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Abstract— In this paper, we detail different step to partially
design a low cost reconfigurable real time 3D graphic processor
based on the soft core NIOS II CPU. Two major steps are
presented in this paper. The first one is the design of a RTOS
based on pClinux as OS and Xenomai as real time kernel. We
also present already done steps to design a 3D graphic processor.
The presented step is the analysis of the 3D graphic application to
choose the most complex function for a hardware
implementation.

L INTRODUCTION

An augmented reality (AR) system generates a composite
view for the user that is the combination of the real scene
viewed by the user and a virtual scene generated by the
computer that augments the scene with additional information.
[9]. This may be achieved by supplying the user with a head-
mounted or handheld display that shows a digitally altered
view. Ideally, the virtual objects should merge seamlessly with
their real counterparts. Today AR is used many domains such
as in entertainment, military training [10], engineering design
[12], robotics, manufacturing and other industries.

The great percentage of actual AR systems is based on
general purpose processors that execute the processing tasks
(even complex) in software. However, software execution is
not always the adequate solution especially for the high
intensive requirements of the many processing tasks involved
in AR. Software only approach inevitably limits frame rate and
latency which compromises real time operation. They magnify
size and power consumption, reducing the system mobility and
autonomy. These limitations make the spread of AR
applications more difficult especially in mobile systems.

The rest of the paper is structured as follows. In section II,
we present the related work, In section III, we present the
adopted method for RTOS integration. In section IV, we detail
the design of the 3D synthesis application using the RTOS
services and the obtained timing performance. Section V shows
preliminary optimization results of the initial system prototype.
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Recently, several platforms have been proposed to support
mobile AR in two different directions: the head-mounted
display direction using PC in backpack systems, and the mobile
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direction using portable devices. Both directions share a
common feature: most AR applications consist of software
running on general purpose processors. In spite of their
importance, only few of papers describe limited-performance
mobile AR systems. In [13], the ArcheoGuide (Augmented
Reality-based Cultural Heritage On-site GUIDE) project is
presented. It aims at providing visitors of cultural sites with
archaeological information. The presented platform has limited
performance and causes that the authors eliminate a gesture
recognizer due to its interference with the video tracking
performance. In [14], the AR-phone is presented. The system
performance relies on the wireless networking. Some parts of
the most complex processing tasks are moved in remote server
to avoid the mobile system overload. A similar system based
on a mobile AR is presented in [15] where the data
transmission between the phone and the PC is about few
seconds. In [18], an AR on-demand system is presented. It is a
useful solution on low-end nomad devices where images of the
real scene are taken only when needed, superposing real-time
virtual animations on that single still image only. In [16], An
FPGA-based platform for the development of AR applications
is presented. It is composed of a frame grabber for video
conversion, a general purpose user interface for visualization
and text information insertion and a pointing device that detects
the user hand from incoming camera images. This system can
process 640x480 pixel images at more than 190 frames per
second with a latency of one frame. However, this system is
not equipped with an OS and hard to integrate into larger
system as it is too specific. In [11], an embedded AR system is
presented. It includes an integrated camera and built in
graphics acceleration hardware. This system is built around the
Overocam camera board that uses an OMAP 3530. The
presented application is the tracking of a single marker and
rendering a simple virtual object. It runs at around 8 frames per
second. Like [16] system, RTOS integration issues are not
discussed.

Several AR systems have to be embedded in larger systems
such as in robotic, avionic, medicine and military domains.
Such complex systems require the use of an OS that can easily
manage the complexity at both architectural and application.
Several of those systems require real time execution. An RTOS
provides responsiveness, determinism and offers valuable
services. But in return, it consumes consistent CPU cycles,
thereby imposing a processing overhead. So, many issues must
be resolved for a successful RTOS integration in AR complex
real time systems.



III.  RTOS INTEGRATION METHOD

A.  System overview

The work described in this paper is part of the Cesame
project [17]. It aims to build a highly adaptive multimedia
system for a distributed AR application on two embedded
FPGA-based systems. The considered AR application consists
in the addition of 3D effects on specific video objects
(identified using segmentation technique). The proposed
system can manage various antagonist constraints such as
power consumption, available bandwidth, real time constraints
and delivered quality. In this paper, we concentrate on the 3D
graphics synthesis part of the AR application. We describe
firstly the different steps used to implement an RTOS based on
Embedded Linux for FPGA platform. Then, we present
different performance result of the configured RTOS. Then we
describe the 3D application set up and its integration into the
built RTOS.

