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Abstract. Designing embedded systems is a challenging task during which wrong choices can lead to extremely
costly re-design loops, especially when these wrong choices are made during the algorithm specification and
the mapping over the selected architecture. In this paper we propose a high-level approach for design space
exploration, using a usual standard language as input. More precisely we present the two first steps of the Design
Trotter framework: (i) the specification step and its underlying internal model (HCDFG: Hierarchical and Control
Data Flow Graph) and (ii) the characterization step which takes place very early in the design flow. Indeed,
once transformed into our internal representation, the specification is rapidly and automatically characterized and
explored at the algorithmic level. The framework provides the designer with metrics so that he can evaluate, very
early in the design process, the impact of algorithmic choices on resource requirements in terms of processing,
control, memory bandwidth and potential parallelism at different levels of granularity. The overall aim of our
approach is to improve the algorithm/architecture matching that sorely influences the implementation efficiency in
terms of silicon area, performances and energy consumption. We give examples which illustrate how designers can
refer to the outcomes of the Design Trotter framework in order to select or build suitable architectures for specific
applications.
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1. Introduction

The context of our work is the hardware/software co-
design of embedded multimedia applications. In this
domain, algorithmic and architectural choices have a
strong impact on the power vs. performance trade-off,
which is a key issue regarding the evolution of mo-
bile electronic devices. Thus, designers have to face
a number of challenges. Three main situations can
be considered: (i) a chosen target architecture must
be used, in that case optimizations have to be carried
out on the specification and its implementation; (ii)
the specification cannot be changed, in that case op-
timizations have to be performed on the architecture

which has to be selected and/or tailored to match the
specification and (iii) neither the specification nor the
architecture are fixed, in that case optimizations have
to be performed on the two aspects, using feedbacks
between them. In all cases the designer needs relevant
knowledge about the specification in terms of opera-
tion granularity, potential parallelism, orientation (pro-
cessing, control, memory) and data locality (memory
hierarchy).

Consequently, a fast automated exploration process
is required to alleviate the designer from the tedious
task consisting in the evaluation of a large number of
potential solutions, based on the previously mentioned
algorithmic options.
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We tackle this problem by considering a high-
level algorithmic approach using a standard procedu-
ral language (currently the C language) for specifying
the application. This specification is then automati-
cally transformed into a completely graph-based model
(HCDFG) which enables a fast and automatic charac-
terization and exploration of the application in terms
of algorithmic options. Namely we consider a system
as event-based at the highest levels of hierarchy—
Hierarchical Finite State Machines (HFSMs) or task-
graphs (TG)-encapsulating function calls. These func-
tions are described with Hierarchical and Control
Data-flow Graphs (HCDFGs), presented in this pa-
per. It is the responsibility of the designer to choose
the granularity of the specification, and therefore his
responsibility to choose what should be described by
means of HFSMs/task-graphs and HCDFGs. However,
since this task is not trivial the designer can use the
characterization step (presented in Section 5) to get
metrics about the control or data-flow orientation of
the functions and iterate towards the most appropriate
separation. It is worth noting that tools are available
for simulation, formal proof and code generation at the
event-based level. The goal of our work is to perform
automatically and rapidly the tedious algorithmic ex-
ploration for the functions called from the event-based
level.

1.1. Overview of the Design Trotter Framework

The work presented in this paper is part of a com-
plete design framework called Design Trotter [1]. De-
sign Trotter is a set of cooperative tools which aim at
guiding embedded system designers early in the de-
sign flow by means of design space exploration, as
summarized in Fig. 1. It operates at a high-level of ab-
straction (algorithmic-level). Firstly the different func-
tions of the applications are explored separately. For
each function, the two first steps (presented in this pa-
per) include the construction of the graph (HCDFG
model) and the characterization by means of metric
computations. Then a scheduling step, presented in
[1] is performed for all the data-flow graphs and loop
nests within the functions. The design space explo-
ration is performed by means of a large set of time
constraints (e.g., from the critical path to the sequen-
tial execution). Finally, the results are combined to pro-
duce trade-off curves (number of resources vs. num-
ber of cycles). The scheduling process offers different
options including the balance between data-transfers

and data-processings and the use of loop unrolling to
meet time constraints. After the intra-function schedul-
ing, an inter-function scheduling step [2], based on the
previous trade-off curves, can be performed if some
of the functions can be executed concurrently. Then
a projection step enables the exploration of the de-
sign space targeting reconfigurable architectures (FP-
GAs) [3, 4] and processors (HW and SW projections in
Fig. 1 respectively). Finally results can be used within
our HW/SW partitioning and real-time scheduling
tool [5].

The rest of the article is organized as follows: in
Section 2 we give an overview of existing specifica-
tion models and characterization tools. We expose the
contributions of our paper for both specification, inter-
nal representation model and characterization aspects.
Sections 3, 4 and 5 detail these points respectively. In
Section 6 we present some results of the characteriza-
tion step showing the interest of the proposed method.
Finally in Section 7 we conclude about our work and
present some perspectives.

2. Related Work

2.1. Part 1: Specification

One of the first issue when designing a system is
its specification. Specifying a system is a complex
task which can have a major influence on the subse-
quent steps of the design flow. Choosing a specification
model can, for example, stress more or less hardware
vs. software orientations, event-based vs. data-flow
based approaches, data-processings vs. data-transfers.
Granularity is another important feature which greatly
influences the possibilities of the exploration process.
For example a fine grain granularity specification fo-
cusing on implementation details usually enables very
accurate results at the cost of long exploration pro-
cesses. It is crucial to control these aspects and not to
be restricted to one level of granularity (for subsequent
steps such as characterization, cf. Section 5.

2.1.1. Existing Work for Specification. Generally,
existing design approaches consider only a partial de-
sign flow. The decomposition of the design flow re-
sults from the architectural target and/or from the type
of data processed by the application. We can men-
tion control oriented models [6–9], data-flow models
[9, 10], Khan process networks [11], and Ptolemy do-
mains (e.g., DE, DF) [12].
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Figure 1. Design Trotter design flow.

To alleviate this problem, some attempts to define
a unified modeling and design framework have been
proposed. They are generally based on co-simulation
approaches (e.g., CoWare, VCC from Cadence). How-
ever, these approaches do not really support a complete
and seamless design flow, from high-level specification
to the generation of VHDL code for hardware synthesis
and assembly code for processors.

SystemC [13] is a design and verification language
enabling the description of systems from high-levels of
abstraction (e.g., algorithmic-level) down to hardware
and software implementation levels. The modeling fea-
tures of SystemC are provided as a C++ class library.
SystemC is a good candidate for becoming a standard
for the design of embedded systems. Reducing the pro-
ductivity gap in system design can be achieved by rais-

ing the level of abstraction. However, as mentioned
in [14], it is important to well-define the abstraction
levels and models. The authors propose system-level
semantics that cover the system design process and
define properties and features for each model. By for-
malizing the flow, design automation for synthesis and
verification can be performed and productivity gains
can be achieved. Moreover, customizing the semantics
enables the creation of specialized design methodolo-
gies.

2.1.2. Contribution. Initiatives like SystemC and
SpecC [15] aim at providing designers with a com-
mon language for progressively modeling an applica-
tion by means of refinement, from the un-timed system-
level to the cycle-accurate implementation level. Such
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framework are necessary, however the designer re-
mains responsible for choosing the appropriate com-
putation model. One of the main influent specification
decision is the separation between an event-based FSM
model and a data-flow model; the boundary between
the two models is not necessarily clear and can vary
depending on the designer background.

