie. La trace énergétique est faite en deux étapes :

- La collection de données : Durant cette phase, le moniteur système collecte

périodiquement les valeurs échantillonnées du courant pour les envoyer à la machine hôte via

SW embarquée

Noyau

Moniteur système

Moniteur de
performance

Table de symbole Moniteur de collection

Analyseur
d’énergie

Analyseur de
performance

Analyseur de
la taille du

code

GUI

Profile de la
consommation et la

performance

Adaptateur

Profile de
performance

Trigger

Système de collection et
d’analyse

Cible

PC/PID

Courant

 Figure 14: Architecture de ePRO

J. Ktari 28

une interface Ethernet. En plus, il collecte les informations sur le système comme le compteur

programme (PC), l’identificateur de processus (PID) à la même période.

- L’analyseur des données : Durant cette phase, l’analyseur énergétique analyse les

valeurs échantillonnées du courant et les informations du système pour générer la trace

énergétique. Et à l’aide d’une table de symbole générée par le compilateur croisé, la trace est

mappée avec les diverses fonctions de l’application embarquée.

I.7.5.3 Le profiler de performance

L’analyseur de performance comporte un modificateur de code qui a comme entrée un

code à un haut niveau d’abstraction comme le langage C, et a comme sortie un code modifié.

Le PAC (Analyse de Performance de Code) est inséré à ce nouveau code.

Le code généré par le PAC est compilé et exécuté sur le processeur cible. Ceci permet

de générer le profil de performance (efficacité de la cache d’instruction et de donnée, les

requêtes sur le bus). (Figure 15)

I.7.5.4 L’interface utilisateur

Les traces de l’énergie et de performance sont présentées à travers une interface

graphique facilitant l’identification des points chauds de l’application embarquée. En effet, les

caractéristiques énergétiques de chaque fonction sont présentées à travers cette interface.

L’inconvénient majeur de cet outil est son recours à la plateforme pour le profiling. Ce

qui impose sa présence dans tous les tests.

Code C modifié

Code C

Générateur de code C modifié par PAC

Compilation croisée du code source
modifié

Génération du profil de performance

Figure 15: Organigramme global de profil de performance

Affichage du profil de performance
« GUI »

J. Ktari 29

I.7.6 DSP-PP

Il a été largement accepté que la simulation, au niveau porte et circuit, est infaisable

pour évaluer la consommation d'une exécution logicielle pour des systèmes de calcul

complexes. Pour cela, un jeu complémentaire d'approches basé sur l'utilisation de simulateurs

architecturaux de consommation au niveau cycle précis est apparu. Ces simulations peuvent

être applicables aux processeurs modernes super scalaire (avec les pipelines assez profonds).

(Li et al., 2003).

On peut citer le DSP-PP (Minh et al., 2003) qui est un outil de simulation RTL

permettant l’estimation de la puissance dissipée pour les DSPs. Il est écrit en C++ afin de

profiter de ce haut niveau d’abstraction. (Figure 16)

Figure 16: Diagramme de l’estimateur DSP-PP

DSP-PP emploie la simulation détaillée au niveau cycle de tous les composants du

DSP: les chemins de données et l'interconnexion et estime exactement la valeur de puissance

dynamique, de court circuit et de fuite de chaque composant du DSP. Les composants du DSP

sont modélisés comme des objets intégrants le modèle de consommation.

Le DSP-PP est composé de deux composants: le simulateur de performance au niveau

cycle (CPS) et l'estimateur de dissipation de puissance (PDE).

- Le CPS est un simulateur "piloté par l’exécution" il accepte comme entrée

l'exécutable obtenu par compilation et la configuration architecturale du DSP. Il simule cycle

par cycle l'exécution de l'instruction ainsi que les données. Il génère comme sortie des

statistiques sur la performance, et le nombre d'accès matériels cycle par cycle.

 - Le PDE est constitué de modèles de consommation des différents composants. Il

accepte comme entrée le nombre d'accès matériels du CPS et la configuration de

l’architecture du DSP afin de générer une estimation de la puissance

DSP-PP Estimateur d’énergie et de performance
 Simulateur

cycle par
cycle

Estimateur
de

consommation

exécutable

Config.
matérielle

Estimation de
performance

Estimation de
consommation

Schématique
du matériel

Paramètres
technologique

Compteur d’accès
matériel

J. Ktari 30

Cependant, la simulation au niveau cycle-précis entraîne une vitesse de simulation

extrêmement lente, empêchant l'efficacité de la recherche d'espace de conception. C'est

particulièrement vrai en simulant des applications complexes employant des modèles de

processeur détaillés. À cause de cela, la simulation basée sur le modèle de puissance ne peut

pas être employée pour l'évaluation de puissance de logiciel pendant l'exécution.

I.8 Interprétation

De nombreux travaux se sont focalisés sur la modélisation de la consommation au

niveau instruction, où la consommation du code est obtenue en estimant celle de chaque

instruction du code. Ces méthodes sont généralement inefficaces pour les architectures

complexes ayant diverses unités de traitement communicantes. De plus, certains outils ne

ciblent pas les DSP commerciaux traités dans ce travail (C62, C55 et le C67). Par ailleurs, les

gains importants en terme de consommation sont réalisés aux hauts niveaux d’abstraction où

les décisions d’implantations logicielles et/ou matérielles sont faites. Ceci permet de

compenser la complexité croissante des applications et d’intégrer la consommation au début

du flot de conception mixte. Par ailleurs, afin de pouvoir dimensionner le système dés le

début du flot de conception, des modèles de performances temporelles et énergétiques sont

nécessaires afin de caractériser l’influence des paramètres de l’application et de l’architecture

sur la consommation.

I.9 Conclusion

Dans ce chapitre, on a présenté les diverses techniques et outils d’estimation et

d’optimisation de la consommation. Grâce à ces outils, le concepteur a la possibilité

d’exploiter plus de ressources ‘faible consommation’ et d’offrir les performances maximales

aux utilisateurs. Par ailleurs, les décisions de conception les plus efficaces dérivent du choix

et de l’optimisation des architectures et des algorithmes aux niveaux les plus hauts. Et afin de

mieux guider le concepteur lors de la conception des architectures complexes, il est

nécessaire d’adopter une méthodologie d’exploration de l’espace des solutions possibles qui

soit plus globale (toute l’architecture). Cette méthodologie permettra d’avoir une solution

optimale qui respecte les diverses contraintes de l’application.

J. Ktari 31

Exploration de l’espace des
solutions

CChhaappiittrree

IIII

J. Ktari 32

Chapitre II. Exploration de l’espace des solutions

II.1 Introduction

Les futurs systèmes mobiles ne cessent d’évoluer en intégrant de plus en plus de

nouvelles fonctionnalités. A titre d’exemple, les téléphones portables actuels intègrent de la

musique, la vidéo, les jeux, le GPS, la capture d’image, l’accès à Internet, le stockage de

données, etc. Et ceci, tout en gardant une bonne autonomie et une masse ne dépassant pas les

150 grammes. Cette multitude de fonctionnalités favorise généralement des architectures

multiprocesseurs ayant des performances élevées. Pour garantir la faisabilité de ces systèmes,

il faut donc prospecter de nouvelles solutions architecturales logicielles et matérielles

garantissant une performance élevée, une grande flexibilité et une faible consommation

(Figure 17). Seule une approche globale permettra de caractériser et d'optimiser efficacement

ces systèmes. (Maalej, 2007)

De plus, l'optimisation d'un système ne s'effectue pas seulement au niveau de la

conception de ces composants, mais également au niveau du choix d'une architecture

générale. Le choix d'une technologie par rapport à une autre et le choix des unités de

traitement, peuvent devenir des problèmes critiques lorsque la gestion de la consommation

représente un critère essentiel. Ainsi au lieu de rechercher un périphérique, entre autre une

architecture, plus performante, il peut parfois être préférable de changer complètement de

technologie.

Figure 17 : Flexibilité des architectures vis à vis de leurs performances (Benoit et al., 2004)

Fl
ex

ib
ili

té

Performances

ASIC

Microprocesseurs

Architectures
reconfigurables

J. Ktari 33

Dans ce chapitre, on présente les méthodes d’exploration de l’espace des solutions, le

flot de conception général des systèmes embarqués en terme d’outils, de métriques et de

modèles d’exploration architecturale (Hw/Sw). Ce chapitre s’intéresse aussi aux algorithmes

d’exploration de l’espace des solutions.

II.2 Conception mixte

L’exploration de l’espace de conception est entreprise à partir des descriptions de haut

niveau tel que le C/VHDL en tenant compte éventuellement d’une architecture cible. Cela

permet de considérer un compromis des réalisations logicielles/matérielles pour satisfaire les

performances et les contraintes à travers les bons choix de l'architecture logicielle/matérielle.

Par ailleurs, l’exploration de l’espace des solutions est parmi l’une des étapes

nécessaires lors de la conception des systèmes embarqués. Elle permet de surmonter le

problème de la complexité de l’espace afin d’atteindre la solution adéquate rapidement. Il est

à signaler que le choix de la meilleure solution à un haut niveau d’abstraction n’est pas assez

simple vu le nombre de combinaisons architecturales possibles. Par ailleurs, la complexité de

l’exploration est liée à la complexité de l’application. En effet, pour une application contenant

n tâches fonctionnant sur une architecture monoprocesseur, le nombre de solutions possibles

U est établi par la loi suivante (Bagdadi et al.,2002):

 (5)

Pour le cas d’une architecture multiprocesseur (p processeurs), le problème se

complique plus. Le nombre de solutions possibles sera :

 (6)

Prenons le cas d’un problème composé de 10 tâches fonctionnant sur 3 processeurs,

l’espace des solutions possibles dépasse dans ce cas 107 combinaisons possibles. Le

concepteur d’un tel système est incapable généralement de gérer et d’évaluer cet ensemble de

solutions ni manuellement ni d’une manière exacte.

 Il est à signaler que la problématique d’exploration de l’espace des solutions ne se

limite pas à l’étude des combinaisons possibles (ordonnancement et partitionnement). En fait,

les systèmes embarqués sont souvent soumis à diverses contraintes. Le temps réel et la

∑∑
= =

−

−
−

=
n

q

q

i

niq

n iiq
iU

1 0 !)!(
)1(

∑ ∑
= =

−

−
−

=
n

q

q

i

niq
qp

n iiq
ipU

1 0 !)!(
)1(

J. Ktari 34

consommation sont parmi les exigences de ces systèmes vu qu’ils sont toujours en interaction

avec leur environnement extérieur et qu’ils nécessitent beaucoup de calcul.

II.3 Éléments caractéristiques des flots de codesign

L’exploration de l’espace des solutions basse consommation nécessite un certain nombre

d’informations relatives à l’application d’une part et aux modèles de performances d’autre

part. Par ailleurs, un besoin de modèles d’estimation et de performance suffisamment riches et

paramétrables s’impose lors de l’exploration. Dans ce qui suit, on présente les points clés de

cette dernière:

- La spécification : elle est un point important du flot de conception dont le choix peut

avoir un impact sur les résultats. Il existe une variété de modèles et de langages utilisés

(Lustre, SDL, CDFG, System-C, etc). Ils permettent d'exprimer des notions telles que : la

concurrence, la hiérarchie, les communications, la synchronisation, le temps, etc.

- La simulation : elle se retrouve à plusieurs niveaux d'abstraction dans le flot de

conception. Le niveau de détails est plus important au niveau d'abstraction le plus bas et il

diminue au fur et à mesure que l'on remonte vers le niveau système. Plus le niveau de détails

est élevé plus les temps de simulation sont longs. Au niveau système, la simulation est de type

fonctionnel, elle permet de vérifier que le système est fonctionnellement correct sans se

préoccuper des détails d'implantations.

- L’architecture : Un flot de codesign est souvent orienté vers un type d’architecture. La

modélisation des architectures permet d'évaluer les performances et les coûts

d'implémentation de la spécification et ainsi de guider les choix de partitionnement. Les

premières méthodes de codesign considéraient des modèles d'architecture simples composés

d'un processeur et d'un accélérateur matériel dédié (ASIC). D’autres méthodes permettent de

cibler des architectures hétérogènes composées de plusieurs types de processeurs et

d'accélérateurs ainsi que des hiérarchies de mémoires (Bianco et al., 1998), (Auguin et al.,

2001), (Marteil et al,.2006). Enfin, il existe des méthodes permettant de gérer les architectures

reconfigurables (souvent à base de FPGA), (Li et al., 2000), (Bossuet et al., 2003) (Elleouet et

al., 2006).

- Les métriques : Les étapes du processus d'exploration et plus particulièrement le

partitionnement, peuvent être guidées par des métriques caractérisant l'application. Ces

métriques permettent de guider le concepteur et les outils quant aux choix de l'architecture et

du partitionnement. Dans (Sciuto et al., 2002), des métriques relativement fines sont définies

J. Ktari 35

pour caractériser l'affinité entre les fonctions d'une application et trois types de cibles

architecturales : processeur à usage général (GPP), processeur de signal numérique (DSP) et

ASIC. Les métriques, qui résultent de l'analyse du code 'C' de l'application, permettent de

repérer les séquences d'instructions qui peuvent être soit orientées DSP, orientées ASIC

(instructions de niveau bit,...) ou orientées GPP (structure de test, ratio d'instructions

d'entrées/sorties,...). Ces métriques servent ensuite pour guider l’outil de partitionnement

logiciel/matériel.

- Partitionnement : que celle-ci soit manuelle ou automatique, son but est de répartir les

"fonctions" de l'application sur les parties logicielles et matérielles de l'architecture cible. Ce

processus est réitéré jusqu'à ce qu'une solution ou un ensemble de solutions satisfaisantes ait

été trouvé.

- Exploration de l’espace de solutions : Le résultat de l'exploration de l'espace de

conception peut prendre la forme, soit d'une solution unique, soit d'un ensemble de solutions.

Les méthodes qui fournissent à l'utilisateur une solution unique à partir d'un sous-ensemble

restreint de possibilités, visent le plus souvent à trouver la solution optimale au problème

alors que les méthodes qui fournissent un ensemble de solutions visent en général à trouver

des solutions qui respectent l'ensemble des contraintes sans forcément être optimales. En

effet, à un niveau d'abstraction élevé, la précision n'est pas assez suffisante pour garantir avec

certitude que la solution soit optimale (car trop de détails d'implantation sont inconnus). Il est

ainsi plus judicieux de conserver un ensemble de solutions "prometteuses" qui seront ensuite

estimées à un niveau inférieur, conduisant à un ensemble de solutions plus réduit. La

réitération de ce principe permet ainsi de converger vers une solution unique.

Dans cette partie, les étapes essentielles du flot de conception mixte typique sont

présentées. Dans la section suivante, quelques outils de codesign seront présentés.

II.4 Méthodologies et outils

II.4.1 Introduction
Bien que les méthodes de réduction de puissance et d'énergie soient plus efficaces une

fois adressées le plutôt possible dans le processus de conception (globalement au niveau

système); la majorité des travaux existants sur l'optimisation de puissance adressent

séparément les parties logicielles, matérielles et de communications après avoir décidé de

l'architecture cible du système. Quelques approches de co-design tiennent compte d'un tel but

à un niveau d'abstraction plus élevé. Ces approches commencent en général par une étape

J. Ktari 36

d'estimation de la consommation des parties du système (tâches, fonctions, communications

etc.) pour déterminer ensuite, et le plutôt possible, la consommation totale du système.

II.4.2 Outils de codesign

Le tableau 4 présente quelques environnements de codesign développés soit par les

groupes de recherche universitaires, soit dans l'industrie

Tableau 4 : Comparatif des environnements de codesign (Abdennour, 2004)

 Type
d’application

Langage de
spécification

Approche de conception Architecture cible

Ptolemy TSI Flot de donnée
synchrone

Découpage automatique
orienté logiciel

Multi-processeur
+ ASIC

Vulcan Systèmes temps
réel

HardwareC
(extension de C)

Découpage automatique
orienté matériel (contrainte

de temps et coût)

Mono-processeur,
ASIC, bus et mémoire

Cosyma
systèmes temps
réel embarqué

Cx (extension
de C)

Découpage automatique
orienté logiciel

(contraintes de temps+
coût en surface)

processeur+ co-
processeur ou

multi-processeur et
Mémoire

partagée pour les Coms

SpecSyn
Système de

contrôle et de
communication

SpecCharts

-pré-estimation
- découpage automatique

ou manuel
- raffinement
- implantation

Multi-processeur
processseurs+

ASICs+ASIP +
et Bus, mémoire pour

lesComs

Polis
systèmes temps
réel embarquées

de contrôle

CFSMs

- découpage manuel,
-ordonnancement,

- implantation

Multi-processeur
microcontrôleurs avec
des RTOS + ASICs et

Ports d’E/S
(Automatiquement

générés)
pour les coms

Cosyn
Système

temps réel
embarqués

Graphe de
tâche s

- Estimation
-Découpage automatique
contraintes de temps +
coût en surface et en

consommation

Multi-processeur
processeurs+

ASICs+FPGAs
et point-à-point, bus,

réseaux de
communication locale
LAN) pour les coms

CODES
Les systèmes de
communication

RDP,
StateCharts

- modélisation
-partitionnement

- simulation
- intégration

Multiprocesseur
Processeurs + mémoire

+
ASICs + FPGA

CoWare

Traitement de
signal et système

de
communication

C (SystemC)
HDL (VHDL,

Verilog)

- découpage manuel
- synthèse d’interface, -

ordonnancement, -
cosimulation

Multiprocesseur
Processeurs + DSPs+

ASICs
et des coms Point-à-

point
avec un protocole de

rendez-vous

J. Ktari 37

Dans ce tableau les aspects de comparaison sont :

 Les types d'applications ciblées,

 Le langage de spécification du système,

 L'approche de conception,

 L'architecture cible,

 Les types des communications logicielle/matérielle utilisées.

