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Abstract— In this paper, we detail different step to partially 

design a low cost reconfigurable real time 3D graphic processor 

based on the soft core NIOS II CPU. Two major steps are 

presented in this paper. The first one is the design of a RTOS 

based on µClinux as OS and Xenomai as real time kernel. We 

also present already done steps to design a 3D graphic processor. 

The presented step is the analysis of the 3D graphic application to 

choose the most complex function for a hardware 

implementation.  

I. INTRODUCTION 

An augmented reality (AR) system generates a composite 
view for the user that is the combination of the real scene 
viewed by the user and a virtual scene generated by the 
computer that augments the scene with additional information. 
[9]. This may be achieved by supplying the user with a head-
mounted or handheld display that shows a digitally altered 
view. Ideally, the virtual objects should merge seamlessly with 
their real counterparts. Today AR is used many domains such 
as in entertainment, military training [10], engineering design 
[12], robotics, manufacturing and other industries.  

The great percentage of actual AR systems is based on 
general purpose processors that execute the processing tasks 
(even complex) in software. However, software execution is 
not always the adequate solution especially for the high 
intensive requirements of the many processing tasks involved 
in AR. Software only approach inevitably limits frame rate and 
latency which compromises real time operation. They magnify 
size and power consumption, reducing the system mobility and 
autonomy. These limitations make the spread of AR 
applications more difficult especially in mobile systems.  

The rest of the paper is structured as follows. In section II, 
we present the related work, In section III, we present the 
adopted method for RTOS integration. In section IV, we detail 
the design of the 3D synthesis application using the RTOS 
services and the obtained timing performance. Section V shows 
preliminary optimization results of the initial system prototype.  

II. RELATED WORK

Recently, several platforms have been proposed to support 
mobile AR in two different directions: the head-mounted 
display direction using PC in backpack systems, and the mobile 

direction using portable devices. Both directions share a 
common feature: most AR applications consist of software 
running on general purpose processors. In spite of their 
importance, only few of papers describe limited-performance 
mobile AR systems. In [13], the ArcheoGuide (Augmented 
Reality-based Cultural Heritage On-site GUIDE) project is 
presented. It aims at providing visitors of cultural sites with 
archaeological information. The presented platform has limited 
performance and causes that the authors eliminate a gesture 
recognizer due to its interference with the video tracking 
performance. In [14], the AR-phone is presented. The system 
performance relies on the wireless networking. Some parts of 
the most complex processing tasks are moved in remote server 
to avoid the mobile system overload. A similar system based 
on a mobile AR is presented in [15] where the data 
transmission between the phone and the PC is about few 
seconds. In [18], an AR on-demand  system is presented. It is a 
useful solution on low-end nomad devices where images of the 
real scene are taken only when needed, superposing real-time 
virtual animations on that single still image only. In [16], An 
FPGA-based platform for the development of AR applications 
is presented. It is composed of a frame grabber for video 
conversion, a general purpose user interface for visualization 
and text information insertion and a pointing device that detects 
the user hand from incoming camera images. This system can 
process 640×480 pixel images at more than 190 frames per 
second with a latency of one frame. However, this system is 
not equipped with an OS and hard to integrate into larger 
system as it is too specific. In [11], an embedded AR system is 
presented. It includes an integrated camera and built in 
graphics acceleration hardware.  This system is built around the 
Overocam camera board that uses an OMAP 3530. The 
presented application is the tracking of a single marker and 
rendering a simple virtual object. It runs at around 8 frames per 
second. Like [16] system, RTOS integration issues are not 
discussed.   

Several AR systems have to be embedded in larger systems 
such as in robotic, avionic, medicine and military domains. 
Such complex systems require the use of an OS that can easily 
manage the complexity at both architectural and application.  
Several of those systems require real time execution. An RTOS 
provides responsiveness, determinism and offers valuable 
services. But in return, it consumes consistent CPU cycles, 
thereby imposing a processing overhead. So, many issues must 
be resolved for a successful RTOS integration in AR complex 
real time systems.    
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III. RTOS INTEGRATION METHOD 

A. System overview 

The work described in this paper is part of the Cesame 
project [17]. It aims to build a highly adaptive multimedia 
system for a distributed AR application on two embedded 
FPGA-based systems. The considered AR application consists 
in the addition of 3D effects on specific video objects 
(identified using segmentation technique). The proposed 
system can manage various antagonist constraints such as 
power consumption, available bandwidth, real time constraints 
and delivered quality. In this paper, we concentrate on the 3D 
graphics synthesis part of the AR application. We describe 
firstly the different steps used to implement an RTOS based on 
Embedded Linux for FPGA platform. Then, we present 
different performance result of the configured RTOS. Then we 
describe the 3D application set up and its integration into the 
built RTOS. 