The main contribution of this work in terms of speci-
fication is the internal representation model “HCDFG”.
The requirements of the tools included in the Design
Trotter framework have guided our choice towards
a suitable internal representation model. This model
should have the following features:

• Hierarchy: enables a structured exploration of the
specification such as bottom-top and top-bottom ap-
proaches but also partial exploration;

• Multi-granularity: enables coarse and/or fine grain
specification depending on the utilized tool: fast
characterization, system-level estimation (schedul-
ing/combinations/exploration in Fig. 1, architectural
estimations (HW and SW projections in Fig. 1);

• Attributes: used to save critical information. Two
types of attributes are considered: those created
during the parsing step (e.g., data-type) and those
created during the characterization and exploration
steps (e.g., metrics);

• Parallelism specification: parallelism is a key fea-
ture for design space exploration. The model must
enable the clear specification of processing and data-
transfers parallelism in order to detect and exploit
them;

• Openness: the model must be open to new languages
and can be easily changed/extented.

We found out that none of the existing (and easily
available) models had all the required features. There-
fore we have defined our own model: HCDFG. The
definition of its formalism (and underlying grammar
rules) has been guided by a pragmatic approach con-
sidering that the most important point is to stay close
to the original algorithmic specification of the appli-
cation. This internal representation model, based on
graphs, offers the flexibility required for the develop-
ment of the tools implemented in Design Trotter.

We preferentially use the Esterel framework [16] to
perform the first specification step since it offers vari-
ous interesting features such as concurrent and hierar-
chical finite state machines (HFSM called Safe State
Machine in the Esterel framework) and tools for formal

proof, simulation and code generation. Our approach
enables a clear control of the model separation in a
top down approach: when the designer estimates that
a data-flow specification can be efficiently used at a
given state level of the HFSM he can insert calls to C
functions. The HCDFG description starts at this level.
Then, depending on the results of metric computations
(cf. 5), the designer can decide to modify his specifi-
cation choices in terms of HFSM/C separation. We use
the C language for three main reasons, firstly a lot of
standards (e.g., ITU) and applications are written with
this language, secondly it can be naturally inserted in
various framework like SystemC and Esterel, and fi-
nally the GCC compiler provides a good starting point
for building a graph-based representation of the speci-
fication. We use GCC to perform lexical and grammat-
ical checkings and then introduce our own syntactic
tree in order to extract the information we consider
relevant (see Section 4).

In our approach the next step after the specification is
the characterization of the application. In what follows
we present existing work on this aspect and present our
contribution.

2.2. Part 2: Characterization

Several design-flows include a step used to charac-
terize the specification of an application. The main
objective of characterization is to extract relevant in-
formation from the specification to guide the designer
and/or synthesis steps towards an efficient application-
architecture matching. For this purpose, metrics can
be efficiently used to rapidly stress the proper architec-
ture style for the application or for part of it (sub-tasks,
functions). Some of the relevant features include the
wider/deeper trade-off, namely the ratio of explicit par-
allelism versus the pipeline depth, the need for com-
plex control structures, the requirements in terms of
local memories and specific bandwidth, and the need
for processing resources for specific computations or
address generation.

Contrary to partial available approaches, we con-
sider that an efficient characterization step should in-
clude all the following requirements:

• Independence and flexibility: during the character-
ization step the designer should have the option to
specify or not an architectural target since the ob-
jective of this step is to guide either the choice of
an existing architecture or the construction of a new
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one. Moreover, the implementation of new metric
computations must be easy;

• Hierarchy and multi-granularity: enable the charac-
terization of the different granularity levels: e.g., (i)
loop body, (ii) loop, (iii) sequence of loops; they
also offer the possibility to reuse characterizations
for different “mappings” of a given graph (e.g., var-
ious calls of the same sub-function);

• Data and control dependency analysis: the informa-
tion about critical paths at different levels of granu-
larity is required for in-depth parallelism character-
ization.

2.2.1. Review of Existing Metrics. Works dealing
with metrics in the domain of high-level synthesis [17,
18] and hardware software co-design [19–21] have
been recently proposed. In [17] the metrics provide al-
gorithm properties regarding a hardware implementa-
tion; the quantified metrics address the concurrency of
arithmetic operations based on uniformed scheduling
probabilities and the regularity that measures the repe-
tition rate of a given pattern. In [18], some probability-
based metrics are proposed to quantify the communi-
cations between arithmetic operators (through memory
or registers). These metrics focus on a fine grain analy-
sis and are mainly used to guide the design of data-
paths, especially to optimize local connections and
resource reuse. The metrics from [19] are computed
at the functional level to highlight resource, data and
communication channel sharing capabilities in order to
perform a pre-partitioning resulting in function cluster-
ing to guide the next design step (hardware/software
partitioning). The main issue is the placement of close
functions on the same component in order to optimize
communications and resource sharing. An interesting
method for processor selection is presented in [20].
Three metrics representing the orientation of functions
in terms of control, data transformation and data ac-
cesses are computed by counting specific instructions
from a processor independent code. Then a distance
is calculated, with specific characteristics of proces-
sors regarding their control, bandwidth and process-
ing capabilities. In that framework a coarse and fixed
granularity level is considered and the target is lim-
ited to predefined processors. Moreover the technique
does not take instruction dependencies into account and
there is no detail about the different types of memory
accesses regarding the abstract processor model used.
However we can reuse the concept of distance during
the design steps located at lower levels. Finally, in [21

finer metrics are defined to characterize the affinity be-
tween functions and three kinds of targets: GPP, DSP
and ASIC. The metrics are the result of the analysis
and counting of C code instructions in order to high-
light instruction sequences which can be DSP-oriented
(buffer circularity, MAC operations inside loops, etc.),
ASIC-oriented (bit level instructions) or GPP-oriented
(conditional or I/O instructions ratio). Then a HW/SW
partitioning tool is driven by the affinity metrics. Like
in [20] these metrics are dedicated to HW/SW parti-
tioning, they do not exploit instruction dependencies
and address a fixed granularity. Moreover, the locality
of data bandwidth is not clearly taken into account.

2.2.2. Contributions. Although a number of existing
works dealing with metrics can be found in the liter-
ature, some important features are not yet covered. In
our work we propose to fulfill these requirements by
means of new metrics which are detailed in Section 5.

Firstly, the analysis performed in other works is gen-
erally dedicated to a class of applications and archi-
tectures; our framework provides the designer with a
generic library UAR (User Abstract Rules, described
in 4.4) that can be more or less specialized to either
offer independency, or to match a given architecture.
Secondly, regarding the heterogeneity of applications,
different pieces of an application can present various
features, so metrics at different levels of granularity
can help to localize parts with specific features (e.g.,
parallelism). As explained later, our metrics are com-
puted for each level of granularity and thus are naturally
available at all levels, from the leaf DFGs (Data-Flow
Graph) to the complete HCDFG. Finally, the system
metrics from [21, 20] do not address data dependencies
so can not include the critical paths during the paral-
lelism analysis; our metric computation includes this
feature.

The characterization step implemented in Design
Trotter analyzes the functions of an application in or-
der to determine the orientation and the criticity of
a function. The orientation indicates if a function is
processing, control or memory oriented. The criticity
indicates the average parallelism available in a func-
tion. For that purpose a set of metrics has been defined,
it is presented in Section 5.

3. Specification

In our work two specification models are considered.
The first one, HFSM-HCDFG is based on Hierarchical
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Finite State Machines, the second one, TG-HCDFG
is based on Task-Graphs. In both cases the aim of the
HCDFG model is to represent the lower-level functions
called by the HFSM or TG models, such that their es-
timation and exploration are facilitated. The two spec-
ification models are rapidly presented in Sections 3.1
and 3.2. The HCDFG model is detailed in Section 4.