Dans la section suivante, on va présenter en détails d’autres outils d’exploration basse

consommation ainsi que les limitations de ces environnements.

II.4.3 L'environnement MOVE

Cet outil permet de réaliser automatiquement un ASIP pour le traitement d’image à

partir d'une spécification haut niveau (Heikkinen et al., 2002). L’architecture cible est la TTA

(Transport Triggered Architecture). Son principe est semblable à l’architecture VLIW : elle

permet d’effectuer plusieurs opérations en un seul cycle d’horloge en utilisant un réseau de

transport (9 bus) de données, couplé à des unités fonctionnelles (multiplieurs, accumulateurs,

registres…). Les avantages de cette technique sont la flexibilité, la simplicité et la facilité

d’extension du système. La conception se base sur l’utilisation d’une plateforme (appelée

MOVE) pour la conception automatique de processeurs, formée par un système de

développement HW/SW et un optimiseur. (Figure 18).

Figure 18 : L’architecture MOVE

Optimiseur

Description de l’architecture

Développement
Logiciel

Développement
Matériel

………

Layout du
Processeur

Code objet

Statistique Statistique

J. Ktari 38

Le système explore l’espace de solutions (combinaison de plusieurs choix

d’architecture) pour trouver la meilleure solution selon le critère rapport coût/performance. Le

système permet ainsi d’ordonnancer l’application envisagée sur plusieurs architectures.

L’aspect faible consommation n’est pas traité clairement dans cette approche.

II.4.4 L’outil Codef-LP

Codef-LP (figure 19) (Guitton et al., 2003) développé à l’université de Nice propose

une méthodologie permettant d’extraire une architecture monoprocesseur qui satisfait les

contraintes temps, surface et qui minimise les pics de courants. La description de l’application

en graphe de tâche ainsi que les contraintes et la librairie de modèles sont l’entrée de l’outil

Codef. Ce dernier génère un mapping de l’application en utilisant une heuristique

d’exploration basée sur le glouton. Afin d’optimiser davantage la consommation, des

raffinements manuels en variant la fréquence sont faits suite à l’exploration automatique.

L’estimation de la consommation des modules matériels est faite avec l’outil WattWatcher

qui nécessite une synthèse. Alors que celle en logicielle est faite avec Vestim qui est basé sur

la méthode d’estimation au niveau assembleur ce qui nécessite la compilation du code C. Par

ailleurs, le modèle de consommation considère que la consommation suit la loi P=KCFreqV2.

L’exploration dans cette méthodologie se limite au changement manuel de la fréquence/Vcc

ou au changement du processeur.

Figure 19 : Description de l’outil Codef

Toutefois, cet outil n’est pas disponible, il traite des architectures monoprocesseur, il

ne tient pas compte de la communication. De plus, il se base sur une méthode au niveau

CodefLibrairie d’implantations

Graphe de
l’application

Contraintes

Contrôle du
concepteur

Système
-Architecture

-Caractéristiques

Rapport sur la
conception

Diagrammes de Gantt

J. Ktari 39

assembleur lors de l’estimation de la consommation de la partie logicielle, ce qui est

compliqué pour les architectures VLIW. Par ailleurs, l’heuristique du glouton adoptée pour

l’exploration n’est pas assez efficace vu qu’elle construit la solution pas à pas sans revenir sur

ses décisions de choix. En plus, l’outil repose sur une librairie de modèles non paramétrable.

En effet, une tâche peut avoir plusieurs modèles de performances selon les paramètres

algorithmiques et/ou architecturales (taille de l’image, fréquence, cadence, etc.).

II.4.5 L’outil Mogac

Mogac (Dick et al., 1998) développé à l’université de Princeton est un outil de co-

synthèse logicielle/ matérielle. Il partitionne et ordonnance la spécification de l’application

décrite en graphe de tâche périodique. Pour cela l’outil exploite un algorithme génétique

multiobjectif qui échappe des minimums locaux. Le coût et la consommation sont optimisés

sous des contraintes de temps réel. Par ailleurs, l’outil tient compte de la consommation de la

communication. Par contre, l’outil ne tient compte ni de l’influence de la tension

d’alimentation ni de la fréquence. Par ailleurs, il ne traite ni la surface ni la consommation des

mémoires. (Figure 20)

Figure 20 : Description de l’outil Mogac

Avec l’outil Mogac (Figure20), une exploration multi-objective est faite en terme de

coût et de consommation. Les solutions pareto-optimales sont extraites par l’outil grâce à

l’algorithme génétique. Toutefois, cet outil, conçu au départ pour optimiser essentiellement le

 Initialisation des solutions

Evaluation de la solution

Rangement
Croisement/mutation

Rapport

Reproduction de nouvelles solutions Arrêt

Oui

Non

J. Ktari 40

coût, n’est pas disponible. Aucune indication sur les méthodes d’estimation des performances

n’est indiquée ni au niveau tâche ni au niveau système.

II.4.6 L’outil Cosyn-LP

 L’outil Cosyn-LP (Bharat et al., 1999) développé à l’université de Princeton est un outil

de co-synthèse qui part d’une spécification en graphe de tâche périodique avec des contraintes

de temps réel afin de générer une architecture à faible coût qui respecte les contraintes. Ces

contraintes ainsi qu’une bibliothèque de modèles sont fournies à l’outil. L’approche se base

sur une combinaison d’ordonnancement préemptif et non préemptif afin d’ordonnancer les

tâches. La technique d’exploration se base sur le regroupement de tâches (Clustering). (Figure

21)

Figure 21 : Description de l’outil Cosyn-LP

L’étude exploratrice est faite sur des processeurs de type Motorola 68360, 68040, des

ASICs et un FPGA Xilinx 3195. Vu que la technique est basée sur le clustering, tous les

clusters et les allocations sont considérés lors de l’exploration. Ceci rend la méthode exacte et

par conséquent assez complexe. Par ailleurs, le concepteur de cet outil suppose que les

modèles de performance sont déjà prêts et non paramétrables. Donc pour chaque tâche

s’exécutant sur une cible donnée, lui correspond une performance temporelle et énergétique

Graphe de tâches Contraintes

Parsing

Creation des associations

Création du cluster

Allocation suivante

Ordonnancement

Evaluation des performances

Meilleure allocation ? Tous les clusters
explorés

Toutes les
allocations explorées

Pre-processing

Non

Oui

Non

Non

Oui

Oui
Message d’erreur Succès

Tous les clusters
explorés

Oui
Non

Librairie

J. Ktari 41

unique. En plus, la granularité des modèles de performances de l’application n’est pas

considérée dans cette approche.

II.4.7 Méthodologie de Ghali

 Cette méthodologie d’exploration développée à l’université Paris XI Orsay (Ghali et al.,

2004), repose sur l’évaluation du temps, de la surface et de la consommation d’une

architecture monoprocesseur. L’évaluation du temps d’exécution est déduite par simulation

grâce à l’outil SimpleScalar ou par exécution directe. La surface silicium est évaluée avec les

deux outils CACTI et FUPA pour estimer la surface du cache d’instruction et la surface des

unités de calcul flottant respectivement. Les outils SimplePower et Xpower sont exploités

pour évaluer la consommation des architectures superscalar et des FPGA respectivement. Il

est à noter que cette méthodologie repose sur l’exploration avec les algorithmes génétiques

multi objectives NSGA II (Figure 22). Et afin d’extraire les solutions les plus prometteuses, le

concepteur a eu recours à 100 stations de travail pour émuler les diverses solutions.

Figure 22 : Description de la méthodologie

Application C Paramètres du processeur

Algorithme génétique multiobjective A.G.M.O

Interface Linux Windows

Récupération des données
de mesures

Génération du code VHDL
du processeur en fonction

du A.G.M.O

Synthèse

Mapping

Interface Plate forme FPGA- Windows

Emulation+mesures sur FPGA

Consommation Xpower

J. Ktari 42

 A travers cette méthodologie, la possibilité de tailler le processeur selon les besoins et

les contraintes se présente. En fait, l’algorithme génétique permet de modifier les

caractéristiques de la cible (taille de la cache de données et d’instructions, le nombre de ALU,

de MULT, de registre RUU, de pipeline) pour étudier leurs influences sur les performances.

Aucune considération des paramètres algorithmiques de l’application n’est faite. Par ailleurs,

cette exploration se limite au niveau configuration architecturale d’un processeur

SuperScalaire générique ainsi que la configuration d’un processeur particulier « Leon ».

II.5 Discussion

En se basant sur ces travaux ci dessus, diverses constatations sont établies :

1. Disponibilité : les outils déjà présentés ne sont pas généralement disponibles pour être

exploités. Ce qui nécessite le développement d’un environnement d’exploration basse

consommation qui intègre les modèles de performances souhaités afin d’extraire la

solution qui répond aux besoins. Ainsi l’outil peut être étendu et enrichi avec d’autres

modèles selon les besoins.

2. Architecture cible : la plus part de ces approches explorent une architecture prédéfinie ou

monoprocesseur, c’est le cas de l’outil Codef et la méthodologie de ghali. Par ailleurs avec

l’outil Codef-LP, on peut explorer l’espace des solutions mais sans tenir compte de la

consommation de la communication qui peut être significative. Codef-LP se limite lors de

l’optimisation de la consommation à la partie logicielle en variant la tension et la

fréquence du processeur sans toucher explicitement la partie matérielle.

3. Modèles de performances : pour une architecture multiprocesseur, 2 outils existent pour

explorer l’espace des solutions (Cosyn & Mogac). Chaque outil gère les lois de

consommation en se basant sur des outils ou sur des modèles prêts non paramétrables.

Concernant l’intégration d’un modèle de consommation de la communication dans le

modèle général, la question qui se pose : est-ce qu’elle est significative par rapport à la

consommation de la plate-forme. Si la consommation de la communication est de l’ordre

de quelques μW par rapport à la consommation des DSP (quelques mW), serait t’il

intéressant d’y tenir compte. Par ailleurs, il est à signaler que les paramètres de

l’application et de l’architecture influent sur la performance du système.

J. Ktari 43

 Ainsi, il paraît important d’étudier et de mettre en place une méthodologie

d’exploration d’architecture multiprocesseur qui tient compte des diverses contraintes entre

autre la consommation à partir d’une description au niveau système. Le travail consiste donc

à :

 - Niveaux de granularité : il s’agit de spécifier l’application et les contraintes à plusieurs

niveaux de granularités. Cela permet de donner la possibilité d’explorer l’espace des solutions

plus efficacement.

 - Modèles paramétriques de consommation : il s’agit d’établir des modèles

paramétriques qui englobent la consommation de tout le système

logiciel/matériel/communication. En fait, les paramètres de l’application ainsi que ceux de

l’architecture seront considérés dans les modèles de performance afin d’avoir des modèles

assez riche.

 - Exploration efficace d’architecture basse consommation : il s’agit d’être capable de

choisir d’une façon efficace la solution architecturale adéquate où le nombre de ressources à

exploiter n’est pas connu à priori. En effet, le concepteur peut être confronté au problème du

choix du nombre de ressources : est ce qu’il implémente son application sur 2 ou 3 DSPs par

exemple.

II.6 Conclusion

Dans cette étude, on a présenté l’impact du choix aux différents niveaux d’abstraction

sur la consommation (Système, algorithme, RTL, logique, physique). Étant donné que la

consommation a un fort impact sur la conception des systèmes embarqués, un intérêt est

accordé pour limiter cette dissipation à travers des méthodologies de réduction de la

consommation et des outils mis en œuvre. Ces divers outils d’estimation et d’optimisation de

la consommation sont évalués dans ce chapitre. Par ailleurs, afin de répondre à l’ensemble des

contraintes de plus en plus pressantes, de nouvelles méthodes de conception doivent être

utilisées. Ces méthodes doivent permettre l’adéquation entre l’application et son architecture

cible pour bien exploiter les caractéristiques de l’application et garantir une bonne

performance du système, ainsi que l’adaptation à l’environnement. Le problème de

l’exploration de l’espace de conception logiciel/matériel a été étudié. Cette étude a permis de

dégager les caractéristiques et les mécanismes nécessaires afin de formuler une approche

globale de l’exploration de l’espace des solutions.

Dans le chapitre suivant, on présente la nouvelle méthodologie d’exploration basse

consommation ainsi que l’environnement paramétrique développé.

J. Ktari 44

Approche et Méthodologie
d’exploration

CChhaappiittrree

IIIIII

J. Ktari 45

Chapitre III. Approche et Méthodologie d’exploration

III.1 Introduction

 L’objectif de ce chapitre est de présenter la méthodologie et l’approche

d’exploration basse consommation. Des modèles de performances riches et paramétriques

ainsi qu’une technique d’exploration dite basse consommation sont proposés. Cette approche

permet de considérer un certain nombre de paramètres algorithmiques et architecturaux sur la

consommation. Un modèle complet est proposé afin de déduire les performances globales du

système qui seront utilisées lors de l’exploration à travers une technique basée sur le recuit

simulé. Cette heuristique permet d’exploiter la technique d’exploration selon plusieurs

niveaux de granularité et ce afin de pouvoir choisir le niveau qui permet d’assurer une

exploration précise et rapide.

III.2 Modèles de performances et technique d’exploration

L’exploration de l’espace des solutions basse consommation nécessite un certain nombre

d’informations relatives à l’application d’une part, et des modèles de performances d’autre

part. En fait, il s’agit de déduire les informations nécessaires sur l’application pour bien mener

la phase d’exploration. Par ailleurs, on a besoin de modèles d’estimation et de performance

suffisamment riches et paramétrables.

 Cette section traite successivement le modèle du graphe et de l’architecture, la

méthodologie d’obtention des modèles de performances temporels et énergétiques ainsi que le

modèle du coût. On présente aussi la méthode d’estimation et la technique d’exploration de

l’espace de solution adoptée.

III.2.1 Modèle de graphe

 Le modèle de spécification doit permettre de décrire le fonctionnement de toute

l’application tout en étant indépendant de son implémentation finale. Le modèle de

spécification est utilisé par le concepteur pour décomposer le système en un ensemble de sous

systèmes (le modèle du graphe de tâche décrit le système par des tâches). Ensuite, chaque

sous système peut être décrit par le concepteur par un langage de spécification. Les sous

systèmes résultant d’un modèle de spécification peuvent être décrits par plusieurs langages de

spécification, c’est le cas des spécifications hétérogènes. Concernant la spécification de

l’application, elle est souvent représentée à base de graphe de tâche (Guitton et al., 2003)

J. Ktari 46

(kappagantula et al., 2003) (tmar et al., 2007) (Abdennour et al., 2002). Cette représentation

permet de modéliser les tâches ainsi que les dépendances inter-tâches de l’application qui sont

nécessaires lors de l’ordonnancement et l’estimation des performances. De telles informations

sont généralement définies par le concepteur à partir du cahier de charge de l’application afin

de développer l’application, ou bien fournies dans le datasheet de l’application.

Dans l’approche proposée, on part d’une spécification de l’application sous forme de

graphe de tâches acyclique orienté (DAG) constitué par les tâches Ti du système (les nœuds

du graphe) et les dépendances entre elles (les arcs). On associe à chaque arc Aij du graphe, la

quantité de données en octets que la tâche Ti doit transférer à la tâche Tj. (Figure23)

Figure 23 : Graphe de tâches

Avec ces informations présentent dans le graphe, les dépendances entre les tâches sont

considérées. Ceci servira à l’ordonnancement des tâches et à l’extraction du temps

d’exécution total de l’application. Par ailleurs, pour chaque tâche du graphe, des modèles

d’estimation sont associés. Ces modèles paramétrables, présentés sous forme de valeurs de

performances temporelles et énergétiques, sont attribués à chaque tâche de l’application.