B. Toward Real Time linux

We adopt a dual kernel approach which involves two major
phases. First, we implement an Embedded Linux kernel
(uClinux) for a FPGA prototype platform. Then, we integrated
Xenomai, a hard real-time micro-kernel, into Linux kernel in
order to enhance it with hard real-time behavior. Real-time
schedulers select the ready task which has the highest priority.
The kernel must be deterministic and preemptive. Standard
Linux is not an RTOS because it has long sections of code [3].
Linux kernel is not completely preemptive. Therefore, a
process will be interrupted only if another process is running in
user space and does not require a kernel routine.

Several technical solutions have been proposed to enhance
the behavior of the Linux kernel with real-time capabilities.
The different solutions are split into two families [4]. The first
one is the application of specific patches. The purpose of this
solution is to improve the latency of system calls and the
reactivity of the scheduler by adding a preemptive level to
kernel. These changes don’t transform the Linux kernel to a
hard real-time kernel, but satisfy soft real time constraints
(improvement in the quality of service of multimedia
application for example). The second solution is the addition of
an auxiliary real time micro-kernel. The defenders of this
approach believe that Linux will never be truly real time and
therefore add to the kernel another micro-kernel with a true
real-time schedule. This approach is adopted by RTLinux,
RTAI and Xenomai [5]. In this new “dual core” OS, all
interrupts are passed to Linux only if there is a non real time
task to execute. This extension provides a deterministic
behavior in an environment where the latency is extremely low.
The diagram in Fig. 1 describes the architecture of “dual-core”
OS.
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Figure 1. Micro-kernel method

There are various free and commercial micro-kernels. We
focus on free distributions like RTAI, Xenomai and primarily
version of RTLinux. With RTAI and RTLinux, real-time tasks
are performed in kernel space (kernel-space) which can cause
many risks and debugging problems. Meanwhile, Xenomai
allows the user to develop and implement real-time tasks in
user space. In addition, it keeps coherence of priorities between
space and Xenomai real time Linux kernel. Moreover, it is
possible to make a transparent migration of tasks between these
two spaces [3]. Xenomai uses various API like native POSIX,
RTAI, pSOS and VxWorks. For all this reasons, we adopt
Xenomai as the used real time micro-kernel. We use as OS
kernel the pClinux and as target platform the ALTERA
Cyclone III FPGA starter kit platform. We adopt a single core
CPU architecture based on the NIOS II processor. Two timers
are added to the standard version of the NIOS using the
Quartus software. The first one is a 32-bit timer used by
uClinux. The second one is a high precision 64-bit timer named
used by Xenomai.

C. Configuration of uClinux kernel

After configuring the required hardware design to boot the
micro-kernel, we configured the pClinux kernel for Cyclone 11
platform using a header file provided by the source of
puCLinux. This file describes the system addressing space of all
hardware components (address of the processor, memory and
input / output ports). Finally, we cross compiled kernel for the
NIOS processor. The result of cross-compiling is the creation
of the binary zImage which represents the executable we will
load on the platform.

D. Integration of micro-kernel Xenomai

Xenomai has its own environment called “user-space” to be
compiled for our embedded system. We configured the user-
space Xenomai for our NIOSII processor. Then, we cross-
compiled it in order to generate the executables needed for the
functioning of Xenomai. We installed the entire generated
executables in specific place in the root file system of pClinux
kernel. We configure the FPGA platform with the adequate
hardware design based using the Quartus compilation process.



Then, we loaded the final binary of the built RTOS (zImage) in
the flash memory of the target platform. We executed binary in
order to boot the RTOS. As result, the two kernels (uClinux
and Xenomai) started with success as shown in Fig. 2.
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E. Latency Estimation

We measured the latency of the added micro-kernel
Xenomai. According to previous experiments done on x86
designs, the average latency of Xenomai is 7 ps and the
maximum latency time is between 10 and 15 ps [4]. In our
case, the average latency is 42 us as shown in Fig. 3. It is a
predictable result as NIOS II has average computing
performance of only about 90 MIPS.