3.1. HFSM-HCDFG

This type of specification is presented in Fig. 2. The
HFSM model has been used in the EPICURE project
[22]. The hierarchical decomposition at the system-
level is made with Esterel studio [16]. The specifica-
tion is based on a two level decomposition approach:
event-based with Esterel and calls to C functions. Dur-
ing the specification step, the designer inserts calls to
C functions when he considers that the HFSM model
is no longer suitable. Regarding the model presented in
Fig. 2, the specification corresponds to the “Process”
view. In this view the representation is based on a graph
of functions enabling sequentiality, mutual exclusion
and concurrency. The designer is responsible for orga-
nizing the function setup and for defining their gran-
ularity. Finally, the “Function” view corresponds to a
specific function, described with the HCDFG model.

3.2. TG-HCDFG

The other type of specification is related to a classic
real-time specification model, i.e., the task-graph. This
type of specification is used to performed HW/SW par-
titioning and real-time scheduling considering cyclic
and a-cyclic tasks [5]. This model is described in Fig. 3.
It is composed of four levels: the system-level (describ-
ing the inputs/outputs constraints), the task-graph, the
function graph and the HCDFG level (used to describe
a function). We use the Radha Ratan model [23] to
specify the task-graph.

4. The HCDFG Model

4.1. HCDFG Basics

As previously mentioned, the HCDFG model is used
to describe the application when the designer evaluates
that a control-data flow is well suited at a given hier-
archy level during the specification procedure. From a
practical point of view, a HCDFG is automatically built

for each C function called by the HFSM-HCDFG or
TG-HCDFG models presented in the previous section.
Note that it is also possible to start the design process
by specifying directly C functions. The HCDFG gen-
eration is based on GCC from which a parser has been
devised in order to extract and structure only relevant
information for design space exploration. Namely a
HCDFG is built using the following principles :

• Single assignment with comprehensive renaming
rules. Firstly we eliminate false dependencies by
introducing dependence edges. Then the name of
scalar or array variables is built by combining the
original name with integer values that are incre-
mented after each read and write accesses;

• The initial hierarchical structure is used in order to
preserve data locality;

• The code hierarchy is also exploited to perform a
component based approach by means of graph pat-
tern detection. A given C function/block is seen as a
single graph-component (HCDFG) that can then be
instantiated several times;

• An efficient multi-dimensional data representation;
• Data-transfer and data-processing nodes are mapped

onto a generic library which can be personalized
depending on the target architecture (e.g., a graph-
component can be associated to a processing unit);

• To summarize, all the elements of the model are
represented by graphs. Thus, during the characteri-
zation and estimation steps, important elements and
structures can be easily identified by means of our
uniform model.

4.2. Definitions

The HCDFG model enables the representation of a
function in the form of a hierarchical graph contain-
ing control structures and processing operations ma-
nipulating scalar and array data. This graph has been
defined in order to make the characterization and es-
timation steps efficient. The required information and
the results are stored as attributes in the graph. At-
tribute examples are the ASAP and ALAP dates of
nodes, hierarchy levels for memory nodes, metric re-
sults and so on. Each function described in the C lan-
guage is parsed to a HCDFG. A HCDFG is composed
of elementary nodes (processing, memory, control),
dependence edges (control, data) and graphs that can
be hierarchical. A HCDFG example is given in Fig. 4.
The different key features are detailed hereafter.
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Figure 2. Specification example with the HFSM-HCDFG model.

4.2.1. Elementary Nodes. A processing node (pro-
cessing vertex) can represent several types of oper-
ations: fine grain arithmetic/logic operations but also
coarse grain computations (MAC, Butterfly, FIR, DCT,
Pixel Shader, etc.). As the association between oper-
ations and resources is defined in the UAR file (de-
scribed in Section 4.4), it is possible to reference the

name of a sub-graph (instance of a graph pattern) in
the UAR, indicating that a resource is dedicated to this
computation. In that case the graph is seen as a black
box, which may already have been estimated. Process-
ing nodes can be seen on the right part of Fig. 4.

A memory node (memory vertex) represents a data-
transfer. The main node parameters are the transfer
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Figure 3. Specification example with the TG-HCDFG model.

Figure 4. Elements of a HCDFG.

type (read/write), the data format and the hierarchy
level which can be fixed by the designer. Data are ex-
plicitly represented by nodes in the graph, and are not,
like in many other models, associated to edges. The

proposed model avoids the duplication of the infor-
mation required to represent data and accesses. For
multi-dimensional data (arrays, vectors), addressing
mechanisms are explicitly represented in the graph
through index DFGs. Memory vertices (scalars and
arrays) are exposed on the right and left part of Fig. 4
respectively.

A conditional node represents a test operation (if,
case, loops, etc.).

4.2.2. Dependence Edges. Three types of oriented
edges are used to indicate scheduling constraints.

A Control dependency indicates an order between
operations without data-transfer, for instance a test op-
eration that must be scheduled before mutual exclusive
branches.

A Scalar data dependency between two nodes A and
B indicates that node A uses a scalar data produced by
node B.

A Multidimensional data dependency is a data-
dependency where the data produced is not a scalar but
an array. For instance such an edge is created between
a loop CDFG (Control-Data Flow Graph) reading an
array transformed by another loop CDFG.

4.2.3. Graphs. There are six kinds of graphs.
A DFG is a graph which contains only elementary

memory and processing nodes. Namely it represents a
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sequence of non-conditional instructions of the C code.
The graph on the right part of Fig. 4 is a DFG.

A CDFG is a graph which represents a test or a loop
pattern with associated DFGs. A CDFG is made of:
two control nodes (begin and end) which indicate the
type of the structure (if, switch-case, while, do-while
and for), an evaluation graph, plus an evolution graph
in the case of FOR structures, and finally one or more
H/CDFGs which represent the processing conditioned
by the control node. Moreover, an attribute is used to
store the execution probability of each branch. The
probabilities can be obtained by means of profiling or
can be specified directly by the designer through an
interactive and user-friendly interface. The graph in
the center of Fig. 4 is a CDFG.

An Evaluation graph produces a boolean data, it
corresponds to the computation of a condition. The
boolean data node is connected to the control node by
an order edge.

An Evolution graph is found in FOR structures. It
represents the increment mechanism of loop indexes
(only affine increment mechanisms are allowed at the
moment). An evolution graph corresponds to the com-
putation of the index increment. The data node repre-
senting the index of a FOR loop is connected to the
control node by an order edge.

An Index graph represents index computations (e.g.,
i + ( j ∗ 2), in array [i + ( j ∗ 2)] = 0). This is a key
feature for detecting the need for address generation
units (AGUs).

A HCDFG is a graph which contains elementary
conditional nodes, HCDFGs and CDFGs. It represents
the application hierarchy, i.e., the nesting of control
structures and graphs executed in sequential or paral-
lel patterns. The graph on the left part of Fig. 4 is a
HCDFG.

4.3. Graph Creation Rules

The composition principle is quite natural. The graph
is traveled with a depth-first search algorithm. When
no more conditional nodes are found, a DFG is built.
Then a H/CDFG is created each time a conditional
node is found in the upper hierarchy level. Another stop
condition is encountered when the name a graph pattern
can be associated to a function already referenced in
the architectural model (UAR). In order to facilitate the
estimation process, classic CDFG patterns have been
defined to identify rapidly the usual nodes like loop, if,
etc.