III.2.2 Modèle d’architecture

 L’architecture cible sera une architecture hétérogène (majoritairement du Soft et du

Hard) sous forme de composants discrets (DSPs & FPGA) communiquant via un bus et

possédant une mémoire commune (Figure 24). Le nombre d’unité de traitement entre autre les

DSPs sera paramétrable. Ainsi, le concepteur ne sera pas dans l’obligation de travailler sur

une architecture prédéfinie et figée. C’est à l’approche de choisir la solution architecturale

adéquate en fixant le nombre de ressources utiles ainsi que le mapping des tâches.

Figure 24 : Architecture cible

Sys.
Embarqué

DSP 1 DSP 2 DSP n

FPGAMémoire

T2T1

T5T4T3

T6
T7 T8

A13 A14

A46

A25

A58
A57

A26

J. Ktari 47

 Les Divers DSPs de la plate-forme peuvent fonctionner à diverses fréquences chacun.

 Les travaux d’exploration de l’espace des solutions, traitent la consommation du bus

par des modèles de type (P=K.V².F.C). Ce modèle peut être exploité dans les futurs travaux.

En fait, vu le niveau d’abstraction assez élevé de l’exploration, un tel modèle serait une

solution envisageable.

 La re-configuration dynamique du matériel ne sera pas tenue en compte pour le

moment.

Comme déjà cité, cette cible n’exclut pas la possibilité d’intégrer des tâches en matériels.

C’est le cas de l’exemple MPEG2, où on peut implanter l’estimation du mouvement en

matériel et explorer les différentes possibilités des autres tâches.

III.2.3 Approche

 NB: Comme déjà cité, dans ce travail, on cible une architecture essentiellement logicielle

(DSP1, DSP2,..DSPn). On traite en premier lieu ce type d’architecture pour profiter du travail

établi précédemment au niveau de l’équipe consommation. En fait, les travaux déjà faits au

cours de cette thèse se sont focalisés sur les cibles logicielles, et exploitent des plates-formes

logicielles. En plus, ce type d’architecture est utilisé dans les logiciels embarqués notamment

par les concepteurs des automobiles. Ce travail peut être ensuite étendu à une architecture

mixte.

 L’approche repose sur une spécification en graphe de tâches de l’application (Figure

25-A). Pour chaque tâche présente dans la spécification de l’application, la connaissance des

paramètres et des performances est nécessaire.

Concernant l’estimation de la consommation des tâches (Figure 25-B), chaque tâche est

évaluée en terme de temps et de consommation en fonction de la cible et de ses paramètres.

L’étape suivante (Figure 25-C) consiste à élaborer une bibliothèque de modèles de temps,

consommation des diverses tâches de l’application sur diverses cibles. Une librairie de

modèles de performances temporelles et de consommation sera mise en place. Un exemple de

librairie de modèles de performances est proposé dans (ktari et al., 2005). Cette librairie

traitant la partie logicielle, est établie à travers la méthodologie FLPA (Functional Level

Power Analysis) étendue.

J. Ktari 48

Figure 25 : Flot d‘exploration de l’espace

D’autres modèles de consommation matériels développés peuvent être

exploités comme (Elleouet et al., 2006) (Garcia et al., 2005). Par ailleurs, ces informations

peuvent être récupérées manuellement ou à travers d’autres outils d’estimation logicielles

et/ou matérielles.

Spécification de l’application A

Bibliothèque de Modèle
d’estimation paramétrique
de temps, conso des tâches

B

x x xx x
x x x
x x x

Espace des solutions

Modèles de performance
technologique et architecturale
de la solution :
- Logiciel
- Matériel
- Communication
- Mémoire

recherche de la solution adéquate à
travers une heuristique

E

F

C

Sys. Embarqué

DSP 1 DSP 2 DSP n

FPGAMémoire

Estimation des performances
paramétriques des tâches de
l’application :

- SoftExplorer
- Code Composer
- Max II power
- DesignTrotter
- ISE
- Xpower
- Abaques
- Simulateurs de processeur
- Existant, Fourni, acheté

Initialisation des
paramètres de
l’exploration

Contraintes et objectif
de l’exploration

- Partitionnement et ordonnancement
- Evaluation des performances globales de la
solution :

• Temps
• Consommation
• Coût

Extraction des
paramètres des

tâches

D

J. Ktari 49

 L’étape suivante est l’exploration des solutions architecturales (Figure 25-D) : Elle est

basée sur l’analyse des solutions disponibles et la recherche d’une solution qui répond à

l’objectif. L’analyse des solutions consiste à évaluer chaque solution à part et à estimer sa

performance et sa consommation (Figure 25-E). Bien entendu des modèles de performance

des unités de traitement et de communication (DSP, FPGA, mémoire, communication) sont

nécessaires afin d’évaluer la performance de tout le système.

Suite à l’analyse des diverses solutions, il faut rechercher la solution « optimale »

(Figure 25-F) qui minimise la consommation et respecte les contraintes. En effet, une ou

plusieurs architectures peuvent être éligibles et respectent les contraintes du temps réel, de la

surface et de la consommation. C’est à ce moment que l’algorithme d’exploration intervient

afin de choisir la meilleure solution.

III.2.4 Modèles de performance temporelle

Concernant les performances temporelles, on introduit le partitionnement et

l’ordonnancement afin d’extraire le modèle temporel. En fait, le partitionnement et

l’ordonnancement de tâches sont deux problèmes récurrents dans le domaine des systèmes

temps réel. Le partitionnement consiste à attribuer à chacune des tâches d’un programme un

processeur sur lequel se fera l’exécution. On désigne par ordonnancement, le fait d’allouer des

ressources et du temps aux tâches sur un processeur donné, de telle manière que certaines

conditions soient remplies. Souvent, dans les systèmes embarqués, chaque processeur dispose

de son propre ordonnanceur (Noseda, 2002).

Actuellement divers travaux (Bandyopadhyay et al., 2004) (Emmanuel et al., 2001)

(Ktari et al, 2008a) traitent ce problème pour des architectures multiprocesseurs. Dans cette

étude, l’exploitation d’un ordonnanceur prêt et validé est une solution envisageable. En effet,

le gain en consommation paraît surtout lors du partitionnement en attribuant les tâches de

calcul aux processeurs faible consommation. Le temps d’exécution total qui dépend de

l’ordonnancement et du partitionnement influe sur la consommation totale de l’application.

III.2.5 Modèles de performance énergétique

Dans cette section on propose des modèles de consommation paramétriques. Ces

modèles peuvent tenir compte de divers paramètres :

- Les caractéristiques des ressources en veille,

- La fréquence de fonctionnement

J. Ktari 50

- La tension d’alimentation, la fréquence et la taille du bus,

- La taille des données à transmettre,

- La consommation statique et dynamique des modules matériels

 Afin de faciliter la compréhension, on l’introduit à travers un exemple. En effet, prenons le

cas du graphe suivant:

Figure 26 : Graphe de tâche

On a ici 8 tâches dépendantes, essayons de proposer manuellement un partitionnement

et un ordonnancement pour cette application qu’on désire implanter sur trois DSPs et un

FPGA. Les temps d’exécution et la consommation de chaque tâche sont fournis pour chaque

cible.

Figure 27 : Chronogramme

Ce partitionnement & ordonnancement (8 tâches | 4 cibles) n’est pas obligatoirement

une solution optimale. Le but de ce chronogramme est d’étudier les performances et la

consommation de la solution. Suite à cette étape de partitionnement & ordonnancement qu’on

va détailler par la suite, on a la possibilité de confirmer si l’application respecte les contraintes

T2T1

T5T4T3

T6
T7 T8

DSP1

DSP2

DSP3

FPGA

T2

T1

T3

T4

T5

T6

T7

T8

Texe T critique Temps

J. Ktari 51

de temps réel ou non. On a aussi les informations concernant la répartition des charges sur les

différentes cibles, le temps de début et de fin de chaque tâche.

 Afin d’évaluer la consommation de l’application, prenons le cas d’un DSP, un FPGA,

le bus et la mémoire :

III.2.5.1 Modèle de consommation d’un DSP

Etudions la consommation de ce DSP3 :

• Dans la 1ère phase, le DSP est en état de veille. Aucune tâche ne lui est attribuée, mais

il consomme une énergie en veille.

• Dans la 2eme phase, le DSP accède à la mémoire centrale pour rechercher la tâche 3

ainsi que les données fournies par la tâche1.

• Dans la 3ème phase, le processeur traite la tâche 3.

• Dans la 4ème phase, le DSP accède à la mémoire centrale pour enregistrer les données.

etc.

Ainsi, le modèle de consommation de ce DSP, peut être établi de la façon suivante :

Energie(DSP3)=P_Veille*T_veille1+P_tâche3*Texe_T3+P_tâche8*Texe_T8+ P_Veille*T_veille2

D’une façon plus générale, la consommation d’un DSP(i) sera :

Energie(DSPi)=

Avec Texe_totale=

 Le temps de réveil du processeur n’est pas considéré pour le moment, ce temps ne

dépasse pas 10 cycles pour un TMS320C6000 à titre d’exemple.

Recherche du
code de la

tâche 3 et des
données

Processeur
en état de

veille

Traitement
de la tâche

T3

Enregistrement
des données

dans la
mémoire,

Processeur
en état de

veille

Recherche du
code e la

tâche 8 et des
données

etc.
….

Temps

DSP3

∑∑ +−
)()(

)(*)())(_(*_
iTacheitache

TiPTiTexeiTtotaleTexeveilleP

∑ ∑+
)(

_)(
iTache

veilleTiT

(7)

(8)

(9)

J. Ktari 52

III.2.5.2 Modèle de consommation de la communication

Dans cette étude, la communication est gérée via un bus partagé. Les travaux de

modélisation de la consommation d’un bus discret ne sont pas nombreux. Un modèle de

consommation d’un bus PCI décrit dans (Kappagantula et al., 2003) peut être exploité à titre

d’exemple.

P_bus=1/2*C_bus*V²*N_bits* M

Avec N_bits : la largeur du bus. C_bus, V et N_bits sont fournis par le concepteur du bus. Le

temps de communication est :

 Tcomm=

Ainsi l’énergie consommée par le bus sera :

Energie_bus= 1/2*C_bus*V²*N_bits* M*

Vu le niveau d’abstraction assez élevé, il est assez difficile d’avoir un modèle de bus plus

précis.

III.2.5.3 Modèle de consommation d’une mémoire

 Concernant la consommation de la mémoire, vu que sa taille est en pleine croissance

dans les systèmes embarqués (90% de la surface en 2011), il est utile de la modéliser et de

l’intégrer dans la consommation générale. En fait, lors de l’accès à la mémoire en lecture ou

écriture, ce périphérique va consommer de l’énergie qui s’ajoute à la consommation statique.

(Marteil, 2006)

Energie_memoire=Texe_totale*Pstat+

Avec P_accès : la puissance consommée par la mémoire lors de l’accès en lecture ou en

écriture. Cette information est généralement fournie par le concepteur de la mémoire.

∑
accésN

accèsTWRaccèsP
_

*)/(

F
busbitN

dataN 2
__

_*2
+

(10)

(11)

F
busbitN

dataN 2
__

_*2
+

(12)

(13)

J. Ktari 53

III.2.5.4 Modèle de consommation du matériel : FPGA

Concernant la consommation des architectures FPGA, le modèle de puissance doit

tenir compte de la consommation statique et dynamique. En effet la consommation d’un

FPGA est due à la consommation des tâches actives en traitement ainsi qu’à la consommation

de toutes les tâches synthétisées que se soit en veilles ou actives.

P(FPGA)=

E(FPGA)=

III.2.5.5 Modèle global

 Le modèle de consommation globale de l’architecture, qui est composé de divers

modules, doit tenir compte des diverses sources de dissipation d’énergie. Pour être proche de

la réalité, le modèle développé tient compte de la consommation des unités de traitements

implantés, du bus et de la mémoire. Ainsi

Energie (Totale)=

Il est à noter que ces équations tiennent compte des divers paramètres de l’application et de

l’architecture. En effet, à travers cette méthodologie, les modèles de performances de chaque

tâche sont modélisés en fonction de divers paramètres (fréquence, type de DSP, taille de

l’image, cadence…). L’avantage de cette méthode consiste à proposer une tâche pouvant

avoir plus qu’un modèle de performance sur une cible donnée en jouant sur les paramètres.

III.2.6 Modèle coût

Vu la présence dominante de la partie logicielle (DSPs) vis à vis des FPGA, le coût

sera une contrainte un peu figée, qu’on ne peut améliorer qu’on modifiant le nombre de

ressources. Par ailleurs, le coût de chaque ressource est pondéré par un coefficient vu la

diversité des coûts technologiques (un mm² de surface de DSP peut coûter moins cher que

celui d’un FPGA).

Cout_tot=

∑∑ +
TachesactiveTache

PstatdynamiqueP
_

_ (14)

)(*
Re

iSurfacesi
ssources
∑α (17)

memoireEnergiebusEnergieicibleEnergie
iCible

__))((
)(

++∑

(15)totaleTexePstatiTexeiTachedynamiqueP
TachesiactiveTache

_*)(*)(__
)(_

∑∑ +

(16)

J. Ktari 54

III.2.7 L’exploration basse consommation

La solution architecturale proposée pour cette application a trois caractéristiques :

énergie, coût, temps (figure 27). Comme ces trois paramètres interagissent ensemble, il y a

une nécessite pour faire une étude exploratrice globale de la solution. Parmi les points clefs de

l’exploration de l’espace, on cite la performance globale de l’application. Pour cela, des

modèles d’estimation sont nécessaires afin d’évaluer de l’application en sa globalité.

Figure 27 : Champs d’exploration de l’espace des solutions

Ces modèles d’estimation seront de haut niveau et tiennent compte des paramètres

architecturaux et algorithmiques. Dans le cadre de ce travail, l’étude est menée sur des

applications écrites en langage C. Pour cela, la méthode d’estimation basée sur la FLPA

étendue, détaillée dans les chapitres précédents, a été exploitée afin de proposer des modèles

paramétriques de haut niveau. Ces modèles d’estimation seront présentés dans la section

suivante.

III.2.8 Méthodes d’estimation
A partir de l'analyse fonctionnelle de l’application, la méthodologie FLPA permet de

développer un modèle paramétrique, qui représente le comportement de consommation d'une

cible. (Figure 28)

En fait, cette méthodologie se compose de quatre étapes.

- L'analyse fonctionnelle: qui détermine les paramètres influant sur le modèle de puissance.

- La caractérisation de chaque paramètre est accordée pour qualifier son influence sur la

consommation de l'application.

- Le modèle général est établi selon les paramètres disponibles.

- Validation du modèle par mesures.

Temps

Consommation

Coût

J. Ktari 55

Ainsi, on peut tenir compte des caractéristiques algorithmiques, afin d'évaluer la

consommation à ce niveau selon les variations des paramètres de IP (Intellectual Propriety).

En fait, cette méthodologie part de l’extraction des paramètres algorithmiques, architecturaux

Figure 28 :(a) FLPA : Méthodologie pour les processeurs (b) FLPA transposée pour IP(SW)

Processeur

Bloc 1 Bloc 2

Bloc 3

Paramètres algorithmiques,
architecturales et technologiques

P

Application

Fonction 1 Fonction 2

Fonction 3

Paramètres algorithmiques,
architecturales et technologiques

P

Application

Fonction 1 Fonction 2

Fonction 3

Processeur

Bloc 1 Block 2

Block 3

Paramètres/ scénarios

- Taux de parallélisme= 0…1
- Taux de défaut de cache= 0…1
- taux du Processing unit= 0…1
- Fréquence= 20…180 MHz
- DSPs

Paramètres/ scénarios

 - Paramètres fonctionnels (Ordre du
filtre, taille de l’image et qualité, N
Frame/s)
 - Fréquence= 20…180 MHz
 - DSPs

 + + + +
 + + + +
+ + + + +

I (mA)

Paramètres du Bloc

 + + +
 + + + +
+ + ++ +

P (W)
T (S)
E (J)

Paramètres de la fonction

 + + + +
 + + + +
+ + + + +

I (mA)

Paramètres du Bloc Paramètres de la fonction

 + + +
 + + + +
+ + + +

 F1 F2 F3 F1 F2 F3

P=f (Paramètres du processeur) P=f (Paramètres de l’application)

Mesure et vérification sur carte

1. Analyse fonctionelle

2. Caractérisation

3. déduction du modèle

P (W)
T (S)
E (J)

J. Ktari 56

et technologiques qui ont une influence directe sur la consommation de l’application (taille de

l’image, résolution, nombre d’images par seconde, précision du calcul, DSP cible, fréquence

de fonctionnement). L’étape suivante consiste à extraire la variation de la consommation en

fonction de chaque paramètre extrait à travers des estimations ou mesures grâce à des

scénarios. Enfin, la formulation de lois de consommation mathématiques en fonction de ces

paramètres est établie. Une confrontation des modèles établis avec les mesures sur carte DSP

est envisageable afin d’avoir une idée sur la précision de ces modèles. Ces modèles établis

pour diverses applications de traitement de signal grâce à cette méthodologie seront intégrés

dans la librairie de performances nécessaire lors de l’exploration.