RTT| ©00:00:01 (in-kernel timer handler, 10000 us period, priority 99)

RTH|----- lat min|----- lat avg|---{-lat max|}foverrun|----lat best|---lat worst
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Figure 3. Latency of Xenomai

IV. INTEGRATION OF THE RTOS SERVICES WITH THE 3D
IMAGE SYNTHESIS APPLICATION

Once our RTOS is successfully loaded on the FPGA
platform, we aim to implement a 3D image synthesis
application using its different services. We first run the 3D
application as one task executed on our new RTOS pClinux.

A. 3D image synthesis overview

The 3D image synthesis is described in Fig 4. Our
application is conform to the OpenGL ES 1.X specification
[6]. It takes as entry point an existing 3D model of the object
to render and generate various 3D animations. The 3D object

is modeled with a set of triangles stored in a text file (.asc or
vrl). Transformation step handle the animation of the 3D
object (zoom, motion, etc). Clipping limits computations on
only the visible part of the 3D object on the screen.
Perspective division performed on the Clip Coordinates
produces normalized device coordinates. Illumination step
computes the different triangles colors. Texture mapping
consist on applying a 2D map to the surface of a polygon. The
viewport transformation maps normalized device coordinates
into window (screen) coordinates. The rasterization step then
decides which pixels of the frame buffer the primitives cover,
and which colors and depth values those pixels are assigned.
Z-buffer algorithm is used to eliminate hidden pixels.
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Figure 4. Graphical 3D pipeline
B. 3D application Execution under NIOS processor

The 3D application was first tested on PC platform. It was
then adapted and tested on the NIOS II processor using
ALTERA Cyclone I FPGA starter kit platform. This
implementation is purely software and used to verify the
correctness of the NIOS-adapted application. As the used
platform is devoid of a VGA port, we compare the 3D output
application (the color matrix generated after the z-buffer
algorithm) of both NIOS adapted version and the PC version.
Fig. 5 shows the timing results of the application (without
pClinux). Execution time is about 0.16s
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Figure 5. Execution of 3D application on NIOS CPU.

C. 3D application Execution under uClinux

We run the 3D application as a non real time application
(one task) on the built Real time pClinux. Figure 6 shows the




associated execution time (0.25s). The extra time (0.25-
0.16=0.09s) is due to the pClinux overhead.
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Figure 6. 3D application execution on pClinux

We run the 3D application as a real time application
(executed on Xenomai) as shown in figure 7. Execution time is
about 0.28s. The additional 0.03s is due to the high preemption
of the Xenomai kernel compared to the pClinux kernel.
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Figure 7. 3D application execution on Xenomai

D. RTOS service integration

In this section, we analyze the 3D application execution
using the RTOS different services. In this case, the application
is split into several tasks that communicate using the different
RTOS services. We take as 3D application scenario the
simultaneous rendering of 3 different objects with different
resolutions (triangle number) and various animations. We
create five communicating tasks. Fig. 8 shows the application
scenario. The first startup task “TaskStart” creates
simultaneously four tasks “Task Anim 17, “Task Anim 27,
and  “Task Anim 3” and  “Task Mixage”. Each
“Task Anim i” creates and prepares the final pixel color
matrix associated to one iteration the animation a 3D object “i”.
“Task Mixage” assembles and render the three objects in a
single screen. “Task Mixage” adds the three generated pixels
color matrix to obtain the final 3D scene to render.

“Task Mixage” has to wait the end of execution of three
animation tasks. This wait state is realized through a
"semaphore" service. “Task Anim 1" and “Task Anim 2” has
to render a duplicate 3D objet with different animations. They
use the same 3D object representation stored in memory. This
shared resource (i.e the memory object representation) is
protected with a Mutex service. In our scenario, we also
imposed that “Task Anim 3” waits the end of execution of
“Task_Anim_1” using a semaphore service. “Task Animl”
uses the services of message queue to send a message to
“Task Anim2”.

Task_Start

| | l

Sémaphars
—_—

Task_Anim2 Task_Anim1

Task_Mixage

Task_Anim3

7

Figure 8. Split the 3D application into tasks

E.  Implementation of the scenario

To execute the application scenario on pClinux, we use
POSIX API to create non real time threads. This application
will be executed as a non real time application. To execute the
implemented scenario with Xenomai, we used native API to
create non real time threads. Table 1 shows the obtained results
after execution on the FPGA Kkit.