4.4. Architecture Definition

The designer defines a set of rules, named “UAR” (User
Abstract Rules) which aims at describing an architec-
tural model for both characterization (optional) and
exploration (at system-level or for HW and SW pro-
jections). When no architecture has been selected, the
designer can describe any kind of abstract architecture
to start the exploration process. Then the UAR can be
refined using some feedback from the exploration pro-
cess. As the UAR model is flexible, the designer can
also describe an existing architecture.

The processing part of the architecture is character-
ized by the type of available resources: ALU, MAC,
etc. and the operations they can perform; a number
of cycles is associated to every type of operator. The
granularity of the operators is not fixed, and coarse
grain operators (MAC, FFT or more complex func-
tionalities) can be described and associated to opera-
tions/functions of the HCDFG description. Regarding
the memory part, the user defines the number of hierar-
chy levels (Li) and the number of cycles (Li) associated
to each type of access.

Figure 5 shows an example of two UAR files. The
first one (left) is the initial file where all resources
have a latency equal to one cycle. When the de-
signer starts to refine the architectural model (using
results given by the system-level estimation), he can
add new types of resources or specify resource laten-
cies like in the second file (right). Thus the designer
may improve his analysis by means of system-level
estimation.

5. Characterization

The functions composing an application can have very
different features in terms of orientation (processing,
control, memory) and potential parallelism. The char-
acterization of the functions has two objectives: (i)
guide the designer in his architectural choices and (ii)
guide the function estimation step in order to use the
most adequate scheduling algorithms [1].

We have defined the following metrics:

• orientation metrics: Memory Orientation Metric
(MOM), Control Orientation Metric (COM).

• criticity metric: γ .
• Data Reuse Metric (DRM) and Hierarchical Data

Reuse Metric (HDRM).
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Figure 5. UAR file examples (left: first approach; right: refinement).

5.1. Definitions and Memory Model

Before to detail the metrics, we introduce some terms
which will be used in what follows.

• Processing: includes (i) computation operations
(ALU, MAC, etc.), (ii) address computations which
can be performed on ALUs or specific units such as
AGUs (Address Generator Unit) [24], and iii) deter-
ministic control (e.g., constant loop bounds that can
be eliminated by unfolding);

• Control: includes tests, namely control operations
that are not computable by a compiler (data-
dependant control);

• Memory: includes read/write data-transfers. We take
into account: the size, read/write access timing and
the simultaneous number of accesses. Moreover the
memory can be hierarchical. In this work, we have
considered two memory levels from an architectural
point of view: (i) the local memory which includes

cache units and internal registers and (ii) the global
memory which include the RAM and the ROM.

5.1.1. Memory Model. A key point in the follow-
ing sections is the notion of local and global accesses
from a graph point of view. This notion is used dur-
ing the characterization and the estimation steps. Sev-
eral types of memory nodes are taken into account
(the type is stored as an attribute for each memory
node):

• N1: input/output data: data identified as inputs/
outputs of a graph;

• N2: temporary data: produced by internal process-
ing;

• N3: reused data: input data (subset of N1) reused in
a graph;

• N4: accumulation data: annotated with pragmas dur-
ing the specification.
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Table 1. Abbreviation used.

Abbreviation Meaning

Np number of processing operations = number of operations of type ALU, Macs, etc. + Index computation + deterministic tests

Nc number of non-deterministic tests (control operations which can not be eliminated at compile time)

Nm number of global memory accesses operations

tr/fa graphs of mutually exclusive branches in “IF-THEN-ELSE” structures

Ptr, Pfa execution probabilities of true and false branches respectively (obtained by profiling or specified by the designer, equals 0.5 by
default)

for graph of the core of a “FOR” structure

eval graph of the evaluation part of “FOR” and “IF” structures

evol graph of the evolution part of a “FOR” structure

Nite number of iterations in a loop structure

At the system-level the local memory size associated
to the processing unit is not yet known. It is therefore
necessary to define a general notion of locality related
to the application and not to the architecture. A global
access is a data-transfer to/from a data which is de-
fined outside the considered graph. A local access is a
data-transfer to/from a data defined in the considered
graph. N1 data are always global, N4 data always lo-
cal, N2 and N3 data are initially local but can generate
local/global swapping during the scheduling steps if
the local memory size is limited [1].

5.2. Computation of the Metrics for a Function (i.e.,
for a HCDFG)

The computation of the metrics is performed hierarchi-
cally, with an ascending approach. First, the metrics are
computed for the leaf graphs (DFGs), then for control
graphs (CDFGs) and hierarchical graphs (HCDFGs)
using mutual-exclusive rules (for CDFGs) and parallel
and sequential rules (for CDFGs and HCDFGs). The
metrics at level i of the hierarchy are not simply ob-
tained by combining the metrics of level i − 1, instead
they are computed using the features stored a level i −
1 such as the number of processing operations, mem-
ory accesses, control nodes and the critical paths as
explained in Sections 5.3.1, 5.3.2, 5.4.3, and 5.4.3.

Note also that on the one hand the orientation metrics
(Section 5.3) are computed without knowledge of the
node ASAP/ALAP dates, only by counting the relevant
elements. On the other hand the criticity (Section 5.4)
and (H)DRM (Section 5.5) metric computations use
ASAP/ALAP dates computed with UAR features.

5.3. Orientation Metrics

For the three orientation metrics we firstly give a gen-
eral formula. Then we detail the computations for
DFGs, CDFGs (IF-THEN-ELSE and FOR) and HCD-
FGs. The computations for SWITCH, WHILE and
DO-WHILE structures are not presented since they are
generalization of IF-THEN-ELSE and FOR computa-
tions. The abbreviations used are presented in Table 1.

5.3.1. Memory Orientation Metric (MOM). MOM
indicates the frequency of memory accesses in a graph.
The general formula for MOM is the ratio between the
number of global memory accesses and the number
of global memory accesses plus the number of pro-
cessing operations. Its value is bounded in the interval
[0;1]. High MOM values indicate that processing op-
erations are applied to new data (i.e., data entering
the graph, as opposed to data computed previously
which might reside in the local memory). The more
MOM → 1, the more the function is data-transfer ori-
ented (if MOM = 3

4 then a processing operation re-
quires, in average, three memory accesses). In the case
of hard time constraints, high performance memories
are required (large bandwidth, dual-port memory, etc.)
as well as an efficient use of memory hierarchy and
data locality [25].

• MOM computation for a basic block (DFG). For a
DFG, MOM is computed as follows:

MOM = Nm

Nm + N p
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• MOM computation for a IF-THEN-ELSE structure
(and SWITCH by extension). For this structure,
MOM is defined as the ratio between the number
of memory operations in the branches multiplied by
their respective execution probabilities and the sum
of all the operations in the branches multiplied by
their respective execution probabilities.

MOMIF

= Nm tr ∗ ptr + Nmfa ∗ pfa + Nmeval
∑

x=p,c,m(N xtr ∗ ptr + N xfa ∗ pfa + N xeval)

• MOM computation for a FOR structure (and WHILE
DO-WHILE by extension). For this structure, MOM
is defined as the ratio between the number of mem-
ory operations in each part of the loop (evaluation,
core and evolution) and the sum of all the operations
in each part.

MOMFOR = Nmeval + Nmfor + Nmevol
∑

x=p,c,m(N xeval + N xfor + N xevol)

• MOM computation for a HCDFG. For a HCDFG,
MOM is defined as the ratio between the sum of
all memory operations in the sub-graphs of the
HCDFG and the sum of all the operations in the
sub-graphs.

MOMHCDFG =
∑

sub−graphs j Nm j
∑

sub−graphs j,x=p,c,m N x j

5.3.2. Control Orientation Metric (COM). COM in-
dicates the frequency of control operations (i.e., tests
that cannot be eliminated during compilation) in CD-
FGs and HCDFGs (since there is no test within a
DFG).