Avec cette librairie, on a la possibilité d’avoir des modèles paramétriques des diverses

tâches. Ces modèles peuvent tenir compte :

- des paramètres de l’application : taille de l’image, résolution, cadence,

chrominance, ordre du filtre,…

- des paramètres architecturales et technologiques : fréquence de

fonctionnement, tension d’alimentation de la cible, la cible…

Cette bibliothèque sera une base de modèles prêts et paramétrables exploitable pour les

diverses applications. Ainsi, en cas de modification de la spécification d’une tâche de

l’application, on n’a pas besoin de tout re-modéliser. Toutefois, cette bibliothèque n’est pas

toujours complète et nécessite souvent des mises à jour. En effet, un problème se pose si une

nouvelle tâche se présente dans l’application que ce soit par ajout par le concepteur ou par

modification. Dans ce cas, diverses solutions sont possibles afin de proposer un modèle

d’estimation des performances de la nouvelle tâche et ceci:

- à travers des outils comme Softexplorer, Design trotter, l’environnement ISE-

Xpower, Code Composer, Max II power, Quartus power play analyser, les

simulateurs des processeurs.

- à travers : les datasheets des cibles indiquant la consommation moyenne, les

abaques de consommation, des modèles de consommation simplistes du

type : P=0.063 Freq Area. Avec ces techniques, on a la possibilité d’avoir des

modèles de performance assez rapidement avec une précision relativement

moyenne.

- à travers : des mesures sur carte en cas de disponibilité.

J. Ktari 57

III.2.9 Conclusion

 La formulation d’une méthode d’abstraction de l’architecture et de l’application a permis

la mise en œuvre de modèles de performances à un haut niveau. Ces modèles de performances

temporelles et énergétiques sont combinés et évalués à travers une approche d’exploration de

l’espace de solution. Cette étape représente une étude exploratrice du système embarqué en sa

globalité permettant d’aboutir à des solutions qui respectent les diverses contraintes en

mettant une attention particulière à la consommation. L’environnement d’exploration sera le

sujet de la section suivante.

III.3 Outil d’exploration

 On présente dans cette section l’environnement d’exploration. La présentation est

accompagnée d’un exemple d’illustration. L’environnement repose sur deux outils, le premier

sert pour la saisie de la spécification à partir du graphe, et des performances à partir de la

librairie, le second pour l’évaluation des performances de toute l’architecture et l’exploration

de l’espace des solutions afin d’extraire la solution adéquate (Figure 29).

Figure 29 : Environnement d’exploration

 Les informations nécessaires pour l’exploration englobent les diverses implémentations

possibles de chaque tâche. Vu qu’une tâche peut avoir plusieurs performances selon ces

paramètres, chaque implantation tient compte des paramètres algorithmiques et architecturaux

lors de la saisie du temps d’exécution, la puissance moyenne, la puissance maximale, la taille

des données résultantes. Cette description est gérée par une interface graphique écrite en java.

Interface Java

 Outil sous Matlab

 Solution adequate

Performances
 paramétrables

des tâches
Caractéristiques

 du matériel

Specification &
Performance

T2 T1
T3

T4
T5 T6 T6 T2 T1

T3

T4
T5 T6 T6

Initialisation
 des paramètres

 d’exploration

Graphe de tâche
acyclique

J. Ktari 58

Elle permet de générer un fichier .txt contenant ces informations sur le graphe. Ce fichier de

description textuelle de l’application sera l’entrée principale pour le calcul sous Matlab.

Cette interface (Figure 30) permet de simplifier la saisie des informations, et d’avoir

un affichage et une lecture plus lisible des informations caractérisant l’application.

Figure 30 : Interface de description de l’application

Pour le moment, la saisie des performances de chaque tâche est faite manuellement.

Une « intégration » automatique des performances des tâches est possible en exploitant

directement la base de donnée. (Figure 31)

Figure 31 : génération automatique des performances des tâches

Par ailleurs, les diverses caractéristiques des cibles (DSPs, FPGA et bus) peuvent être

saisies dans un fichier de matériels utilisé comme entrée par Matlab tel que : la puissance en

veille du DSP, les caractéristiques spécifiques du bus (Vcc, Freq, capacité).

Une fois que les diverses informations sont récupérées et intégrées dans Matlab,

l’évaluation et l’exploration basée sur l’heuristique du recuit simulé se déroulent.

fichier résultant

Base de modèles
d’estimation

Nom de la
tâche (i)

Performances (i, paramètres) Interface Java

J. Ktari 59

III.3.1 Stratégie d’exploration
III.3.1.1 Heuristique

Afin d’extraire une solution adéquate parmi celles présentes dans le large espace des

solutions tout en respectant les contraintes du système, l’utilisation d’une méta heuristique est

nécessaire afin de résoudre ce problème d’optimisation NP complet. En fait, avec les

algorithmes d’améliorations itératifs classiques, le processus de recherche est itéré jusqu'à ce

que toute modification rende la solution moins bonne. La figure 32 montre que cet

algorithme d’amélioration itérative ne conduit pas en général au minimum absolu, mais

seulement à un minimum local «A », qui constitue la meilleure des solutions accessibles

compte tenu de l’hypothèse initiale.

Figure 32 : Allure de la fonction « objectif » d’un problème d’optimisation difficile

 Avec les métaheuristiques dites de voisinage (recuit simulé, méthode tabou) : il s’agit

d’autoriser, de temps en temps, des mouvements de remontée, autrement dit d’accepter une

dégradation temporaire de la situation, lors du changement de la configuration courante. Un

mécanisme de contrôle des dégradations permet d’éviter la divergence du procédé. Il devient

dès lors possible de s’extraire du piège que représente un minimum local, pour partir explorer

une autre « vallée » plus prometteuse. (Lacomme et al., 2003)

 Au cours de ce travail, on a exploité l’algorithme du « recuit simulé ». L’avantage

de cette méthode c’est son aptitude de procurer une solution de bonne qualité. En outre, c’est

une méthode générale : elle est applicable et facile à programmer, pour la majorité des

problèmes qui relèvent des techniques d’optimisation itérative. Par ailleurs, elle offre une

grande souplesse d’emploi, car de nouvelles contraintes peuvent être facilement incorporées.

Il s’agit d’une méthode où l’exploration complète du voisinage de la solution actuelle est

remplacée par le tirage au sort d’une solution voisine. On passe sur cette solution si la

variation D du coût est négative. Sinon, on va quand même sur la solution de coût supérieur

avec une probabilité exp(-D/T) paramétrée par un réel positif T appelé température. On

Objectif

Solution(i) A

J. Ktari 60

recommence le processus sur la nouvelle solution après avoir baissé légèrement la

température T. (Lacomme et al., 2003)

On s’arrête quand T devient négligeable, c’est-à-dire inférieure à un petit réel positif

dont la probabilité d’acceptation correspondante soit presque nulle. A ce moment, la

probabilité de remonter sur une moins bonne solution est quasi-nulle, et la méthode se

comporte comme une recherche locale. Le recuit simulé peut donc échapper aux minima

locaux puisqu’il accepte d’augmenter le coût. Il donne de très bons résultats s’il est conduit

assez lentement : Tn+1=f(Tn). En effet, Le choix du schéma de décroissance est crucial dans

cet algorithme car une décroissance trop rapide peut piéger la solution dans le voisinage d'un

minimum local.

Algorithme:

choose an initial solution (Sol_Initial[1..N])
choose an initial & final temperature T0 & Tf;

Current_solution=Sol_initial
 While(T(i)<Tf)
{
 New_solution=find a near current_solution
 Calculate Δ cost =Cost(NewSol) - Cost(Current_solution)
 If Δ cost ≤ 0
 Current_solution= New_solution
 Else
 R=rand[0..1];
 if R≤ exp (- Δcost /T(i))
 Current_solution= New_solution

 end
end

 T(i+1)=decreasing function (T(i)) //cooling function
 }

Pour démarrer la recherche par le recuit simulé, les paramètres de l’algorithme doivent

être bien choisis. C’est le cas de la température initiale, le taux de décroissance de la

température et le critère d’arrêt du programme.

 Température initiale T0 : on peut la calculer au préalable à l’aide de

l’algorithme suivant :

- Faire 100 perturbations au hasard ; évaluer la moyenne Δcost des variations

correspondantes.

- Choisir un taux initial d’acceptation R0 de 50% par exemple afin d’explorer le

maximum d’espace.

- Déduire T0 de la relation R0= exp (- Δcost /T0)

J. Ktari 61

 Décroissance de la température : peut être effectuée selon la loi géométrique :

T(k+1)=0.9*T(k)

 Arrêt du programme : peut être opéré après 2 ou 3 paliers de température

successifs sans aucune nouvelle acceptation (figure 33). De cette façon, on

garantit que la solution choisie n’est pas locale.

 Vérification indispensables lors des premières exécutions du programme :

- Le générateur de nombre réels aléatoires dans [0,1] doit être bien uniforme.

- La « qualité » du résultat doit varier peu lorsque le programme est lancé plusieurs fois

avec des configurations initiales différentes.

Figure 33 : Condition d’arrêt du programme

III.3.1.2 Implémentation

Dans le cadre de l’implémentation de l’outil sous Matlab, une exploration mono-

objective est mise en place. Elle a permis selon le choix, d’atteindre des solutions

architecturales faible consommation sous des contraintes de temps réel ou bien des solutions

performantes en terme de temps d’exécution sous des contraintes énergétiques. Comme le

concepteur a la possibilité d’imposer seulement le nombre maximal de processeurs dans

l’architecture sans fixer le nombre exact, le nombre de processeurs ne sera pas figé.

L’algorithme va explorer les solutions les plus prometteuses parmi celles qui respectent les

contraintes de temps réel et le nombre maximal de processeurs (Figure 34). C’est à l’outil

T°

itérations N itérations non
amélioratrices

To

To/2

To/4
Arrêt

N itérations non
amélioratrices

N itérations non
amélioratrices

P0(acceptation)~=0.5

J. Ktari 62

d’extraire le nombre de processeurs utiles ainsi que le mapping architectural adéquat et les

performances de tout le système. Ce paramétrage du nombre des unités de traitement

permettra au concepteur d’une part, de ne pas se limiter à une architecture unique lors de la

conception du produit et d’être guidé par l’outil lors du choix de la solution matérielle d’autre

part.

Figure 34 : Description de l’exploration

Dans la figure 34, on détaille la méthode exploitée lors de l’implémentation. Cette

méthode repose sur :

- Les performances paramétriques des tâches présentes dans la description

textuelle du fichier en entrée: Avec la diversité des valeurs de performances existantes en

fonction des paramètres algorithmiques et architecturales établies, une librairie de modèles

peut être analysée par l’outil. Ceci permet l’évaluation d’une multitude de performances pour

chaque tâche et l’ajustement de ses paramètres selon l’objectif.

- Les caractéristiques de la technologie cible: Les caractéristiques de chaque

technologie cible sont nécessaires afin de pouvoir estimer la performance globale de tout le

Contraintes

- Choix de la performance à minimiser
(temps, consommation)
- Solution initiale : aléatoire ou manuelle
- Choix du nombre de processeurs
maximal à exploiter

Recherche dans l’espace par le
recuit simulé

Solution finale

Paramètre liant le recuit
 simulé avec l’objectif

Performance
paramétrable de

chaque tâche

Caractéristiques de
la technologie cible

Initialisation des paramètres
d’exploration

- Nombre de processeurs
adéquat
- Mapping architecturale
- Performances

J. Ktari 63

système. Parmi ces caractéristiques, on peut citer : la tension d’alimentation, la fréquence et la

taille du bus, la puissance en veille des ressources à exploiter, etc.

- Les contraintes : Les contraintes de l’application sont définies par le concepteur du

produit. Elles seront fournies à l’outil afin d’accepter ou de refuser les solutions extraites au

cours de l’exploration.

Vu que l’architecture cible est paramétrable avec un nombre de ressources variables et

vu les contraintes de surface, de technologie, de coût ou autres, le nombre maximal « Nmax »

d’unités de calcul sera fixé dés le départ par le concepteur. Grâce à l’heuristique

d’optimisation qui va explorer l’espace de solutions, le nombre de ressources utiles va être

choisi. Pour cela, l’outil balaye plusieurs configurations en évaluant la performance globale

de chacune en exploitant les informations en entrée. A la fin de l’exploration, l’outil fournit la

solution qui répond à l’objectif avec des détails sur sa performance temporelle et énergétique.

Le mapping architectural est géré par l’outil, il associe à chaque unité de traitement les tâches

adéquates afin d’atteindre l’objectif choisi.

Dans la figure 35 on présente, à titre d’exemple, les modèles de performances des

tâches et les informations architecturales requises. Pour chaque tâche de l’application, on

associe un ensemble de valeurs de performances temporelles et énergétiques relatives à

chaque cible. Ces informations seront traitées et exploitées afin d’évaluer la performance de

tout le système lors de l’exploration selon l’objectif visé afin d’extraire une solution adéquate.

III.3.2 Résultats et analyse de l’espace d’exploration

 Une initialisation des paramètres d’exploration de l’espace de solutions est nécessaire.

En fait, l’utilisateur ou le concepteur a la possibilité de choisir une solution initiale aléatoire

ou une solution particulière selon ses connaissances sur le comportement de l’application en

terme de consommation. Les contraintes du système seront considérées lors de l’évaluation de

chaque solution afin de satisfaire le besoin. Dans cette étude de cas, la contrainte de temps

ainsi que le nombre maximal de ressources à exploiter sera imposé par le concepteur à l’outil.

Ceci va limiter le champ d’exploration à Nmax unités de traitement dés le départ selon les

contraintes. Par ailleurs, l’algorithme d’exploration permet d’extraire la solution la plus

prometteuse selon l’objectif en précisant les différentes unités et le partitionnement de

l’architecture finale qui peut contenir un nombre d’unités N’<Nmax.

J. Ktari 64

Figure 35 : Description de l’application sous Matlab

Graphe de tâches acycliques

Performances du
matériels

Pe
rf

or
m

an
ce

s p
ar

am
ét

riq
ue

s d
es

 tâ
ch

es

Initialisation des paramètres
d’exploration

J. Ktari 65

Ainsi, on extrait le nombre de ressources nécessaires à exploiter pour implémenter

l’application. L’outil guide ainsi le concepteur lors du choix de l’architecture cible en terme

de nombre et de type de ressources à un niveau avancé lors de la conception du produit.

 La figure 36 présente les résultats de l’exploration dans un espace contenant 6 unités

de traitement (DSPs) avec un objectif d’extraire une solution faible consommation respectant

une contrainte temps réel stricte. L’algorithme converge « rapidement : 1000 itérations» vers

une solution contenant 3 processeurs seulement dont la description est présentée dans la

figure 36-F. C’est grâce à l’heuristique du recuit simulé que le problème de complexité de

l’espace est réduit. Ainsi, l’utilisateur peut à priori connaître le nombre de DSP adéquat à son

application et le mapping architecturale qui minimisent la consommation de tout le système

tout en respectant les contraintes.

Dans la figure 36-A, on présente le résultat de l’exploration de l’espace de solution en

se basant sur la heuristique du recuit simulé. L’outil explore l’espace à travers cette

heuristique et converge vers une solution dont la consommation est moins de 75 mJ et dont

les détails architecturaux sont présentés dans la figure 36-F. Avec cette heuristique

d’exploration, l’outil atteint une solution assez bonne et rapidement en la comparant à celle

extraite par une recherche « assez complète ». D’ailleurs, dans la figure 36-B, on présente à

titre indicatif l’espace de solutions « globale » exploré à travers une recherche aléatoire. Il est

à signaler qu’avec cette heuristique « intelligente », un gain de temps dans la recherche de la

bonne solution est prouvé. Pour plus de lisibilité, la figure 36-D montre l’évolution de la

surface et de la consommation pour diverses solutions architecturales dont le nombre de

ressources de traitement est variable : de deux à six processeurs.

La figure 36 C-D montre aussi l’évolution de l’énergie en fonction de la surface et/ou

le temps permettant ainsi une connaissance détaillée sur le domaine de variation de la

consommation selon le nombre d’unités de la solution.