B. Toward Real Time linux  

We adopt a dual kernel approach which involves two major 
phases. First, we implement an Embedded Linux kernel 
(µClinux) for a FPGA prototype platform. Then, we integrated 
Xenomai, a hard real-time micro-kernel, into Linux kernel in 
order to enhance it with hard real-time behavior. Real-time 
schedulers select the ready task which has the highest priority. 
The kernel must be deterministic and preemptive. Standard 
Linux is not an RTOS because it has long sections of code [3]. 
Linux kernel is not completely preemptive. Therefore, a 
process will be interrupted only if another process is running in 
user space and does not require a kernel routine.  

Several technical solutions have been proposed to enhance 
the behavior of the Linux kernel with real-time capabilities. 
The different solutions are split into two families [4]. The first 
one is the application of specific patches. The purpose of this 
solution is to improve the latency of system calls and the 
reactivity of the scheduler by adding a preemptive level to 
kernel. These changes don’t transform the Linux kernel to a 
hard real-time kernel, but satisfy soft real time constraints 
(improvement in the quality of service of multimedia 
application for example). The second solution is the addition of 
an auxiliary real time micro-kernel. The defenders of this 
approach believe that Linux will never be truly real time and 
therefore add to the kernel another micro-kernel with a true 
real-time schedule. This approach is adopted by RTLinux, 
RTAI and Xenomai [5]. In this new “dual core” OS, all 
interrupts are passed to Linux only if there is a non real time 
task to execute. This extension provides a deterministic 
behavior in an environment where the latency is extremely low. 
The diagram in Fig. 1 describes the architecture of “dual-core” 
OS. 

Figure 1. Micro-kernel method 

There are various free and commercial micro-kernels. We 
focus on free distributions like RTAI, Xenomai and primarily 
version of RTLinux. With RTAI and RTLinux, real-time tasks 
are performed in kernel space (kernel-space) which can cause 
many risks and debugging problems. Meanwhile, Xenomai 
allows the user to develop and implement real-time tasks in 
user space. In addition, it keeps coherence of priorities between 
space and Xenomai real time Linux kernel. Moreover, it is 
possible to make a transparent migration of tasks between these 
two spaces [3]. Xenomai uses various API like native POSIX, 
RTAI, pSOS and VxWorks. For all this reasons, we adopt 
Xenomai as the used real time micro-kernel. We use as OS 
kernel the  µClinux and as target platform the ALTERA 
Cyclone III FPGA starter kit platform. We adopt a single core 
CPU architecture based on the NIOS II processor. Two timers 
are added to the standard version of the NIOS using the 
Quartus software. The first one is a 32-bit timer used by 
�Clinux. The second one is a high precision 64-bit timer named 
used by Xenomai.  

C.  Configuration of �Clinux kernel  

After configuring the required hardware design to boot the 
micro-kernel, we configured the �Clinux kernel for Cyclone III 
platform using a header file provided by the source of 
�CLinux. This file describes the system addressing space of all 
hardware components (address of the processor, memory and 
input / output ports). Finally, we cross compiled kernel for the 
NIOS processor. The result of cross-compiling is the creation 
of the binary zImage which represents the executable we will 
load on the platform. 

D.  Integration of micro-kernel Xenomai 

Xenomai has its own environment called “user-space” to be 
compiled for our embedded system. We configured the user-
space Xenomai for our NIOSII processor. Then, we cross-
compiled it in order to generate the executables needed for the 
functioning of Xenomai. We installed the entire generated 
executables in specific place in the root file system of µClinux 
kernel. We configure the FPGA platform with the adequate 
hardware design based using the Quartus compilation process. 
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Then, we loaded the final binary of the built RTOS (zImage) in 
the flash memory of the target platform. We executed binary in 
order to boot the RTOS. As result, the two kernels (µClinux 
and Xenomai) started with success as shown in Fig. 2. 

Figure 2. real time �clinx strat up.  