The general formula of COM is the ratio between
the number of tests and the total number of operations
including processing operations, tests and accesses to
the global memory. COM values are bounded in the
interval [0;1]. The more COM → 1, the more the func-
tion is control dominated, so needs complex control
structures (if COM = 3

4 then 1 operation out of 4 is
a non-deterministic test). It also indicates that the use
of the pipeline technique is not efficient for such func-
tions. For a CDFG, the generic formula for COM is as
follows:

COM = Nc

N p + Nc + Nm

• COM computation for a basic block (DFG). For a
DFG, COM equals 0 since there is no control in a
DFG.

• COM computation for a IF-THEN-ELSE structure
(and SWITCH by extension). For this structure,
COM is defined as the ratio between the number
of control operations in the branches multiplied by
their respective execution probabilities and the sum
of all the operations in the branches multiplied by
their respective execution probabilities.

COMI F

= Nctr ptr + Ncfa pfa + Nceval
∑

x=p,c,m(N xtr ∗ ptr + N xfa ∗ pfa + N xeval)

• COM computation for a FOR structure (and WHILE
DO-WHILE by extension). For this structure, COM
is defined as the ratio between the number of control
operations in each part of the loop (evaluation, core
and evolution) and the sum of all the operations in
each part.

COMFOR = Nceval + Ncfor + Ncevol
∑

x=p,c,m(N xeval + N xfor + N xevol)

• COM computation for a HCDFG. For a HCDFG,
COM is given as the ratio between the sum of all
control operations in the sub-graphs of the HCDFG
and the sum of all the operations in the sub-graphs.

COMHCDFG =
∑

sub−graphs j Nc j
∑

sub−graphs j,x=p,c,m N x j

5.4. Criticity Metric

The approach used in our methodology consists in esti-
mating the most critical functions first (the less critical
ones may reuse the resources allocated to the most crit-
ical ones and are therefore estimated after). Criticity is
defined by the metric “γ ” such as:

γ = Nb processing and memory accesses operations

Critical path

The critical path of a DFG is defined as the longest
chain of sequential operations (expressed in cycle
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number). The critical path for a function (i.e., for a
H/CDFG) is computed hierarchically by combining
the critical path of its sub-parts.

γ indicates the average parallelism available at a
specific hierarchy level: let’s consider a HCDFG com-
posed of 5 identical parallel DFGs. If each DFG is
internally executed in a sequential manner then γ for
each DFGs equals 1, but γ for the whole HCDFG
equals 5.

A function with a high γ value can benefit from an
architecture offering high parallelism capabilities. On
the other hand, a function with a low γ value has a
rather sequential execution. In that case the accelera-
tion of this function can be made via temporal paral-
lelism (e.g., long pipeline), depending on the value of
the COM metric. From a consumption point of view a
function with a high parallelism offers the opportunity
to reduce the clock frequency by exploiting the spacial
parallelism.

5.4.1. γ Computation for a IF-THEN-ELSE Struc-
ture (and SWITCH by Extension). The criticity met-
ric for this structure is the ratio between the number
of operations in the sub-parts of the control structure,
multiplied by their respective probabilities and the sum
of the critical paths of the sub-parts.

γI F =
∑

x=p,c,m(N xtr ∗ ptr + N x f a ∗ p f a + N xeval)

ptr ∗ C Ptr + p f a ∗ C Pf a + C Peval

5.4.2. γ Computation for a FOR Structure (and
WHILE DO-WHILE by Extension). The criticity
metric for this structure is the ratio between the sum of
the operations in each part of the loop and the sum of
the critical paths of the sub-parts.

γFOR =
∑

x=p,c,m(N xevol + N xfor + N xeval)

C Pevol + C Pfor + C Peval

5.4.3. γ Computation for a HCDFG: For a HCDFG
representing a serial execution of sub-graphs, the crit-
icity metric is defined as the ratio between the sum of
all control operations in the sub-graphs of the HCDFG
and the sum of all the critical paths.

γserial =
∑

sub−graphs j,x=p,c,m N x j
∑

sub−graphs j CP j

For a HCDFG representing a parallel execution of
sub-graphs the criticity metric is given as the ratio
between the sum of all control operations in the sub-
graphs of the HCDFG and the longest of all the critical
paths.

γparallel =
∑

sub−graphs j,x=p,c,m N x j

M AXsub−graphs j (C Pj )

5.5. DRM and HDRM Metrics

5.5.1. DRM Metric. Balancing processing and data-
transfer operations is a critical point in system design to
face the memory bandwidth bottleneck (as compared
to the processor performances). The balance can be
obtained by means of scheduling algorithms adapted
to the function orientation. In order to guide the anal-
ysis of the functions and to select the most appropriate
DFG scheduling scheme, we have defined a metric
called DRM: Data Reuse Metric. At system-level the
only memory hierarchy information available is ex-
tracted from the algorithmic memory hierarchy (i.e.,
from the high-level language specification). This met-
ric takes into account the local memory size, which
has to be fixed by the designer or estimated automati-
cally. The estimation is performed as explained in the
next paragraph. The DRM metric indicates the ratio
between the global and local memory accesses. A lo-
cal access which produces a memory conflict (local
memory full) involves read and write accesses to the
global memory, thus the number of extra global ac-
cesses is β × EGT where β is the average number
of cycles required to access the global memory. For
example, a single main memory which requires only
one cycle per access implies that β = 2 (read plus
write).

We use the average data lifetime to estimate the
quantity of data alive per cycle, from which the mini-
mum memory size can be derived. Minimum and max-
imum data-life of data d are defined as follows:

MinDL(d) = ASAP(dn) − ALAP(d1) + 1

MaxDL(d) = ALAP(dn) − ASAP(d1) + 1

where ASAP and ALAP are the earliest and latest
scheduling dates, d1 and dn the earliest and the lat-
est read access to data d for a given time constraint,
respectively. The average data-life of data d is then
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given by:

AvDL(d) = 1

2
(MinDL(d) + MaxDL(d))

Finally, the number of data alive per cycle is given
by:

AAD = 1

T

∑

d

AvDL(d)

where T the number of cycles allocated to the esti-
mated function (the estimation process is based on
a time constraint scheduler, using several time con-
straints [1]). The number of local transfers turning into
global transfers because of a too small local memory
is given by:

EGT =
{

(AAD − UM)T if AAD > UM
0 otherwise

where UM is the local memory size. UM can be defined
by the user, otherwise its default value is AAD.

Let’s consider a memory hierarchy with the follow-
ing characteristics:

Level 1 (L1): latency1(l1) = 1cycle, L2: l2 =
2cycles, L3: l3 = 3cycles. Let’s assume that MRi is
the miss ratio of the cache level i, then:

β = 1.(1− M R1)+2.M R1.(1− M R2)+3.M R1.M R2

If we generalize to K levels of hierarchy we obtain:

β =
K∑

k=1



lk .(1 − M Rk).
K−1∏

j=1

M R j





Finally the DRM metric is defined as:

DRM = N1 + β.EGT

N1 + N2 + N3 + N4

The DRM metric is computed for DFGs and can
be used for selecting the most appropriate scheduling
algorithm during the estimation step [26].

5.5.2. HDRM Metric. The hierarchical DRM
(HDRM) extends the DRM metric to inter-HCDFG
data reuse (remember that a HCDFG is a graph which
contains elementary conditional nodes and parallel and

Figure 6. Illustration of the HDRM metric.

serial HCDFGs and CDFGs). Its computation is gen-
eral and used for all hierarchical estimations, it is based
on two by two HCDFGs clustering. The principle is
given in Fig. 6: A1 and A2 are the amount of exclusive
input data read by HCDFG1 and HCDFG2 respec-
tively. A12 quantifies the input data common to both
graphs and A3 is the amount of result data from the first
graph transmitted to the second one. Thus the HDRM
provides the ratio of reused data between two HCDFG
which can be parallel (A3 = 0), sequential (A12 = 0)
or a combination.