J. Ktari 66

Figure 36 : Résultats de l’exploration

A B

C D

E

F

N° tâche
Affectation: DSP(i)

Performances
temporelles et
énergétiques

Recherche aléatoireRecherche heuristique Solution retenue

Sol : 5 DSPs

Sol : 4 DSPs

Sol : 3 DSPs

Sol : 2 DSPs

3D

J. Ktari 67

Ainsi, le concepteur a la possibilité d’extraire d’une part l’architecture cible adéquate

pour son produit avec un minimum d’informations paramétrables à un niveau d’abstraction

assez élevé lors de la conception. Par ailleurs, l’outil propose un mapping adéquat des tâches

de l’application afin d’avoir un système qui répond à l’objectif et aux contraintes. Parmi les

points clefs de cette exploration:

- Le paramétrage du nombre de ressources de l’architecture cible à

implémenter et le paramétrage des modèles d’estimation en fonction de

l’architecture et de l’application,

- La mutli granularité des modèles d’estimation : en fait, au cours de ce travail,

les modèles, proposés dans le chapitre suivant, tiennent compte de la

granularité de l’application. C’est le cas de l’application MPEG-2 où on a

proposé des modèles d’estimation au niveau tâches, au niveau application

pour l’étendre au niveau standard vidéo (Pal, Secam et NTSC).

III.4 Conclusion

Dans ce chapitre, on a traité l’aspect faible consommation dans les systèmes embarqués.

Une méthodologie et un environnement d’exploration basse consommation de l’espace de

solutions sont proposés et mis en place. Cet environnement exploite des modèles

d’estimation et de performances temporels et énergétiques riches qui tiennent compte de

nombreux paramètres algorithmiques et architecturaux. Ceci a permis de dégager les

caractéristiques et les mécanismes nécessaires afin d’extraire une solution architecturale qui

répond aux besoins. Les points clés de ce problème sont abordés à travers une méthode

d’analyse paramétrique et une heuristique d’exploration de l’espace basée sur le recuit simulé.

Comme suite, il est intéressant d’exploiter cet environnement pour explorer l’espace de

solutions d’une application plus significative comme MPEG2 afin de valider l’approche.

D’ailleurs au cours de ce travail, des modèles paramétrables de MPEG2 sont établis à divers

niveaux de granularité. Ils seront détaillés dans le chapitre suivant.

J. Ktari 68

Expérimentations
et Etude de cas

CChhaappiittrree

IIVV

J. Ktari 69

Chapitre IV. Expérimentations et étude de cas

IV.1 Introduction

Dans les chapitres précédents, on a présenté les approches de modélisation et

d’estimation de la consommation, ainsi que la nouvelle méthodologie d’exploration basse

consommation de l’espace des solutions. L’objectif de ce chapitre est d’une part, partir de

quelques applications de traitement de signal standards et d’extraire les paramètres existants

et influants sur la consommation et d’autre part, estimer la consommation (énergie &

puissance) des DSPs et FPGA afin d’explorer l’espace des solutions. Par la suite, ces

estimations seront validées par mesures pratiques sur carte tout en jouant sur les paramètres

dégagés. Ceci permet d’explorer l’espace des solutions possibles et d’envisager la meilleure

solution dans le cadre de l’adéquation algorithme architecture. Dans ce chapitre, les lois ou

modèles de consommation sont établis au début pour des applications « classiques » : la

Transformé en Cosinus Discret (DCT) et la Transformé de Fourier Rapide (FFT). Ensuite,

une étude énergétique détaillée sur MPEG-2 est menée afin d’explorer son espace de

conception. Et afin de valider l’approche proposée, une formulation mathématique basée sur

la probabilité est établie.

IV.2 Filtre à réponse impulsionnelle finie

 Un filtre numérique non récursif aussi appelé filtre RIF pour "Réponse Impulsionnelle

Finie" est un filtre numérique dont la sortie ne dépend que des échantillons d'entrées présents

et passés. Un tel filtre a une fonction de transfert de type polynomiale. L’expression de celle-

ci est la suivante :

∑
−

=
−=

1

0
][*][][

N

k
knxkbny (18)

x[n] : représente l’entrée du filtre,

b[k] : représente les coefficients du filtre,

y[n] : représente la sortie du filtre,

N : l’ordre du filtre.

La firme Texas Instrument fournit avec son outil Code Composer le cœur de cette

application. Son étude montre qu’elle est paramétrable en fonction de l’ordre du filtre. Ce

J. Ktari 70

paramétrage permet d’expertiser l’espace des solutions possibles de l’application. Et afin

d’étudier l’influence de ce paramètre sur la consommation, les outils SoftExplorer et

CodeComposer sont utilisés.

La figure 37 montre la tendance de la consommation sur le C6201 en fonction de

l’ordre et de la fréquence. Le tableau 5 montre la variation du temps d’exécution selon les

paramètres de l’application sur 3 cibles C6201, C6701 & C5510. Une fois ces valeurs sont

dégagées par SoftExplorer, un modèle peut être établi en fonction de l’ordre du filtre pour

chaque cible relativement aux estimations de SoftExplorer.

Figure 37 : Tendance de la consommation sur un C6201

48
163264

12
8

25
6

50
100

200

0,0

2,0

4,0

6,0

8,0

10,0

12,0

temps_us

ordre

frequence(Mhz)

C6201

0,000

2,000

4,000

6,000

8,000

10,000

12,000

40 90 140 190 240

freq_Mhz

En
er

gy
_u

J
4
8
16
32
64
128
256

C6201

0

2

4

6

8

10

12

40 90 140 190 240

Freq_Mhz

Te
xe

_u
s

4

8

16

32

64

128

256

J. Ktari 71

Tableau 5 : Temps d’exécution estimé et modélisé de l’application en fonction de l’ordre

On remarque bien que le temps nécessaire à l’exécution du code sur le DSP varie

quasi-linéairement avec l’ordre. En fait, le temps double si on double l’ordre. Le rapport

Texe*freq/ordre se stabilise au fur et à mesure que l’ordre monte, d’où une erreur moins

importante. Pour l’ordre 8, l’erreur max de modélisation est de 7,5% alors que à partir de

l’ordre 16, l’erreur max de 3,6%. Cette erreur par rapport à SoftExplorer est due à la difficulté

de trouver une loi de variation qui est linéaire.

Le tableau 6 montre l’évolution de la puissance consommée par les 3 DSPs en

fonction de l’ordre et la fréquence.

Ordre 4 8 16 32 64 128 256
 C6201&C6701 Modèle : Texe(uS) = 2,006*ordre/freq(Mhz)

50Mhz ---
Texe_SE_uS 0,180 0,340 0,665 1,300 2,580 5,140 10,260

Texe_modele_uS 0,160 0,320 0,641 1,283 2,567 5,135 10,270
Erreur % 10,844% 5,600% 3,471% 1,243% 0,478% 0,090% -0,104%

100Mhz --
Texe_SE_uS 0,090 0,170 0,330 0,654 1,290 2,570 5,130

Texe_modele_uS 0,080 0,160 0,320 0,641 1,283 2,567 5,135
Erreur % 10,844% 5,600% 2,739% 1,847% 0,478% 0,090% -0,104%

200Mhz --
Texe_SE_uS 0,046 0,084 0,166 0,326 0,646 1,285 2,565

Texe_modele_uS 0,040 0,080 0,160 0,320 0,641 1,283 2,567
Erreur % 12,78% 4,48% 3,33% 1,55% 0,63% 0,09% -0,10%

 C5510 Modèle : Texe(uS) = 3,013*ordre/freq(Mhz)

50Mhz --
Texe_SE_uS 0,280 0,520 1,000 1,960 3,880 7,72 15,400

Texe_modele_uS 0,240 0,481 0,963 1,926 3,852 7,705 15,411
Erreur % 14,000% 7,385% 3,680% 1,714% 0,701% 0,187% -0,073%

100Mhz --
Texe_SE_uS 0,140 0,260 0,500 0,980 1,940 3,860 7,705

Texe_modele_uS 0,120 0,240 0,481 0,963 1,926 3,852 7,705
Erreur % 14,00% 7,38% 3,68% 1,71% 0,70% 0,19% -0,01%

200Mhz --
Texe_SE_uS 0,070 0,130 0,250 0,490 0,970 1,930 3,85

Texe_modele_uS 0,060 0,120 0,240 0,481 0,963 1,926 3,852
Erreur % 14,00% 7,38% 3,68% 1,71% 0,70% 0,18% -0,08%

J. Ktari 72

Tableau 6 : Puissance estimée et modélisée de l’application en fonction de l’ordre et la fréquence

Le tableau 7 récapitule les modèles énergétiques estimés du FIR pour les 3 cibles en

fonction de l’ordre et la fréquence. Il est bien clair selon ces modèles que la puissance varie

Ordre 4 8 16 32 64 128 256
 C6201 Modèle : P(W)=0,021* freq(Mhz)

50Mhz ---
P_SE_W 1,087 1,103 1,087 1,084 1,084 1,08 1,082

P_modele_W 1,050 1,050 1,050 1,050 1,050 1,050 1,050
Erreur % 3,404% 4,805% 3,404% 3,137% 3,137% 2,778% 2,957%
100Mhz --
P_SE_W 2,101 2,132 2,101 2,100 2,100 2,095 2,090

P_modele_W 2,1 2,1 2,1 2,1 2,1 2,1 2,1
Erreur % 0,048% 1,501% 0,048% 0% 0% -0,239% 0,478%
200Mhz --
P_SE_W 4,23 4,189 4,13 4,12 4,12 4,114 4,112

P_modele_W 4,2 4,2 4,2 4,2 4,2 4,2 4,2
Erreur % 0,709% -0,263% -1,695% -1,942% -1,942% -2,090% -2,140%

 C6701 Modèle : P(W) = 0,007*freq(Mhz)

50Mhz --
P_SE_W 0,33 0,35 0,351 0,365 0,365 0,369 0,370

P_modele_W 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Erreur % -5,11% 0% 0,28% 4,11% 4,11% 5,15% 5,41%
100Mhz --
P_SE_W 0,698 0,689 0,698 0,698 0,698 0,701 0,701

P_modele_W 0,7 0,7 0,7 0,7 0,7 0,7 0,7
Erreur % -0,29% -1,6% -0,29% -0,29% -0,29% 0,14% 0,14%
200Mhz --
P_SE_W 1,432 1,367 1,420 1,421 1,421 1,418 1,366

P_modele_W 1,4 1,4 1,4 1,4 1,4 1,4 1,4
Erreur % 1,62% -2,41% 1,41% 1,48% 1,48% 1,27% -2,49%

 C5510 Modèle : P(W) = 0,0027882*freq(Mhz)

50Mhz --
P_SE_W 0,146 0,147 0,148 0,148 0,148 0,148 0,148

P_modele_W 0,144 0,144 0,144 0,144 0,144 0,144 0,144
Erreur % 1,26% 1,39% 2,59% 2,59% 2,59% 2,59% 2,59%
100Mhz --
P_SE_W 0,268 0,270 0,271 0,271 0,271 0,272 0,272

P_modele_W 0,278 0,278 0,278 0,278 0,278 0,278 0,278
Erreur % -3,66% -2,90% -2,52% -2,52% -2,52% -2,14% -2,14%
200Mhz --
P_SE_W 0,513 0,514 0,517 0,518 0,518 0,518 0,518

P_modele_W 0,514 0,514 0,514 0,514 0,514 0,514 0,514
Erreur % -0,12% 0,07% 0,65% 0,84% 0,84% 0,84% 0,84%

J. Ktari 73

surtout en fonction de la fréquence et que l’énergie qui est produit de la puissance avec le

temps dépend principalement de l’ordre.

Tableau 7 : Modèles de l’application FIR en fonction de l’ordre et la fréquence

RQ: fréq (Mhz) Texe (uS) Puissance (W) Energie(uJ)

C6201 2,006*ordre/freq 0,021*freq 0,0421*ordre

C6701 2,006*ordre/freq 0,007*freq 0,014*ordre

C5510 3,013*ordre/freq 0,002788*freq 0,831 10-2 *ordre

IV.3 Transformé de Fourier Rapide

La transformation de Fourier Rapide (TFR), ou encore Fast Fourier Transform (FFT), a

été retenue comme deuxième application. L’étude de cette application montre qu’elle est

paramétrable en fonction du nombre de points d’entrée (8, 16, 32,…,4096). Ce paramétrage

permet d’expertiser l’espace des solutions possibles de l’application. (Ktari et al., 2007)

 Des tests sur cette application sont élaborés avec l’environnement Code Composer

afin de valider le code et d’extraire le nombre de cycles nécessaires à l’exécution du

programme en fonction du nombre de points. Et afin d’estimer la consommation (puissance &

énergie) du code de la FFT, on a exploité l’outil SoftExplorer (Version C) permettant de

fournir ces informations. La validation des estimations est faite par mesure sur carte DSP.

 Tableau 8 : Modèle temporel et énergétique de la FFT

DSP N_points Texe (uS) Puissance (W) Energie(uJ)

8..64 1668*N_points/freq

64..512 2120* N_points /freq C6201

512..2048 2880*N_points /freq

0,0194*freq produit

C6701 Même que C6201 0,0049*freq

8..64 2469* N_points /freq

64..512 3180* N_points /freq C5510

512..2048 4320* N_points /freq

0,0025*freq produit

J. Ktari 74

Validation par mesure

 Afin de valider cette méthodologie d’estimation de consommation en temps

d’exécution et en puissance, des essais sur carte ont été faits. On a exploité la carte C6701

disponible afin de tester le modèle de l’application FIR.

 La mesure du courant alimentant le cœur du DSP est faite à l’aide de l’oscilloscope

numérique de l’analyseur logique, Tektronix TLA 704 avec une sonde de courant.

 A partir du moment où une mesure est effectuée, il faut la refaire 6 fois, de cette façon

on réduit le risque d’erreur et on affine la moyenne obtenue (Loi de Student). Ces tests sont

faits pour chaque ordre et fréquence.

IV.4 MPEG-2

IV.4.1 Présentation et spécification
 Le principe fondamental de la vidéo est que l’œil humain a la faculté de retenir

pendant un certain temps (de l’ordre d’un dixième de seconde) toute image imprimée sur la

rétine. Il suffit donc de faire défiler un nombre suffisant d’images par seconde, pour que l’œil

ne se rende pas compte qu’il s’agit d’images distinctes. La télévision couleur balaye l’image

avec trois faisceaux, un par couleur primaire : rouge, vert et bleu. Ces signaux RVB sont

ensuite combinés linéairement en un signal de luminance (Y) et deux signaux de chrominance

(U et V). Concernant la vidéo numérique, elle est une suite de trames formées d’une matrice

rectangulaire de pixels. Pour la vidéo numérique couleur, 8 bits sont utilisés pour chaque

couleur RVB, soit donc 24 bits par pixel. (Sohn et al., 2007)

IV.4.1.1 Les standards et les formats des images

Dans une image, chaque pixel est représenté par la luminance et la chrominance. Les

composantes de chrominances sont souvent sous-échantillonnées de manière à avoir une seule

valeur de la composante U (resp. V) pour deux ou quatre pixels. Cette première réduction de

la quantité d'informations se base sur le fait que la perception humaine est plus sensible à

l'intensité de la lumière qu'à la couleur. On parle alors de format d'échantillonnage. Différents

formats d’échantillonnage ont été définis tels que : les formats 4 :4 :4, 4 :2 :2 et 4 :2 :0 (Figure

38).

Si nous prenons le 4 :2 :2 comme exemple, ce format indique que chaque pixel est

échantillonné en luminance, tandis qu’un pixel sur deux est échantillonné en chrominances.

J. Ktari 75

Figure 38 : Les formats d’échantillonnage

IV.4.1.2 L’algorithme du codage

La norme MPEG définit un ensemble d'étapes de codage qui permettent de transformer un

signal vidéo (numérisé dans un format normalisé) en un flux binaire (bitstream) destiné à être

stocké sur un support ou transmis dans un réseau. Le flux binaire est décrit selon une syntaxe

codée d'une manière normalisée pour pouvoir être restituée par n'importe quel décodeur

respectant la norme MPEG.

 L'algorithme du codage définit une structure hiérarchique (figure 39). Le groupe d'images

ou GOP est constitué d'une suite périodique d'images compressées. On distingue trois types

d'images compressées:

-Une image de type I (ou intra) est compressée d'une manière indépendante des autres

images, elles subissent donc un codage spatial ou intra,

-Une image de type P (ou prédite) est codée en utilisant une prédiction d'une image

antérieure de type I ou P d’où ce qu’on appelle le codage prédictif (codage inter)

-Une image de type B (ou bidirectionnelle) codée par double prédiction (ou interpolation)

qui utilise comme référence une image antérieure de type I ou P et une image future de type I

ou P obtenues par un codage bidirectionnel (codage inter).

Un GOP commence par une image I, puis une suite périodique d'images P séparées par un

nombre constant d'images B. La structure du GOP est alors définie par deux paramètres ; le

nombre d'images du GOP (N) et la distance entre images I/P (M). A l'entrée du codage, les

données vidéo sont présentées sous forme numérique où chaque pixel est codé par les trois

composantes (Y, U et V).