E. Latency Estimation 

We measured the latency of the added micro-kernel 
Xenomai. According to previous experiments done on x86 
designs, the average latency of Xenomai is 7 µs and the 
maximum latency time is between 10 and 15 µs [4]. In our 
case, the average latency is 42 µs as shown in Fig. 3. It is a 
predictable result as NIOS II has average computing 
performance of only about 90 MIPS. 

Figure 3. Latency of Xenomai 

IV. INTEGRATION OF THE RTOS  SERVICES WITH THE 3D

IMAGE SYNTHESIS APPLICATION

Once our RTOS is successfully loaded on the FPGA 
platform, we aim to implement a 3D image synthesis 
application using its different services. We first run the 3D 
application as one task executed on our new RTOS �Clinux.  

A.  3D image synthesis overview  

The 3D image synthesis is described in Fig 4. Our 

application is conform to the OpenGL ES 1.X specification 

[6]. It takes as entry point an existing 3D model of the object 

to render and generate various 3D animations. The 3D object 

is modeled with a set of triangles stored in a text file (.asc or 

.vrl). Transformation step handle the animation of the 3D 

object (zoom, motion, etc). Clipping limits computations on 

only the visible part of the 3D object on the screen. 

Perspective division performed on the Clip Coordinates 

produces normalized device coordinates. Illumination step 

computes the different triangles colors. Texture mapping 

consist on applying a 2D map to the surface of a polygon. The 

viewport transformation maps normalized device coordinates 

into window (screen) coordinates.  The rasterization step then 

decides which pixels of the frame buffer the primitives cover, 

and which colors and depth values those pixels are assigned. 

Z-buffer algorithm is used to eliminate hidden pixels.  

Figure 4. Graphical 3D pipeline 

B. 3D application Execution under NIOS processor 

The 3D application was first tested on PC platform. It was 
then adapted and tested on the NIOS II processor using 
ALTERA Cyclone III FPGA starter kit platform. This 
implementation is purely software and used to verify the 
correctness of the NIOS-adapted application. As the used 
platform is devoid of a VGA port, we compare the 3D output 
application (the color matrix generated after the z-buffer 
algorithm) of both NIOS adapted version and the PC version. 
Fig. 5 shows the timing results of the application (without 
�Clinux). Execution time is about 0.16s 

Figure 5. Execution of 3D application on NIOS CPU. 

C. 3D application Execution under �Clinux  

We run the 3D application as a non real time application 
(one task) on the built Real time �Clinux.  Figure 6 shows the 
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associated execution time (0.25s). The extra time (0.25-
0.16=0.09s) is due to the �Clinux overhead.  

Figure 6. 3D application execution on �Clinux  

We run the 3D application as a real time application 
(executed on Xenomai) as shown in figure 7. Execution time is 
about 0.28s. The additional 0.03s is due to the high preemption 
of the Xenomai kernel compared to the �Clinux kernel.  

  

Figure 7. 3D application execution on Xenomai 

D. RTOS service integration 

In this section, we analyze the 3D application execution 
using the RTOS different services. In this case, the application 
is split into several tasks that communicate using the different 
RTOS services. We take as 3D application scenario the 
simultaneous rendering of 3 different objects with different 
resolutions (triangle number) and various animations. We 
create five communicating tasks. Fig. 8 shows the application 
scenario. The first startup task “TaskStart” creates 
simultaneously four tasks “Task_Anim_1”, “Task_Anim_2”, 
and “Task_Anim_3” and “Task_Mixage”. Each 
“Task_Anim_i” creates and prepares the final pixel color 
matrix associated to one iteration the animation a 3D object “i”. 
“Task_Mixage” assembles and render the three objects in a 
single screen. “Task_Mixage” adds the three generated pixels 
color matrix to obtain the final 3D scene to render. 

“Task_Mixage” has to wait the end of execution of three 
animation tasks. This wait state is realized through a 
"semaphore" service. “Task_Anim_1” and “Task_Anim_2” has 
to render a duplicate 3D objet with different animations. They 
use the same 3D object representation stored in memory. This 
shared resource (i.e the memory object representation) is 
protected with a Mutex service. In our scenario, we also 
imposed that “Task_Anim_3” waits the end of execution of 
“Task_Anim_1” using a semaphore service. “Task_Anim1” 
uses the services of message queue to send a message to 
“Task_Anim2”.  