The HDRM metric is computed as follows:

HDRM = A3 + A12

A1 + A2 + A3 + A12

HDRM = 1 means that the reuse ratio is maximal:
all data read by HCDFG2 are shared or produced by
HCDFG 1, it also denotes that a local memory could be
efficiently implemented. On the other hand, DRM12 =
0 means that no data-reuse is available for memory op-
timization. In multimedia applications, data reuse has
an important impact because the optimization opportu-
nities are mainly due to memory management of loop
nests: the HRDM metric can be computed by consid-
ering HCDFG1 and HCDFG2 as two successive loop
iterations.

5.5.3. HDRM Illustrative Example. We now present
how the HDRM computation can be applied to the
six nested loops of a classical motion estimation algo-
rithm. Our aim here is to use the HDRM in order to
highlight data reuse between subsequent iterations at a
given level of hierarchy. If we refer to Fig. 6, it means
that we virtually consider a loop unrolling where each
iteration is embodied by a HCDFG. The HDRM has
been computed for the different loop levels: column
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Table 2. HDRM metric Motion estimation theoretical results.

Level A1-OF A1-NF A2-OF A2-NF A12-OF A12-NF A3 HDRM OF memory size

Block column 1 1 1 1 0 0 1 0.20 1

Block row 8 8 8 8 0 0 1 0.03 n

Window column 8 0 8 0 56 64 0 0.88 n * n

Window row 39 0 39 0 273 64 0 0.81 (2m + n − 1) ∗ n

Frame column 312 312 312 312 1209 1209 0 0.66 (2m + n − 1)2n

Frame row 1408 1408 1408 1408 5456 25336 0 0.87 W ∗ (2m + n − 1)

OF: Old Frame, NF: New Frame

and row of a n∗n (with n = 8), column and row of the
2m + n − 1 ∗ 2m + n − 1 reference window (with m =
16) and column and row of a W×H frame (QCIF for-
mat: W = 174, H = 144). Table 2 presents the results
regarding the Ai and HDRM values for each hierarchi-
cal level. (OF and NF stand for Old and New Frame,
respectively). The last column shows the size of the
memory candidate to store the old frame data at each
level of hierarchy. We observe that the best data reuse
opportunities are available when the HCDFG-core of
the following loop indices are considered: column of
the reference window (HDRM = 88%), row of the ref-
erence window (HDRM = 81%) and row of the frame
(HDRM = 87%). It means that including an ad hoc
memory hierarchy to locally store these highly reused
data can provide high performance and power opti-
mizations.

5.6. Final Remark on the Metrics

Compiler optimizations and transformations can have
strong impacts on the final code and it would be there-
fore desirable to evaluate these impacts as regard to the
metrics. This point is out of scope of this paper, how-
ever it should be possible to evaluate these impacts
by accessing post target-independent optimized code
and to characterize this code. Finally, by comparing
the two characterizations, the compiler impact could
be evaluated.

6. Experimental Results

We have applied the previously defined metrics to a set
of functions widely used in embedded systems. Here-
after we present the results computed with the aim to
be independent as much as possible from any architec-
ture. Namely we consider an algorithmic characteriza-

tion based on a unspecialized UAR file. The following
examples are detailed: a wavelet transform (DWT),
a 2D-DCT transform, a G722 audio decoder, a TCP
protocol and two video applications: Matching Pursuit
(MP) and Object Motion Detection (OMD). Regard-
ing the OMD application we also provide estimation
results for a FPGA target.

6.1. DWT

The DWT algorithm [27] has been implemented using
the lifting scheme. The C code is made of one func-
tion (translated into a HCDFG, level N) englobing the
code for the sub-blocks. It is composed of two sequen-
tial blocks (C sub-functions translated into HCDFGs,
level N − 1) which operate sequentially in the horizon-
tal and vertical dimensions respectively. Each block is
made of 6 sub-blocks (C sub-functions translated into
HCDFGs, level N − 2). The lower level of granular-
ity depend on the structure of each sub-blocks whose
metrics are automatically computed exactly like for the
upper levels. The time required for the whole charac-
terization step is 500 ms on an Intel PIII@700Mhz.
Table 3 provides the results for the six functional sub-
blocks and for the whole function (top graph). The first
observation is that the COM metric equals zero for all
graphs: this application is composed of determinis-
tic loops and does not contain any test. Secondly we
observe that MOM values for the wavelet functional
blocks are higher than 0.7; this means that more than
70% of the operations are data accesses. So the appli-
cation is clearly, at all levels, memory oriented. Finally,
γ values are approximately 1.5 for all the functional
blocks. The horizontal and vertical blocks have γ val-
ues equal to 2.704. As the two blocks are executed
sequentially, the gamma value for the whole function
(top graph) also equals 2.704. This indicates that the
spatial parallelism is rather weak considering the fine
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Table 3. DWT characterization.

Sub-blocks N-2 MOM N-2 COM N-2 γ N -2

HFirstLiftingStepFOR11 0.721 0 1.576

HFirstDualLiftingStepFOR21 0.721 0 1.576

HSecondLiftingStepFOR31 0.721 0 1.576

HSecondDualLiftingStepFOR41 0.722 0 1.579

HScalingFOR51 0.802 0 2.136

HRearrangeFOR61 0.904 0 1.843

VFirstLiftingStepFOR71 0.721 0 1.576

VFirstDualLiftingStepFOR81 0.721 0 1.576

VSecondLiftingStepFOR91 0.721 0 1.576

VSecondDualLiftingStepFOR101 0.722 0 1.579

VScalingFOR111 0.802 0 2.136

VRearrangeFOR121 0.904 0 1.843

Blocks N-1 MOM N-1 COM N-1 γ N -1

Hlines 0.724 0 2.704

Vlines 0.724 0 2.704

Top-graph N MOM N COM N γ N

DWT (top graph) 0.765 0 2.704

grain sub-blocks and a that a coarse grain parallelism is
available, i.e., parallelism between the horizontal and
vertical blocks. By analyzing the metrics values, the
designer can notice that (i) there is no need for com-
plex control structures, (ii) there are important needs
for high data-access requirements and (iii) there is a
coarse grain parallelism available. This means that op-
timizations can be obtained with a pipelined archi-
tecture with possible coarse grain dedicated hardware
modules providing a large bandwidth. So if high per-
formances are required, a (programmable) dedicated
hardware can be introduced within the SoC.

6.2. G722 Decoder

The UIT-T G722 recommendation is one of the au-
dio part of the H320 standard for video-conference.
We have studied the coder part of the application, and
more specifically the adaptive predictor block (predic-
Sup). This block is made of 8 sub-blocks (filters) which
execute concurrently. The characterization results are
found in Table 4. We can notice that the results are
quite similar to those of the previous example. First
of all the COM values are very small, which indi-

cates that there is almost no test. Next we observe high
MOM values which reflect a large number of global
memory accesses. Finally the parallelism is weak at
fine grain levels (between 1.33 and 2.33 for the eight
sub-blocks) and increases at the highest levels of the

Table 4. G722 characterization.