J. Ktari 76

Figure 39 : Structure hiérarchique du codage MPEG

Le grand principe du codage vidéo MPEG est «Ne jamais transmettre un élément

d'image déjà transmis», ce principe est réalisé par l’exploitation de deux types de

redondances : la redondance spatiale, qui exprime la corrélation entre les pixels d’une même

image et la redondance temporelle définissant la corrélation entre les pixels de deux images

successives.

 A cause de la différence des caractéristiques du signal vidéo dans les deux domaines spatial

et temporel, deux techniques de codage existent pour réduire ces redondances : le codage

Intra pour exploiter les redondances spatiales et le codage Inter qui vise à réduire la

corrélation temporelle.

En codage Intra, la première étape consiste à effectuer une analyse de la fréquence

spatiale à l’aide de la Transformée en Cosinus Discrète (DCT). Le résultat de cette

transformée est une suite de coefficients décrivant l’amplitude de chaque composante

fréquentielle présente dans le signal. Une transformée inverse reproduit le signal initial. La

DCT n’effectue pas de compression par elle-même. Après la DCT, les coefficients subissent

une quantification ce qui correspond à une première compression. Les coefficients sont

ensuite scrutés (soit en zigzag soit avec un balayage alternatif) pour accroître la probabilité de

commencer par les coefficients les plus significatifs (dont l’énergie est plus grande). Après le

dernier coefficient non nul, un code de fin de bloc (EOB = End of Block) est généré.

GOP 0 GOP 1 GOP 2 GOP n

GOB . . . I B B P P B

Slice 0
Slice 1
Slice 2

….
Slice n

MB0 MB1 MB2 ….. MB n

Cb Cr
Y

Sequence

Image

Bloc (8x8)

J. Ktari 77

En codage Inter, la réduction des redondances temporelles repose sur le principe de

transmettre uniquement les différences entre les images.

A l’entrée, le codeur inter reçoit une image (c’est l’image présente), l’estimation et la

compensation du mouvement s’effectuent en se référant à l’image précédente ou de référence.

Une image de différence qui contient l’erreur de prédiction est ainsi produite ainsi que des

vecteurs de mouvement

Cette image de différence est compressée en tant que telle par le codeur spatial

(codage intra). Elle subit ensuite avec les vecteurs de mouvement un codage entropique. Le

décodeur inverse le codage spatial et ajoute l’image de différence à l’image précédente pour

obtenir l’image suivante.

IV.4.1.3 Le codeur MPEG-2

Le codeur MPEG-2 est décomposé de : la DCT, l’IDCT, la quantification, la

quantification inverse, l’estimation de mouvement et la compensation de mouvement et le

codage entropique. Cette décomposition est illustrée dans la figure 40 suivante :

Figure 40 : Le codeur MPEG-2

IV.4.2 Modélisation de l’application
IV.4.2.1 Décomposition

Afin de modéliser la consommation du codeur MPEG-2, une décomposition de

l’application en module est faite. Avec le graphe (Figure 40-41), les fonctions qui

 DCT Codage
entropique

Estimation de
mouvement

Compensation
de mouvement

 IDCT

+

 +

Codage
entropique

Image compensée

Sequence d’images

Image erreur

Image erreur

Image prédite

Mouvement codé

Erreur codée

J. Ktari 78

correspondent à chaque bloc du codeur MPEG-2 sont distinguées. Ces fonctions seront

étudiées selon leurs importances. Les fonctions principales de MPEG-2 sont les suivantes :

 Estimation et compensation de mouvement

 Prédiction

 DCT et I-DCT

 Quantification et I-Quantification

 Des traitements divers (VLC et MUX)

IV.4.2.2 Le graphe de tâches

La décomposition en tâches de l’application du décodage MPEG-2 a permis l’obtention

du graphe (Figure 41). Les données échangées entre les tâches sont constituées de données,

d’images et de paramètres de codage. Diverses études sur MPEG-2 ont montré que plus que

90% du traitement (temps CPU) est dans les blocs (estimation et compensation de

mouvement, la DCT et la quantification). Donc ces fonctions sont les plus importantes à

étudier. (Kerman et al., 2003)

IV.4.2.3 Lois de consommation

Le tableau 9 montre l’évolution de la consommation pour 3 cibles de TI des diverses

tâches de MPEG.

J. Ktari 79

Figure 41: Des blocs du codeur MPEG-2 identifiés dans le code

main

Putseq

Init

Itransform

Rc_init_seq
Putseqhdr

Putseqdata

Putseqdisext

Putseqext

Predict

Motion_
estimati

Readframe

Putpict

Transform

Dct_type_e
stimation

Iquant_non_
intra

Predict mb

Frame ME

Read_y_u_v

Rc_init_pict

Fdct
Sub_pred

Rc_upbate_pict

Rc_start_mb

Putpictcodext
Putaddrinc

Putmbtype

Putcbp

Vbv_end_of_picture

stats

calcSNR

Addpred
Idct

Readparamfile

Readquantmat

Clearblock

Variance

Border extend

Idctrow

Idctcol

calcSNR1

Bdist2
Bdist1

Frame estimation

Estimation _Compensation _MVT
DCT

IDCT

VLC+MUX

VLC+MUX

quant_non_
intra

Quantification

J. Ktari 80

Tableau 9 : Tableau récapitulatif

 C6201
F(MHz)/ Mapped T(mS) P(W) E(mJ)

DCT 1,700/F 0,0242 F 0,042
IDCT 1,107/F 0,0334 F 0,037

Quantification INTRA 6,760/F 0,0284 F 0,192
Quantification N-INTRA 4,525/F 0,0316 F 0,143

I-Quantification N-INTRA-MPEG1 2,298/F 0,0261 F 0,060
I-Quantification INTRA-MPEG1 2,420/F 0,0219 F 0,053
I-Quantification INTRA-MPEG2 4,489/F 0,0196 F 0,088

I-Quantification N-INTRA-MPEG2 4,310/F 0,0348 F 0,150
Erreur max(model % SoftExplorer) 5,4% 6,4% 8%

 C6701

F(MHz) / Mapped T(mS) P(W) E(mJ)
DCT 1,700/F 0,007 F-0,055 0,011
IDCT 1,107/F 0,0094 F-0,3199 0,007

Quantification INTRA 6,760/F 0,0074 F 0,050
Quantification N-INTRA 4,525/F 0,0093 F-0,365 0,042-1,651/F

I-Quantification N-INTRA-MPEG1 2,298/F 0,0079 F-0,1424 0,015
I-Quantification INTRA-MPEG1 2,420/F 0,0071 F 0,017
I-Quantification INTRA-MPEG2 4,489/F 0,0086 F- 0,220 0,038-0,987/F

I-Quantification N-INTRA-MPEG2 4,310/F 0,0096 F-0,3322 0,041-1,431/F
Erreur max(model % SoftExplorer) 5,4% 4,3% 5%

Erreur max(model % measure) 13,71% 7,5% 14,94%
 C5510

F(MHz) / Mapped T(mS) P(W) E(mJ)
DCT 3,30/F 0,00265 F 0,009
IDCT 06,25/F 0,00240 F 0,015

Quantification INTRA 14,07/F 0,00270 F 0,038
Quantification N-INTRA 9,285/F 0,00280 F 0,026

I-Quantification N-INTRA-MPEG1 5,0/F 0,00250 F 0,0125
I-Quantification INTRA-MPEG1 5.0/F 0,00250 F 0,0125
I-Quantification INTRA-MPEG2 9,230/F 0,00258 F 0,0235

I-Quantification N-INTRA-MPEG2 9,230/F 0,00260 F 0,024
Erreur max(model% SoftExplorer) 6,1% 8,4% 10%

 Ainsi on a établi divers modèles de consommation de chaque bloc de l’application

MPEG2 en fonction de la fréquence et de la cible (C55, C67 et C62). Les modèles temporels

dépendent seulement de la fréquence et de la cible vu qu’on travaille sur des blocs 8*8 (taille

fixe). En plus, on montre bien avec ces résultats que le C55 est un DSP faible consommation

qui est très efficace pour les applications soumises à une contrainte de puissance maximale.

Ces modèles d’estimation sont confrontés à des mesures sur carte DSP pour le C67. Par

ailleurs, ces modèles établis pour ce DSP présentent une erreur maximale de 14,9% sur

J. Ktari 81

l’énergie et 13,7% sur le temps. Pour les deux autres DSPs (C55 et C62), l’erreur présentée

est par rapport à l’outil SoftExplorer.

 Dans la section suivante, on présente les modèles énergétiques de l’estimation du

mouvement, du codage entropique et de la prédiction.

IV.4.2.4 Estimation de mouvement

Divers types d’images sont présentes dans un GOP (Group Of Picture) : I, P, B. Pour

chacun de ces types, un traitement spécifique est fait. Dans la majorité des cas, le type I

occupe 8,3% du GOP, 25% pour les P et 66,6% pour les B. (Figure 42)

Figure 42 : Les cas d’estimation de mouvement

Par ailleurs le format de la chrominance joue un rôle important dans la modélisation de

l’estimation de mouvement. En fait, plus on a d’information à traiter (Cb,Cr), plus ça

nécessite du temps.

Figure 43 : Format des chrominances

Chrom_format Macroblock Application

4:2:0 (6 blocks) YYYYCbCr television, divertissement.

4:2:2 (8 blocks) YYYYCbCrCbCr
environnement de production
studio, équipement d’édition

professionnel

4:4:4 (12 blocks) YYYYCbCrCbCrCb
CrCbCr

Traitement et calcul
graphique

Estimation de
mouvement

I-Type P-Type B-Type

Pas de traitement Full search
Dist2
Frame estimate
…….

Full search
Dist2
Frame estimate
…….

8,3% 25% 66,6%

J. Ktari 82

Dans le tableau suivant, on présente les divers modèles énergétiques de l’estimation de

mouvement pour le C67, C55 et le C62. Les validations sur carte DSP sont faites pour le C67.

Tableau 10 : Estimation de consommation de l’estimation de mouvement (Mode Mapped)

 C6701 (mesures)

F(MHz) T(mS) P(W) E(uJ)

Estimation de mouvement

4:4:4

4:2:2

4:2:0

2,452*height
*width /F

1,635*height
*width /F

1,226*height
*width /F

0,0079F

19,370*height*width

12,916*height*width

9,685*height*width

Erreur max (modele % mesure) 3% 4,3% 5,8%
 C6201

F(MHz) T(mS) P(W) E(uJ)

Estimation de mouvement

4:4:4

4:2:2

4:2:0

2,452*height
*width /F

1,635*height
*width /F

1,226*height
*width /F

0,0256 F

62,77*height*width

41,85*height*width

31,38*height*width

Erreur max (modele % mesure) - - -

 C5510

F(MHz) T(mS) (Code Composer) P(W) E(uJ)

Estimation de mouvement

4:4:4

4:2:2

4:2:0

6,924*height
*width /F

 4,616*height
*width /F

 3,462*height
*width /F

0,00249 F

 17,24*height*width

 11,49*height*width

 8,62*height*width

Erreur max (modele % mesure) - - -

IV.4.2.5 Codage entropique

Après la quantification, la matrice de coefficients de la DCT comporte donc des

termes nuls. Le codage permet de gérer plus efficacement ces coefficients. Quand une suite de

valeurs identiques se présente, comme des zéros, le codage émet simplement le nombre de

zéros plutôt que toute la suite de bits nuls. Le tableau 11 montre à titre d’exemple la

consommation de ce codage.

J. Ktari 83

Tableau 11 : Estimation de consommation du codage entropique (8*8)

 C6201
F(MHz) T(mS) P(W) E(mJ)

VLC 5,660/F 0,0283 F 0,160
 C6701

VLC 5,660/F 0,0074 F 0,041
 C5510

VLC 10,890/F 0,00259 F 0,028

IV.4.2.6 Prédiction et compensation
De même que l’estimation de mouvement, le modèle de la prédiction et la

compensation dépend de la fréquence, la dimension de l’image et de la chrominance. (Tableau

12)

 Tableau 12 : Estimation de consommation de la prédiction et compensation

 C6701

F(MHz) T(mS) P(W) E(uJ)

Predi-Comp

4:4:4

4:2:2

4:2:0

0,201*height
*width /F

0,134*height
*width /F

0,101*height
*width /F

0,0074F

1,487*height*width

0,991*height*width

0,747*height*width

Erreur max (modele % mesure) 3,21% 5% 7,4%

 C6201

F(MHz) T(mS) P(W) E(uJ)

Predi-Comp

4:4:4

4:2:2

4:2:0

0,201*height
*width /F

0,134*height
*width /F

0,101*height
*width /F

0,0295 F

5,929*height*width

3,953*height*width

2,979*height*width

Erreur max (modele % mesure) - - -

 C5510

F(MHz) T(mS) P(W) E(uJ)

Predi-Comp

4:4:4

4:2:2

4:2:0

0,529*height
*width /F

0,352*height
*width /F

0,264*height
*width /F

0,0029 F

1,534*height*width

1,022*height*width

0,767*height*width

Erreur max (modele % mesure) - - -

J. Ktari 84

MPEG2 Function Consumption / C6701 / 100 MHz

0
0,2
0,4
0,6
0,8

1

DCT IDCT Q-INTRA Q-N-
INTRA

IQ-INTRA IQ-N-
INTRA

Motion Pred-
Comp

VLC

P_
W

IV.4.3 Répartition du temps CPU et de la puissance

En se basant sur les divers modèles proposés en temps et en puissance, une répartition

du temps CPU et de la puissance des diverses tâches sont établies. Le bloc « estimation de

mouvement » occupe la plus grande part du temps CPU. Pour une image de taille 128*128

4 :2 :2 s’exécutant sur un C6701 à 100 MHz, l’estimation de mouvement occupe 70,6% du

temps. (Figure 44)

Figure 44 : Répartition du temps CPU

Pour la puissance, la différence de consommation entre les diverses taches varie de 10 à 20%

à une fréquence donnée. (Figure 45)

Figure 45 : Répartition de la puissance

Pour la consommation en énergie, l’estimation de mouvement est la tâche la plus

importante. En effet, l’énergie suit la même répartition temporelle de la figure 44 puisque la

puissance varie légèrement à une fréquence fixe. L’énergie consommée par cette tâche est de

l’ordre 74%.

C6701/ 100 MHz / MPEG2 / 128*128 4:2:2

0

50

100

150

200

250

300

DCT
ID

CT

Qua
nti

fic
atio

n

I -Qua
nti

fic
atio

n

Esti
m M

VT
VLC

Pred
ic_

Com
p

T_
m

S

Répartition du temps d’exécution
C6701 100 MHz MPEG2

 4:2:2 128*128

5,9%

70,6%

7,6%
5,8%2,3%1,5%

6,3%
DCT
IDCT
Quantification
I-Quantification
Estim MVT
VLC
Predic_Comp

J. Ktari 85

Energy C6701 MPEG2 4:2:2 128*128

5%
5%

74%

7%
6% 1%2%

DCT
IDCT
Quantification
I-Quantification
Estim MVT
VLC
Predic_Comp

Figure 46 : Répartition de dissipation énergétique

IV.4.4 Modèle haut niveau MPEG2 (du pixel à l’image)

Une fois que toutes les applications nécessaires sont modélisées, le modèle de

l’application MPEG2 peut être obtenu en cumulant tous les modèles (Tableau 13). Prenons le

cas du traitement d’un GOP (12 I/S) avec des images 4 :2 :2 de taille 128*128. Dans chaque

image, il y a 256 blocs de taille 8*8, et puisque la chrominance est généralement de type

4 :2 :2, une matrice supplémentaire de taille 128*128 pour (Cr et Cb) va être ajoutée au

traitement.

Tableau 13 : Modèle général de MPEG2

Mapped C6701

F(MHz) T(mS) P(W) E(mJ)

MPEG2

4:4:4

4:2:2

4:2:0

41,713*height* width
*N_GOP /F

27,809*height* width

*N_GOP /F

20,856*height* width
*N_GOP /F

0,0076 F

0,317*height*width*N_GOP

0,211*height*width*N_GOP

0,158*height*width*N_GOP

 C6201

F(MHz) T(mS) P(W) E(mJ)

MPEG2

4:4:4

4:2:2

4:2:0

41,713*height* width
*N_GOP /F

27,809*height* width

*N_GOP /F

20,856*height* width
*N_GOP /F

0,0286 F

1,192*height*width*N_GOP

0,795*height*width*N_GOP

0,596*height*width*N_GOP

J. Ktari 86

 C5510

F(MHz) T(mS) P(W) E(mJ)

MPEG2

4:4:4

4:2:2

4:2:0

111,669*height* width
*N_GOP /F

74,446*height* width

*N_GOP /F

55,834*height* width
*N_GOP /F

0,00265 F

0,295*height*width*N_GOP

0,197*height*width*N_GOP

0,147*height*width*N_GOP

 Les modèles temporels obtenus pour l’application MPEG2 sont fonction de la

dimension de l’image, du nombre de GOP, de la cible et de la fréquence. Alors que les

modèles de puissance sont fonction de la fréquence du DSP.