TABLE L OVERVIEW VALUES
Service Xenomai pClinux
Semaphore 2814 us 545 us
Mutex: Acquisition 936 us 48 us
Mutex : liberation 930 us 276 us
Message queue 4076 ps 4882 pus
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We remark that the overheads of the various services of the
micro-kernel Xenomai are higher compared to the pClinux. It
can be explained by the high number of call the Xenomai
scheduler. This hard real-time scheduler has to always verify if
there is a new ready task that has a higher priority than the
current task.

V.

The performance of the designed system is limited. They
are related essentially of the poor performance of the NIOS II
CPU and the complexity of the 3D application. In this section,
we propose several techniques to enhance system’s
performance.

SYSTEM OPTIMIZATION



A. Application optimization

It is possible to reduce the CPU workload using application
parameter or algorithm tuning without noticeable quality
degradation. In the case of the 3D application, its execution
time is proportional to the 3D object resolution [7]. An
automatic resolution reduction is applied when the 3D object

Profiling results for a single computing iteration is shown
in table II. Dessine object function (that corresponds to the
rasterization function in fig. 4) monopolizes 97% of the total
execution time.

TABLE II. PROFILING RESULTS
became too small (when a zoom out is applied). The reverse
operation occurs when a zoom out is applied to 3D objet. Function Pourcentage
1 1 0,
B.  Architecture optimization opportunities Dessine objet 97,5849%
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Figure 9 shows the organization of the different functions
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Figure 9. 3D Application functions organisation
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We profile the most complex function “Dessine objet”.
Results are in Table II. They are specific for a single iteration.
Table 2 shows that the “barycentre” function (corresponds to
the rasterization step) is the most called function in the 3D
application. We consider it as OF functions. It has to be
implemented in hardware. We also compare relative
complexity of all sub functions of the 3D application using the



profiling technique. Results are in table IV. They are specific
for a single computing iteration. = We notice that the
“Calc_normal” function is the most complex sub function.
This function is called every computing iteration. It uses
complex mathematical computations such as “sqr” and “sqrt”
operator. We consider it as HC function. It has to be
implemented in hardware.

C. Barycentre function analysis:

Barycentre function is part of the rasterization step of the
3D image synthesis. Rasterization is the process by which a
triangle is converted to a two-dimensional image. Three step
are required: 1 triangle summit normal compute, 2 intensity
summit compute, 3 color computing for the different pixels of
the triangle using barycentre interpolation. Barycentric
coordinates are a set of three numbers a, B, v, each in the range
[0; 1], with  o+B+y=1. The color « ¢ » of a pixel within the
triangle (pl, p2, p3) with respective colors (cl, c2, c3) is
computed using (1). o,f,y are computed using an interpolation
technique using equation (1) [6].

c =aoacy + fc2+ yc3

Color computation depends only on the pixel position
(barycentric coordinates). There is no correlation between two
successive pixels color like in Gouraud shading algorithm. So,
parallel computations can be carried to accelerate this function.
Two parallelism levels can be noted in color computation. The
first one is “intra triangle” parallelism. Within the same
triangle, several pixels color computation can be carried
simultaneously since there no correlation. The second
parallelism is “inter triangle”. Concurrent triangles color
computation can also be simultaneous. To fully exploit all
these parallelism opportunities, a SIMD accelerator can be
envisaged. Design details about this accelerator will be
published in future papers.

D. RTOS overhead reduction

An RTOS provides responsiveness, determinism and offers
valuable services. But in return, it consumes consistent CPU
cycles, thereby imposing a processing overhead as shown in
table I. As a consequence, the time available for user tasks is
reduced. To reduce we proposed to hardware accelerate an
RTOS. The idea is to convert a series of RTOS instructions
into a simple instruction implemented in hardware. We plan to
use the same technique as in [8].
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In this paper, we detail different step to partially design a
low cost reconfigurable real time 3D graphic processor based
on the soft core NIOS II CPU. Two major steps are presented
in this paper. The first one is the design of a RTOS based on
puClinux as OS and Xenomai as real time kernel. We also
present already done steps to design a 3D graphic processor
based on the NIOS II CPU. The presented step is the analysis
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of the 3D graphic application to choose the most complex
function for a hardware implementation.
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