Sub-blocks N-2 MOM N-2 COM N-2 γ N-2

ParrecEecons 0.714 0 2.333

Upzero 0.758 0.039 1.686

Uppol2 0.674 0.087 2.045

Uppol1 0.743 0.086 2.188

Recons 0.603 0.081 2.128

Filtez 0.688 0 1.375

Filtep 0.5 0 2

Predic 0.75 0 1.333

Sub-blocks N-1 MOM N-1 COM N-1 γ N-1

PredicSup 0.738 0.037 3.602

Sub-blocks N MOM N COM N γ N

PredictorSup (top graph) 0.739 0.037 3.621
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hierarchy, since the sub-blocks execute concurrently
(3.60 and 3.62 for predic and predicSup respectively).
The parallelism evolution is quite similar to the DWT
example since the parallelism is increasing from level
N-2 to N-1 and remains stable at level N; however
larger gains are obtained. By considering a cross anal-
ysis of MOM and γ we observe that in order to exploit
the available parallelism (γ = 3.62), the architecture
should provide enough simultaneous memory accesses
since more than 70% of operations are data-transfers.
By referring to the metrics, the designer should se-
lect an architecture with good I/O capabilities and
enough computational power to execute the sub-blocks
concurrently. For example a large DSP such as the
Texas Instrument TMS320C6201 coupled with a I/O
co-processor featuring large FIFOs could be used.

6.3. 2D DCT

This application is a well known 2D-DCT for 8×8
image blocks. From a structural point of view, it is
composed of two identical and sequential 1D-DCT
sub-blocks (operating on lines and columns), so the
corresponding graphs have the same metric values, as
can be observed in Table 5. We can notice that the γ

metric reflects the high degree of parallelism (5.71)
provided at the lowest level of granularity (N-1). The
parallelism does not increase at the second level of
granularity (N) because of strict data-dependencies be-
tween sub-functions. We also observe that MOM met-
ric is approximately 0.5. It means that the reuse of
temporary local data is here more important than for
the DWT example; it is also related to the larger degree
of available parallelism.

6.4. TCP

We have computed the TCP protocol metrics in or-
der to test another kind of classical application. Each
function represents a TCP state within a FSM speci-
fication. Table 6 shows the analysis results for some

Table 5. 2D DCT characterization.

Sub-blocks N-1 MOM N-1 COM N-1 γ N-1

DCT8L 0.575 0 5.714

DCT8C 0.575 0 5.714

Sub-blocks N MOM N COM N γ N

DCT8×8 (top graph) 0.575 0 5.714

Table 6. TCP characterization.

Functional blocks MOM COM

TCPTIMEWAIT 0.482 0.06

TCPFINWAIT2 0.534 0.055

TCPABORT 0.457 0.343

TCPwakeup 0.333 0.556

Tfinsert 0.5 0.01

TCPdodat 375 0.06

TCPSENT 0.508 0.320

TCPRESET 0.667 0.148

representative functions of TCP. We can notice that the
functions have relatively high COM values denoting
heavily conditioned data-flows. The MOM metric val-
ues (greater than 33%) also indicate an important data
accesses frequency. It means that these functions are
control-oriented and also require high memory band-
width. So, a suitable target architecture is a GPP pow-
ered by efficient I/O devices. There is no need for a
DSP and for a complex data path structure, since the
parallelism cannot be exploited because the functional
blocks are clearly control oriented. Note that another
very efficient architecture could be implemented using
a dedicated FSM associated with fast FIFOs.

6.5. Matching Pursuit

We have studies the Matching Pursuit (MP) applica-
tion in the context of a collaboration project with the
EPFL [28]. The matching pursuit application is a new
compression scheme which does not operate on pix-
els but on “atoms” representing basic patterns in a
picture. This example is interesting because it is still
under development: the specification is still evolving,
it is therefore interesting for the designer to be able
to evaluate rapidly any modification of the specifica-
tion. In this example, modifications include classical
algorithmic transforms such as loop unrolling and so
on, but also structural transforms and organization of
the code, which can have considerable effects on the
performances. This shows that performing fast algo-
rithmic characterization as proposed in our method is
justified. Figure 7 shows the elements of the processing
setup. The encoder is based on a genetic algorithm and
implemented on a server, we have not focused on this
part. The decoding part can be implemented on several
systems, including embedded systems. Figure 7 shows
the 4 main blocks of the decoding part.
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Figure 7. Matching pursuit setup (courtesy S. Bilavarn).

Figure 8. Matching Pursuit characterization. γ is proportional to the size of the circle.

Figure 9. Motion detection architecture. (Copyrights CEA).

Figure 10. OMD motion detection example. Video/background detection/moving object detection.



Algorithmic-level Specification and Characterization of Embedded Multimedia Applications 203

Figure 8 shows the results for the 4 main functions
of the decoder. Clearly, “DecodeVideo” is the only
function which includes some tests, limited however
to 3%. We also notice that global memory accesses
are frequent, this is due to the reads of the data from
the video stream. “DecodeVideo” and “SetPixelValue”
have the highest γ values, therefore they have to be
examined first for optimization. Once these metrics
have been computed with the first initial specifica-
tion, the results have been used to refine the speci-

fication of the MP application [28], especially to in-
crease the intrinsic parallelism of the “ComputeNorm”
function.

6.6. Object Motion Detection (OMD)

This motion detection application have been developed
by the LIST laboratory of the CEA research center [29]
for the EPICURE project A.Dasdan, D.Ramanathan,
and [22]. The typical target architecture is presented in

Table 7. OMD characterization.

Function number Function name Critical path (Nb cycles) Gamma MOM [0;1] COM [0;1]

1 Ic gravityTest 2102 43.88 0.78 0.22

2 Ic labelling 395269 10.31 0.74 0.07

3 Ic BackgroungUpdate 73 5.62 0.76 0.03

4 Ic reconstDilat 848144 4.75 0.65 0.32

5 Ic dilatBin 49 4.69 0.70 0.02

6 Ic histoThreshold 3 4.00 0.64 0.29

7 Ic envelop 6098184 3.91 0.66 0.13

8 Ic absolute 327683 2.60 0.71 0.08

9 Ic thresholdAdapt 327683 2.20 0.75 0.08

10 Ic convolveTabHisto 15879 1.27 0.70 0.03

11 Ic div 524291 1.25 0.73 0

12 Ic getHistogram 591622 1.22 0.75 0

13 Ic setValue 1795 1.14 0.78 0

14 Ic add 294919 1.11 0.75 0

15 Ic sub 294919 1.11 0.75 0

16 Ic erodBin 4776219 1.10 0.73 0.01

Figure 11. OMD characterization. γ is proportional to the size of the circle.



204 Le Moullec et al.

Table 8. System-level scheduling/combinations/exploration of IC gravityTest.

Solution number Nb cycles Speed-up ALU MULT Nb memory accesses Local memory size

1 10940 2614.85 2775 1 14020 25236

2 12634 2264.24 2755 1 13764 24788

3 13265 2156.53 2755 1 13764 24788

4 13461 2125.13 2755 1 13763 24788

5 22267 1284.70 2751 1 13743 24752

6 37979 753.22 791 1 3943 7172

7 41181 694.65 789 1 3933 7094

8 43925 651.26 789 1 3933 7094

9 49413 578.92 789 1 3933 7094

10 52157 548.47 789 1 3931 7094

11 54901 521.05 789 1 3929 7094

12 57645 496.25 789 1 3929 7094

13 60389 473.70 789 1 3928 7094

14 63133 453.11 789 1 3927 7094

15 71365 400.85 789 1 3927 7094

16 75828 377.25 397 1 1967 3566

17 85085 336.21 397 1 1967 3566

18 137221 208.47 397 1 1967 3566

19 139965 204.38 397 1 1966 3566

20 142709 200.45 396 1 1965 3566

21 145467 196.65 396 1 1964 3566

22 145582 196.50 395 1 1963 3564

23 264758 108.05 115 1 563 1044

24 529260 54.05 59 1 283 540

25 1055520 27.10 31 1 143 288

26 2414976 11.85 11 1 43 108

27 4302848 6.65 7 1 23 72

28 8009992 3.57 5 1 13 54

29 8547816 3.35 5 1 13 54

30 9623464 2.97 5 1 13 54

31 10161288 2.82 5 1 11 54

32 10699112 2.67 5 1 9 54

33 11236936 2.55 5 1 9 54

34 11774760 2.43 5 1 8 54

35 12312584 2.32 5 1 7 54

36 13926056 2.05 5 1 7 54

37 16615176 1.72 5 1 7 54

38 26833832 1.07 5 1 7 54

39 27371656 1.05 5 1 6 54

40 27909480 1.02 4 1 5 54

41 28447500 1.01 4 1 4 54

42 28447503 1.01 3 1 3 52

43 28592958 1 2 1 3 34
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Table 8. Continued.