IV.4.5 Du pixel au Standard

Le modèle de l’application MPEG2 est ainsi établi en fonction de la taille de l’image,

du nombre de GOP, de la cible et de la fréquence de fonctionnement. Un modèle général de la

consommation de MPEG2 sera établi en changeant la granularité de modélisation (du block

(8*8) à la norme (PAL, SECAM, NTSC…)). Ces modèles seront basés sur le modèle de

consommation de MPEG2. (Tableau 14)

Tableau 14 : Modèle général de la consommation pour les standards

Standard Caractéristiques T(mS) P(W) E(mJ)
ITU-R BT.601

NTSC
720*484, 30fps, 4:2:2 9,69 106 N_GOP /F 7,36 104 N_GOP

ITU-R BT.601
PAL/SECAM

720*575, 25fps, 4 :2 :2 11,51 106 N_GOP /F 8,74 104 N_GOP

SIF NTSC 352*240, 30fps, 4 :2 :0 1,76 106 N_GOP /F 1,33104 N_GOP
SIF PAL/SECAM 352*288, 25fps, 4 :2 :0 2,11 106 N_GOP /F

0,0076 F

1,59 104 N_GOP
 C6701 Mapped
Standard T(mS) P(W) E(mJ)

ITU-R BT.601 NTSC 9,69 106 N_GOP /F 2,56104 N_GOP
ITU-R BT.601 PAL/SECAM 11,51 106 N_GOP /F 3,04 104 N_GOP

SIF NTSC 1,76 106 N_GOP /F 0,46 104 N_GOP
SIF PAL/SECAM 2,11 106 N_GOP /F

0,00265 F

 0,55 104 N_GOP

 C6201 Mapped
Standard T(mS) P(W) E(mJ)

ITU-R BT.601 NTSC 25,9 106 N_GOP /F 6,89 104 N_GOP
ITU-R BT.601 PAL/SECAM 30,8 106 N_GOP /F 8,18 104 N_GOP

SIF NTSC 4,71 106 N_GOP /F 1,24 104 N_GOP
SIF PAL/SECAM 5,65 106 N_GOP /F

0,00265 F

1,48 104 N_GOP

 C5510 Mapped

J. Ktari 87

 Les modèles ainsi établis montrent bien que chaque norme vidéo a ses propres

caractéristiques, en terme de performance, de consommation. Par ailleurs, plus la taille de

l’image est importante, plus son traitement est long et nécessite plus de temps et d’énergie. Le

standard PAL/SECAM est le plus gourmand en calcul vu que la taille de l’image est plus

grande. Par contre, la puissance dépend essentiellement de la fréquence de fonctionnement du

DSP. La solution SIF PAL /SECAM paraît la moins coûteuse en terme d’énergie et temps de

calcul vu la petite dimension d’images à traiter. Ce qui implique une image moins nette. Ici, le

critère QoS(Qualité de Service) intervient afin de gérer le compromis qualité d’images/

performance et énergie.

IV.4.6 Conclusion

Le modèle de l’application MPEG2 est ainsi établi en fonction de la taille de l’image,

du nombre de GOP, de la cible et de la fréquence de fonctionnement. Et ceci bien entendu en

se basant sur des mesures et des simulations pour les différents blocs de l’application. Et par

la suite extraire un modèle général de la consommation de MPEG2 en changeant la

granularité de modélisation (du block (8*8) à la norme (PAL, SECAM…)). Une fois ces

modèles sont établis, il est intéressant de les exploiter lors de l’exploration de l’espace des

solutions logicielles. En se basant sur les résultats trouvés, et en supposant que le DSP permet

de stocker l'ensemble des données en mémoire interne, on remarque bien que les temps

d’exécution sur une architecture monoprocesseur seront importants. En effet, avec une telle

architecture, les contraintes temporelles ne seront pas respectées pour des images de grandes

tailles. D’où l’intérêt d’exploiter et explorer des architectures multiprocesseurs.

IV.5 MPEG2-Exploration de l’espace des solutions

Afin de concrétiser l’approche d’exploration à travers l’environnement développé au

cours de ce travail, une deuxième étude sur MPEG 2 est menée. En fait, une telle application

nécessite généralement une architecture multiprocesseur voir avec un ASIC comme

accélérateur. D’ailleurs, une telle application est généralement implémentée avec d’autres

fonctionnalités dans les applications mobiles actuelles (exemple : GSM). Pour cela, un espace

de conception multiprocesseur est exploité, cet espace se compose d’une bibliothèque six

DSPs (2*C5510, 2*C6701 et 2*C6201) communicant via un bus PCI partagé. L’objectif de

cette exploration est d’extraire une solution basse consommation avec une contrainte stricte

J. Ktari 88

sur le temps. C’est à l’environnement d’extraire le meilleur mapping architectural ainsi que le

nombre de ressources (DSPs) adéquat (de deux à six ressources). Le tableau suivant montre

les résultats de l’exploration basse consommation où chaque tâche est affectée à un DSP

parmi les trois choisis par l’outil.

Tableau 15: Les meilleures solutions choisies par l’environnement

Ce tableau montre bien que l’architecture adéquate pour cette application est de

préférence composée de trois DSPs. Le C62 n’est pas à priori adéquat pour cette application,

en fait il n’est pas orienté pour les applications basse consommation. Par ailleurs, cette

exploration montre bien que la consommation de l’application peut changer en variant le

mapping des tâches. (Ktari et al., 2008a)

Une fois l’exploration basse consommation est faite, la question qui se pose est : Est

ce que les résultats sont précis ou pas tellement. Afin de répondre à cette question, on présente

dans la section suivante la technique de validation de l’approche basée sur la probabilité et les

statistiques.

IV.6 Fiabilité de l’approche

Lorsqu’on parle de mesures ou de résultats des instruments de mesure, il y a plusieurs

concepts qui sont souvent confondus avec d’autres comme la distinction entre la justesse et la

précision. En fait, la justesse se réfère à la différence entre la mesure et la valeur réelle. Elle

ne peut être discutée de façon significative que si la valeur réelle soit connue. Mais la

précision se réfère à la distribution de la mesure. Par ailleurs, dans tout type d’estimation, des

erreurs se présentent que ce soit à cause du processus d’estimation ou bien à cause des

moyens de mesures. (Figure 47)

MPEG2 - 1 GOP (Group of Picture)
Architecture 2*C5510 & C6701 1*C5510 &2*C6701 2*C5510 & C6701
Temps (mS) 70.61 53.36 65.67

Puissance moyenne (W) 1.13 1.61 1.22
Energie (mJ) 86.57 85.91 80.12

Mapping /(DSP)

1erC5510 : (A)
2eme C5510 : (B)
1er C6701 : (C)
2eme C6701: (D)

MPC / (C)
DCT / (A)
IDCT / (B)
Quant / (A)
IQuant / B)
VLC / (B)

MPC / (C)
DCT / (D)
IDCT / (D)
Quant / (A)
IQuant / (A)
VLC / (D)

MPC / (C)
DCT / (B)
IDCT / (B)
Quant / (A)
IQuant / (C)
VLC / (A)

J. Ktari 89

Mathématiquement, lorsque plusieurs mesures d'une distribution normale sont faites,

la justesse peut être estimée en calculant la moyenne m et l’écart moyen σ. (Figure 48)

 Il est parfois possible d'identifier un intervalle de telle sorte qu’on peut affirmer que

cet intervalle "couvre" la valeur réelle de la mesure avec une certaine probabilité donnée P.

Cet intervalle est alors appelé un intervalle de confiance. Il indique la précision d’une

estimation car pour un risque α donné, l’intervalle est d’autant plus grand que la précision est

faible. Par ailleurs, dans la construction d'intervalle de confiance, 3 éléments interviennent: la

taille de l'échantillon, la fiabilité du résultat représentée par le coefficient de confiance et la

précision du résultat représentée par l'amplitude de l'intervalle de confiance. Ceci mène à faire

une étude faisant appel à la probabilité et les statistiques.

Rappelons que l’intervalle de confiance de l’espérance µ pour un coefficient de risque

α est :

Valeur

 Precision

 Justesse

Valeur réelle

D
en

si
té

 d
e

pr
ob

ab
ili

té

 Figure 47 : Différence entre la précision et la justesse

x

 f (x)

 m m+σ m-σ

Π2
1

σ
))(2

1exp(
2
1)(),(2

σσ
σ mxxfmN −−

Π
=⇒

 Figure 48 : Distribution normale des mesures

n
tX

n
tX σμσ αα ˆˆ +≤≤− (19)

J. Ktari 90

Quelque soit la valeur de n si X → N(µ , σ) et σ2 est inconnue, avec tα la variable de student

avec N-1 degrés de liberté.

Il est à noter aussi que la somme de deux variables gaussiennes indépendantes est elle-

même une variable gaussienne. Plus explicitement : Soient X1, X2 deux variables aléatoires

indépendantes suivant respectivement les lois N(m1,σ1²) et N(m2,σ2²). Alors, la variable

aléatoire X1+X2 suit la loi normale N(m1+m2, σ1²+σ2²). Cette propriété se démontre

directement (par convolution), ou indirectement (au moyen des fonctions caractéristiques). De

cette façon, on a un moyen pour estimer la consommation de 2 DSPs fonctionnant ensemble.

Supposons qu’on a la densité de probabilité du temps d’exécution Ft d’une tâche I ainsi

que la densité de probabilité de la puissance Fp, dans ce cas la densité de probabilité de

l’énergie (Ktari et al, 2008b) sera:

du
u

du
u
efuf

u
p

p

t

t
m

u
e

mu

pt
pt ∫∫

∞+

∞−

−
+

−∞+

∞− Π
==

)²]()²[(2/1

e exp
||

1
2

1)(*)(
||

1 (e)f σσ

σσ

Avec mt et mp la moyenne de la distribution du temps et de la puissance

respectivement. σt et σp représentent l’écart de la distribution du temps et de la puissance

respectivement

 Dans ce contexte, on se propose de déterminer un intervalle [m1, m2] qui a une

probabilité 1-α de contenir la moyenne m des estimations de la consommation globale. Pour

certaines tâches, la modélisation de la consommation de chaque processeur est faite par six

mesures sur carte. Pour d’autres taches, elle est faite avec l’outil SoftExplorer dont l’erreur est

±7% avec une confiance de 95%. (Figure 49)

 Des résultats (Ktari et al, 2008b) dans ce sens sont dégagés sur MPEG2. Les

estimations obtenues présentent une erreur de 2.3% pour un intervalle de confiance de 90%.

Ainsi, à partir des estimations de performance de chaque tâche, une validation de l’approche

globale d’estimation est montrée.

Application 1 /
DSP1..N

Tache1
Tache2
Tache3
Tache4

(20)

Outil Softexplorer

6 Mesures

Estimation ±7% avec une confiance de 95%.

Estimation ±k% avec une confiance de 95%
suivant la loi de student

 Figure 49 : Méthodologie de validation des estimations globales

J. Ktari 91

En fait, dans le tableau 16 on présente l’intervalle de confiance des diverses tâches

importantes de MPEG2 s’exécutant sur les DSPs (le 1er : C5510, le 2eme : C6201 et le 3eme

C6701).

Tableau 16: Précision de l’estimation globale de l’énergie consommée par MPEG2

Tâche

 DSP
Estimation

avec:
Intervalle de confiance

(Joule) Confiance X et σ estimés

Motion
estimation/

1
SoftExplorer 4J±7%

[4-0.28 4+0.28] 95% X =4
σ =0.27

Prédiction
/ 1 SoftExplorer 2J±7%

[2-0.14 2+0.14] 95% X =2
σ =0.13

DCT/ 3 6 Mesures [2.3-0.12 2.3+0.12]
2.3J±5.6% 95% X =2.30

σ=0.128
Quantif/ 2 6 Mesures [4.27-0.16 4.27+0.16]

4.27J±3.8% 95% X =4.27
σ=0.164

MPEG2
Estimation probabiliste

[12.57-0.297 12.57+0.297]

12.57J±2.3% 90% X =12.57
σ=0.712^0.5

Avec cette méthode, on a plus besoin d’acheter et d’exploiter des cartes multiprocesseur

pour estimer la consommation globale de l’application. Ceci permet de valider l’application

en terme de performance et de consommation tout en réduisant le time to market et le coût du

produit final. Ainsi, le concepteur sera guidé lors du choix de la plateforme adéquate pour son

application sans avoir recours à faire des manipulations sur carte pour connaître l’avantage

d’une telle solution par rapport à une autre. Ce qui simplifie le problème surtout pour les

nouvelles cartes dont l’alimentation des cœurs des DSPs n’est pas toujours accessible pour

faire des mesures.

IV.7 Conclusion

Dans ce chapitre, une étude sur la consommation de diverses applications est menée

afin de proposer des lois de performance de haut niveau caractérisant l’influence des

paramètres algorithmiques et architecturales sur l’énergie et sur la performance. Ces modèles

permettent d’élever le niveau de prise en compte de la consommation afin de permettre au

concepteur de pouvoir estimer la consommation du système au début du flot de conception.

Le concepteur peut ainsi paramétrer et dimensionner son système de façon à respecter les

diverses contraintes. Ce qui évite ainsi les retours en arrière intempestifs durant la conception

et permet de réduire le temps et le coût de développement.

J. Ktari 92

Et afin de réduire la complexité de l’espace des solutions, il est primordial de

développer dans les premières étapes du flot de conception des méthodes de partitionnement

et d’exploration pour compenser la croissance de la complexité des applications tout en

intégrant la consommation comme critère lors de la conception de ces systèmes autonomes.

Pour cela, une approche d’exploration basse consommation est présentée à travers un

environnement de conception. Cette approche est expérimentée sur l’application MPEG2,

puis validée à travers une étude probabiliste.

J. Ktari 93

Conclusions et perspectives

Le problème de la consommation d’énergie est devenu prédominant lors de la

conception des systèmes embarqués actuels. Dans ce contexte, ce travail étudie les méthodes

de conception basse consommation des systèmes. Il est à noter que l’un des problèmes de la

conception système est le partitionnement d’applications qui requiert l’utilisation de méthodes

complexes. En effet, le partitionnement sous contrainte de temps, basé sur un algorithme

d’ordonnancement avec un objectif de minimisation de la consommation est un problème NP-

difficile.

 On a étudié dans ce rapport les défis imposés par les architectures soumises à diverses

contraintes en particulier la consommation. Une méthodologie d’exploration basse

consommation est proposée ainsi qu’un environnement de conception. L’approche proposée

dans ce travail a permis de spécifier l’application et les contraintes à plusieurs niveaux de

granularités. Cette approche a permis aussi d’établir des modèles paramétriques de l’énergie

qui englobent la consommation de tout le système logiciel /matériel/communication. En fait,

les paramètres de l’application ainsi ceux de l’architecture seront considérés dans les modèles

de performance afin d’avoir des modèles assez riches. Et finalement, l’approche a permis

d’explorer efficacement l’espace des solutions basse consommation afin d’être capable de

choisir d’une façon efficace la solution architecturale adéquate où le nombre de ressources à

exploiter n’est pas connu à priori. En effet, le concepteur peut être confronté au problème du

choix du nombre de ressources à exploiter lors de la conception de son produit. Par ailleurs à

travers cette approche, le concepteur pourra paramétrer et dimensionner son système de façon

à respecter les diverses contraintes au début du flot de conception.

Perspectives

Malgré les gains obtenus avec les techniques développées, certaines améliorations

peuvent être apportées à ce travail, telle que la prise en compte dans l’estimation et

l’optimisation de la consommation des systèmes sur puce aussi bien les réseaux sur puce.

Cette prise en compte complexe nécessite une étude préalable.

Comme perspectives ouvertes par ce travail, citons l’intérêt d’étudier la gestion de la

puissance possible par les systèmes d’exploitation qui sont amenés à prendre de plus en plus

d’importance dans le domaine de la gestion de l’énergie. Ainsi, ils se situent à un niveau

stratégique de l’architecture pour gérer finement la puissance durant les ordonnancements des

J. Ktari 94

tâches. De plus, les architectures hétérogènes nécessitent parfois de répartir des systèmes

d’exploitation temps réel sur plusieurs unités. Là encore, il est nécessaire d’étudier des

approches de gestion/réduction de la consommation dans une telle architecture

logicielle/matérielle. Par ailleurs, la contrainte de puissance maximale supporté par

l’architecture cible n’est pas encore considérée lors de l’exploration de l’espace, elle sera

intégrée dans la nouvelle version de l’outil. Un raffinement des paramètres de l’heuristique est

aussi envisageable, ceci permettra d’éviter efficacement les minimums locaux et de converger

vers une solution assez performante.