Solution number Nb cycles Speed-up ALU MULT Nb memory accesses Local memory size

44 28592960 1 2 1 2 34

45 28606419 1 1 1 2 18

46 28606421 1 1 1 1 18

Fig. 9. This is an intelligent video camera composed of
a CMOS sensor and a processor along with some recon-
figurable logic. This application is typically embedded
in video cameras and used for parking lot monitoring
(detection of car and person moves), person counting
in places such as subways and so on. We have used a
large set of representative input data (from a parking
lot monitoring application) to produce a profiling of
the application functions used to fill in the probability
attributes of the graphs. Figure 10 illustrates how the
OMD application works.

The OMD application is made of a hundred of func-
tions. The main processing part is made of 31 functions,
representing 1740 lines of C code. We have character-
ized these functions and found out that 16 of them
are the most critical ones (i.e., those with the highest
criticity metric (γ values). These functions are those
which should be optimized. The functions are quite
complex, for example the function “Ic gravityTest” is
composed of 378 C code lines, translated into 2408
lines of HCDFG, the corresponding graph is made of
200 sub-graphs. The function “Ic labelling” is made of
about 200 lines of C code and 1200 lines in the HCDFG
description. The results of the OMD characterization
are presented in Fig. 11 and Table 7. The possibility
of characterizing an application rapidly is a important
and very useful feature which enables the designer to
sketch a new architecture or to tune an existing one.
Each OMD function has been characterized within a
few seconds on an Intel PIII@700 MHz.

The first observation which can be made is that all the
functions have high MOM values, (0.72 on the average,
which indicates that more than 2 operations out of 3 are
memory accesses). This is due to the fact that there are
numerous reads of data from the video stream and that
the application is highly hierarchical (nested control
structures for example), it also indicates that the inner
DFGs are rather small, so little local temporary data
can be reused. This implies that the OMD application
requires either a large local memory to store reused
image data or high end input/output mechanisms.

Next, we observe that the values of γ are sig-
nificantly different for the functions composing the
OMD application: these values range from 1.27 for
“Ic convolveTabHisto” up to 43.8 for “Ic gravityTest”.
By referring to these values the designer can sort the
functions and find out in which order they should be
considered regarding the design of a specific architec-
ture. Focusing on the most critical ones first enables
to sketch an appropriate architecture and also to take
hardware reuse into account (the less critical functions
can be implemented on existing resources allocated to
the most critical ones). Finally COM values are com-
prised between 0 and 0.3 which denotes that tests are
not dominant (most of the control in the application is
deterministic).

In the Epicure project we have performed the
next steps after characterization, i.e., the schedul-
ing/combinations/exploration step (see Fig. 1) and a
HW architectural estimation (called HW projection
in Fig. 1). In the overall design flow the charac-
terization has been used to (i) select the 16 most
critical functions, (ii) explore and detect the func-
tions which have been implemented on the FPGA
(Xilinx V400EPQ2) and (iii) choose a processor for the
other functions (ARM922). The functions chosen for
hardware implementation (Ic gravityTest, Ic labelling,
Ic BackgroundUpdate, Ic dilatBin, Ic envelop and

Table 9. IC gravityTest hardware projection on a Xilinx
V400EPQ2 FPGA.

Solution
number(ns) Time Nb states

Nb Logic
Cells

Nb
Dedicated
Cells

25 20191042.08 4384 868 357

26 46196075.90 4415 428 191

27 82309179.39 857 340 56

28 153223136.97 614 296 36

31 194375278.15 618 296 32

36 266391525.22 625 296 28
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Ic absolute) are those which present high parallelism
opportunities (high γ ), high MOM and low MOC.
The results of the hardware projection step corrob-
orate the indication given by γ and MOC: in terms
of speed-up is has be found that Ic gravityTest can
be accelerated with a factor up to 2614 as shown
in Table 8. Finally Table 9 gives the results for the
hardware projection of Ic gravityTest on the Xilinx
V400EPQ2 FPGA. The choice of the V400EPQ2 is
based on the analysis of the metrics and the result of
the scheduling/combination/exploration step, since its
features suit well the need highlighted by the metrics
and the system-level estimation.

7. Conclusion

In this paper we have proposed a high-level method-
ology which aims at guiding designers of embedded
systems. More specifically, the framework enables the
rapid characterization and exploration of applications
specified using a standard language. The outcome is
a set of metrics characterizing the application at all
levels of hierarchy in terms of processing, control and
memory orientation as well as in terms of potential
parallelism. This information can be used in three
ways:

(i) when using a fixed architecture, the specification
characterization guides the algorithmic choices
(e.g., parallel vs. sequential execution, loop un-
rolling, dedicated co-processors, etc.)

(ii) for a fixed specification the characterization
guides the implementation choices (e.g., DSP vs.
GPP vs. FPGA).

(iii) when neither the specification nor the architec-
ture are definitely set, the designer can refine con-
jointly both aspects.

Therefore, by using our methodology the designer
is guided, very early in the design process, for evalu-
ating the impact of his algorithmic choices and choos-
ing or building the most appropriate architecture for
his application. This step is part of a high-level co-
design environment called Design Trotter. We have
presented two key points of this work: the first one
is the HCDFG internal representation. This model is
based on graphs and has been designed to fulfill our
own requirements for the characterization and explo-
ration of embedded applications. The second point is
the characterization step itself. Two types of informa-

tion are provided for each granularity level of the ap-
plication functions. Firstly two orientation metrics are
provided: the MOM metric indicates how influent are
data-transfers compared to data-processing, this point
is usually related to the data-flow graph depth. The
COM metric exhibits the weight of undesirable tests
within the application. The MOM metric can be in-
terpreted as the balance between the bandwidth and
processing parallelism requirements whereas the MOC
metric predicts the efficiency of spatial and temporal
parallelisms. The second kind of metric (γ gamma) in-
dicates the average level of parallelism comparatively
to the critical path. Besides the information given about
the available parallelism, this metric also indicates how
it is distributed over the different levels of granularity.
Thus it indicates where large gain can be obtained with
spatial parallelism but also where a pipelined architec-
ture is required.

We have illustrated these concepts with experiments
conducted using the Design Trotter framework, which
implements the C to HCDFG parser, the computation
of the metrics and graphical user interface for ana-
lyzing the results. By referring to the characterization
results, designers of embedded systems can rapidly
get feedback on their algorithmic choices and can be
guided in their architectural choices during the selec-
tion or the building of an appropriate architecture for
the application.

The Design Trotter tool set has been designed as
an open and flexible framework for implementing and
testing new methods in the area of hardware/sofware
co-design of embedded system, thus it constitutes an
open space for future work.
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