J. Ktari 95

Références

(Abdennour, 2004) A. Abdennour, « Outil d’analyse et de partitionnement/ordonnancement
pour les systèmes temps réel embarqués », Thèse de Doctorat, Juin 2004, UBS, France.

(Abdennour et al., 2002) A. Azzedine, J-P Diguet, J.L Pillippe, “Large exploration for
HW/SW partitioning of multirate and aperiodicreal-time systems”, CODES 2002.
Proceedings of the Tenth International Symposium on on Hardware/Software Codesign, 2002
Page(s):85 – 90, Estes Park, Colorado, USA,

(Auguin et al., 2001) M. Auguin, L. Capella, F. Cuesta, E. Gresset. «Codef : a system level
design space exploration tool». In International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Salt Lake City, USA, May 2001.

(Baghdadi et al, 2002) A.Baghdadi, N. Zergainoh, WO. Cesario, A. A. Jerraya, «Combining a
Performance Estimation Methodology with a Hardware/Software Codesign Flow Supporting
Multiprocessor Systems», IEEE transaction on software engineering, vol. 28, no. 9 septembre
2002

(Bandyopadhyay et al., 2004) T. Bandyopadhyay, B. Susnata, B. Swapan, « Multi Processor
Scheduling Algorithm for tasks with Precedence Relation », TENCON 2004, proceedings
analog and digital techniques in electrical engineering, November 2004, Thailand.

(Beak et al., 2004) W. Baek, Y. Kim, J. Kim, «ePRO: A Tool for Energy and Performance
Profiling for Embedded Applications», in Proc. of International SoC Design Conference
(ISOCC'04), pp. 372-375, Seoul,Korea, October 25-26, 2004

(Benoit et al., 2004) P.Benoit, G.Cambon, M.Robert, G.Sassatelli «Architecture
reconfigurables, les processeurs du futur», La douzième session des journées des doctorants
DOCTISS’2004, Mars 2004, Montpellier.

(Bharat et al. 1999) P. Bharat Dave, G. Lakshminarayana, K. Jha, « COSYN: Hardware–
Software Co-Synthesis of Heterogeneous Distributed Embedded Systems ». IEEE Transaction
(VLSI) Systems, VOL. 7, NO. 1, MARCH 1999

(Bianco et al., 1998) L. Bianco, M. Auguin, G. Gogniat, A. Pegatoquet. «A path based
partionning algorithm for time constrained embedded systems design», In International
Symposium on Hardware/Software Codesign (CODES), Seattle,USA, March 1998.

(Brandolese et al., 2000) C. Brandolese, W. Fornacieri, F. Salice, D. Sciuto « An Instruction
Level Functionnality-Based Energy Estimation Model for 32 bits Microprocessor», In
Proceeding of DAC 2000, p346.

(Bossuet et al., 2003) L. Bossuet, W. Burleson, G. Gogniat, V. Anand, A. Laffely, J.L.
Philippe. «Targeting tiled architectures in design exploration», In 10th Reconfigurable
Architectures Workshop (RAW), Nice, France, April 2003.

J. Ktari 96

(Dick et al., 1998) R. P. Dick, N. K. Jha « MOGAC: A Multiobjective Genetic Algorithm for
Hardware-Software Co-Synthesis of Distributed Embedded Systems »IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (1998)

(Elleouet et al., 2006) D. Elleouet, Y. Savary, N. Julien,D. Houzet «A FPGA Power Aware
Design Flow» International Workshop on Power and Timing Modeling, Optimization and
Simulation, Patmos06, France

(Emmanuel et al., 2001) G. Emmanuel, A. Choquet-Geniet, «Ordonnancement de tâches
temps réel en environnement multiprocesseur à l’aide de réseaux de Petri» Real-Time
Systems, RTS’2001, March 6-8 2001, Paris.

(Fei et al., 2003) Y.Fei, S. Ravi, A.Raghunathan, N.Jha, «Energy estimation for extensible
processors», In Proceeding of the Design Automation and Test in Europe (DATE
03),Germany.

(Ghali et al., 2004) K. Ghali, O. Hammami, I. Hermann, « Multiobjective Design of
Embedded Processors on FPGA Platforms », 24th International Conference on Distributed
Computing Systems Workshops ICDCS, Mars 2004, Japan.

(Garcia et al., 2005) A. Garcia, L. Gonzales, R. Felix, «Power consumption management on
FPGAs» 15th International Conference on Electronics, Communication and Computers, 2005,
Mexique.

(Guitton et al., 2003) P. Guitton-Ouhamou, C. Belleudu, M. Auguin, « Energy Optimization
in Hw/Sw Tool : Design of Low Power Architecture System ». IEEE International Workshop
on System on Ship for Real-Time Systems - IWSOC'2003, Calgary, Canada, Juin 2003.

(Havinga et al., 2000) J.M. Havinga, J.M. Smit «Design techniques for low power systems »
Journal of Systems Architectures, Vol 46:1, 2000.

(Heikkinen et al., 2002) J. Heikkinen, J. Sertamo, T. Rautiainen, and J. Takala, “Design of
Transport Triggered Architecture Processor for Discrete Cosine Transform,” 15ème Annual
IEEE International ASIC/SOC Conference, Sept. 2002.

(ITRS, 2004) ITRS, «International Technology Roadmap for Semiconductors», Edition 2004,
http://public.itrs.net.

(Julien et al., 2004) N. Julien « Une approche logicielle de la consommation dans les systèmes
embarqués », Premier Congrès International de Signaux, Circuits & Systèmes Mars 2004,
Tunisie.

(Kappagantula et al., 2003) V. Kappagantula, N. Mahapatra, « PAP: PowerAware Partitioning
of Reconfigurable Systems». HPCA9/SSRS ’03 Anaheim, California USA

(Ktari et al., 2005) J. Ktari, J. Laurent, M. Abid, N. Julien, «Estimation de la consommation
logicielle dans un système embarqué : Etude de cas », in Proc. FTFC'2005, pp 55-59, 18-19
Mai 2005, France.

J. Ktari 97

(Ktari et al, 2007) J. Ktari, M. Abid, «System Level Power and Energy Modeling for Signal
Processing Applications», 2 nd IEEE International Design and Test Workshop IDT, Egypt,
December 16-18, 2007.

(Ktari et al, 2008a) J. Ktari, M. Abid, «A Low Power Design Methodology Based on High
Level Models», ESA'08 - The 2008 International Conference on Embedded Systems and
Applications, Las Vegas, Nevada, USA (July 2008)

(Ktari et al, 2008b) J. Ktari, M. Abid,« Accuracy of Low Power Estimation for Embedded
Application», FTFC’08, 7ème journées d'études Faible Tension Faible Consommation, Mai
2008, Belgique.

(Kerman et al., 2003) Y. Kerman, J. Lu, l. Shipeng, «Practical real time video codec for
mobile device» IEEE-International Conference on Multimedia and Expo ICME03, Vol.I,
USA,

(Lacomme et al., 2003) P. Lacomme, C. Prins, M. Sevaux, « Algorithmes de graphes» Edition
Eyrolles ISBN 2-212-11385-4, 2003.

(Laurent, 2002) J. Laurent, «Estimation de la consommation dans la conception système des
applications embarquées temps réel», Doctorat de l’UBS, Décembre 2002, France.

(Laurent et al., 2007) J. Laurent, E.Senn, N Julien « Méthodes et outils d’estimation de la
consommation de code embarqué sur processeur », Revue Traitement et Systèmes
Informatique, volume 26 n°5, Mai 2007

(Li et al., 2000) E. A. Lee. «What's ahead for embedded software ? » IEEE Computer
Magazine, pages 18_26, September 2000.

(Li et al., 2003) T. Li, L K. John, «Run-time Modeling and Estimation of Operating System
Power Consumption », Proceedings of the International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2003, USA.

(Marteil et al., 2006) F. Marteil. «High Level Memory Hierarchy Optimisation». In EDAA
Ph.D. Forum at DATE, Munich, April 2006.

(Maalej, 2007) I. Maalej, «Exploration de haut niveau des architectures multiprocesseurs :
analyse et métriques», Doctorat de l’UBS, Octobre 2007, France.

(Minh et al., 2003) D Q. Minh, L. bengtsson, PL. Edefors « DSP-PP: A simulator /estimator
of power consumption and performance for parallel DSP architectures », Proc. 21st IASTED
International Conference Applied Informatics 2003, Austria.

(Nikolaidis et al., 2005) S.Nikolaidis, A.Chatzigeorgiou, T.Laopoulos, «Developing an
environment for embedded software energy estimation», Elsevier Computer Standards &
Interfaces, 2005.

(Noseda, 2002) Noseda A, «Etude du partionnement et de l’ordonnancement de tâches
cycliques sur une architecture distribuée composée d’un terminal mobile 3G et d’un serveur
de calcul» Mastère à Ecole Supérieure d'Ingénieurs de Marseille, 2002.

J. Ktari 98

(Rabaey et al.,1996) J.M. Rabaey, M. Pedram « Low Power design Methodologies »Edition
Kluwer Academic Publishers London 1996.

(Russell et al.,1998) J. Russell, M. Jacome, «Software power estimation and optimization for
high-performance 32-bit embedded processors» in Proc. Int. Conf. Computer Design, pages
328-333, October 1998.

(Sequence, 2005) www.sequencedesign.com

(Shin et al., 2002) D. Shin, H. Shim, Y. Joo, «Energy-Monitoring Tool for Low-Power
Embedded Programs», IEEE Design and Test off Computers, Juillet 2002, pp. 7 – 17.

(Stanley et al., 2004) J. Stanley, W. Nebel, Lkabous, «low power analysis using ORINOCO»,
Electronic Design Processes 2004, Avril 2004, Monterey, USA.

(Sciuto et al., 2002) D.Sciuto, F.Salice, L.Pomante, W.Fornaciari. «Metrics for design space
exploration of heterogeneous multiprocessor embedded systems», In International
Symposium on Hardware/Software Codesign (CODES), Estes Park, USA, May 2002.

(Sohn et al., 2007) J. Sohn, H. Kim, J. Jeong, E. Jeong, S. Lee, «A low power multimedia
SoC with fully programmable 3D graphics and MPEG4/H.264/JPEG for mobile devices»,
ISLPED 2007, 238 – 243, USA

(Tiwari et al.,1996) V. Tiwari, S. Malik, A. Wolfe « Instruction Level Power Analysis and
Optimization of Software », Journal of VLSI Signal Processing 1996 Kluwer Academic
Publishers, Bouston.

(Tmar et al., 2007) H. Tmar, J-P. Diguet, A. Azzedine, J-L. Philippe, M. Abid «RTDT : a
Static QoS Manager, RT Scheduling, HW/SW Partitioning CAD Tool» Microelectronics
Journal (2007)

(Xilinx, 2007) www.xilinx.com

Publications scientifiques personnelles

Articles:

J. Ktari, M. Abid,« A Low Power Design Space Exploration Methodology Based on High
Level Models and Confidence Intervals», accepted for publication in JOLPE - ASP Journal of
Low Power Electronics, 2009.

J. Ktari, M. Abid, N. Julien, J. Laurent, « Power Consumption and Performance’s Library on
DSPs: Case Study MPEG2», Journal of Computer Science 3(3): 168-173, 2007, USA.

Communications:

J. Ktari, M. Abid, «A Low Power Design Methodology Based on High Level Models»,
ESA'08 - The 2008 International Conference on Embedded Systems and Applications, July
2008, Las Vegas, Nevada, USA

J. Ktari, M. Abid,« Accuracy of Low Power Estimation for Embedded Application»,
FTFC’08, 7ème journées d'études Faible Tension Faible Consommation, Mai 2008, Belgique

J. Ktari, M. Abid, «System Level Power and Energy Modeling for Signal Processing
Applications» , 2 nd IEEE International Design and Test Workshop IDT, Egypt, December 16-
18, 2007

F.B. Arfia, J. Ktari, M. Bousselmi, M. Abid, «Estimation de la consommation au niveau
algorithmique : application de la DCT et l’intra prédiction dans la norme de compression
vidéo H.264», ISIVC’06, CD-ROM 3rd International Symposium on Image/Video
Communications over fixed and mobile networks, Septembre 2006, Tunisie.

J. Ktari, J.Laurent, M.Abid, N.Julien, « Estimation de la consommation logicielle dans un
système embarqué : Etude de cas », FTFC'2005, 5ème journées d'études Faible Tension Faible
Consommation, Mai 2005, France.

République Tunisienne
Ministère de l’Enseignement Supérieur,

de la Recherche Scientifique
et de la Technologie

Université de Sfax

École Nationale d’Ingénieurs de Sfax

 Cycle de Formation Doctorale
dans la Discipline Génie

Electrique
Ingénierie des Systèmes

Informatiques

Thèse de DOCTORAT

N° d’ordre: 2009− 96

APPROCHE ET ENVIRONNEMENT D'EXPLORATION

ARCHITECTURALE BASSE CONSOMMATION

Jalel KTARI

نحن مهتمون في هذا العمل .مستويات عدةبحث يعالج على أصبح موضوع الطاقيالتحسين من الاستهلاك :الخلاصة
نقدم نماذج عالية الأداء ونقترح . نعتبر هذه المشكلة في مجملها على النظام برمته. الطاقةمنخفضةال الإلكترونياتلاستكشاف

قترح ون. على الاستهلاك التقنية والعوامل الخوارزمية نهج للنظر في عدد من ويسمح هذا ال. الإستهلاكتقنية تسمى منخفضة
 على عدة مستوياتالحلولويسمح هذا الكشف عن . البحثوضع نموذج للاستدلال على الأداء الكلي للنظام لاستخدامها عند

 . الحلختيار المستوى الذي يضمن دقة وسرعة بإ

Résumé : L’optimisation de la consommation est devenue un sujet de recherche traité à
plusieurs niveaux. Nous nous intéressons dans ce travail à l’exploration d’architecture basse
consommation afin de déduire celle qui répond au mieux aux besoins. Pour cela divers travaux
focalisent sur un aspect particulier à savoir l’estimation de la consommation, modèle de
performance, technique d’exploration. En plus plusieurs travaux traitent l’exploration
d’architecture au niveau composant. Nous considérons ce problème dans sa globalité au niveau
de tout le système. Nous proposons des modèles de performances riches et nous proposons une
technique d’exploration dite basse consommation. Cette approche permet de considérer un
certain nombre de paramètres algorithmiques et architecturaux sur la consommation. Un modèle
complet est proposé afin de déduire les performances globales du système qui seront utilisées
lors de l’exploration à travers une technique basée sur le recuit simulé. Et afin de valider
l’approche, une étude probabiliste est faite afin de montrer la fiabilité des résultats trouvés.

Abstract: Power consumption is nowadays a critical design constraint for circuits and systems.
To guide efficiently early choices in the design flow, high-level estimations must be available.
In order to address the different abstraction levels and the various targets, a global methodology
is proposed here to elaborate suitable models. In this work we are interested in exploring low
consumption architectures in order to deduce that which meet(s) the constraints most. For this
aim, several low power methodologies were established. They treat the energy consumption
optimization problem at several levels especially on specific components like the hardware, or
on the software, or on the communication or on the memory separately, and seldom on the
whole system. However, as target architectures become complex, a global methodology that
offers more efficient low power exploration become necessary. In fact, we propose a low power
methodology based on rich performances models as well as a low power exploration technique.
A complete model is proposed in order to deduce the total performances of the system
according to the architecture and the application parameters.

 المفاتيح:الاستهلاك الطاقي،تصميم، معالج،بحث مجال إلكتروني
Mots clés: Faible consommation, Exploration de haut niveau, Co-design, FLPA, heuristique.
Key-words : Low power design, Space exploration co-design, High level models, Accuracy

	Binder2
	Binder1
	DE-3C-005D page de garde 3C_3
	blanc
	DEDICACE
	A mon père & à ma mère
	Auxquels
	Et une vie heureuse
	REMERCIEMENTS

	blanc
	Redaction_jalel_depot
	pub_ktari
	J. Ktari, M. Abid, «A Low Power Design Methodology Based on High Level Models», ESA'08 - The 2008 International Conference on Embedded Systems and Applications, July 2008, Las Vegas, Nevada, USA

	blanc
	DE-3C-005D page de garde 3C_3
	Binder1.pdf
	DE-3C-005D page de garde 3C_3
	blanc
	DEDICACE
	A mon père & à ma mère
	Auxquels
	Et une vie heureuse
	REMERCIEMENTS

	blanc
	Redaction_jalel_depot
	pub_ktari
	J. Ktari, M. Abid, «A Low Power Design Methodology Based on High Level Models», ESA'08 - The 2008 International Conference on Embedded Systems and Applications, July 2008, Las Vegas, Nevada, USA

	blanc
	DE-3C-005D page de garde 3C_3

	DE-3C-005D page de garde 3C_3