  

Figure 8. Split the 3D application into tasks 

E.  Implementation of the scenario  

To execute the application scenario on µClinux, we use 
POSIX API to create non real time threads. This application 
will be executed as a non real time application. To execute the 
implemented scenario with Xenomai, we used native API to 
create non real time threads. Table 1 shows the obtained results 
after execution on the FPGA kit.  

TABLE I. OVERVIEW VALUES

Service Xenomai µClinux 

Semaphore 2814 µs 545 µs 

Mutex: Acquisition 936 µs 48 µs 

Mutex : liberation 930 µs 276 µs 

Message_queue 4076 µs 4882 µs 

We remark that the overheads of the various services of the 
micro-kernel Xenomai are higher compared to the �Clinux. It 
can be explained by the high number of call the Xenomai 
scheduler. This hard real-time scheduler has to always verify if 
there is a new ready task that has a higher priority than the 
current task. 

V. SYSTEM OPTIMIZATION

The performance of the designed system is limited. They 
are related essentially of the poor performance of the NIOS II 
CPU and the complexity of the 3D application. In this section, 
we propose several techniques to enhance system’s 
performance.  
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A. Application optimization 

It is possible to reduce the CPU workload using application 
parameter or algorithm tuning without noticeable quality 
degradation. In the case of the 3D application, its execution 
time is proportional to the 3D object resolution [7]. An 
automatic resolution reduction is applied when the 3D object 
became too small (when a zoom out is applied). The reverse 
operation occurs when a zoom out is applied to 3D objet.  

B. Architecture optimization opportunities  

As we use FPGA technology in our system, an efficient 
architecture can be designed to the 3D synthesis application 
even with based on a limited CPU such as the NIOS II 
processor. To develop high performance architecture for the 
3D application, it is necessary to identify both the often-called 
functions (OF functions) and the high complexity functions 
(HC functions). Both (OF and HC) functions implementation 
(hardware or software) type influence the overall system 
performance. By choosing suitable (hardware) implementation 
of (OF and HC) functions, system performance can be 
enhanced sharply.  

We analyze the 3D synthesis application using profiling 
technique. In this stage, we use a 3D application version 
without texture mapping step. As we plan the use of the NIOS 
embedded processor, we adopt its associated profiling tool 
“NIOS IDE”. It has a “Performance Counter” module that 
determines the different functions execution time, their 
percentage as well as the call number of each function. 

Figure 9 shows the organization of the different functions 
of the 3D application.  

Figure 9. 3D Application functions organisation 

Profiling results for a single computing iteration is shown 
in table II. Dessine_object function (that corresponds to the 
rasterization function in fig. 4) monopolizes 97% of the total 
execution time.  

TABLE II. PROFILING RESULTS

Function Pourcentage 

Dessine objet 97,5849%

Calcnormal 1,3741%

Transformation 0,3953%

mult_mytice 0,0130%

Esperspective 0,0130%

translation 0,0202%

rotation 0,0517%

échelle  0,0185%

ident_matrice  0,0003%

loadasm 0,5288%

TABLE III. ANALYSIS OF THE “DESSINE_OBJET” FUNCTION

Function Cycle number Call number  

Dessine 
Objet 170294048 1 

Dessine Poly 167036485 40 

Barycentre 166273113 856 

TABLE IV. COMPLEXITY COMPARAISON BETWEEN 3D
APPLICATION SUB FUNCTIONS

function 

NIOS Cycle 

number 

Calcnormal 2397997

Transformation  999956

Loadasm 922750

Barycentre 194244

Rotation 90348

Translation 35330

echelle  32262

Esperspective 22688

mult_mytice 22640

ident_matrice  403

ident_matrice 1 146

We profile the most complex function “Dessine_objet”. 
Results are in Table II. They are specific for a single iteration. 
Table 2 shows that the “barycentre“ function (corresponds to 
the rasterization step) is the most called function in the 3D 
application. We consider it as OF functions. It has to be 
implemented in hardware. We also compare relative 
complexity of all sub functions of the 3D application using the 
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profiling technique. Results are in table IV. They are specific 
for a single computing iteration.  We notice that the 
“Calc_normal” function is the most complex sub_function. 
This function is called every computing iteration. It uses 
complex mathematical computations such as “sqr” and “sqrt” 
operator. We consider it as HC function. It has to be 
implemented in hardware.  

C. Barycentre function analysis: 

Barycentre function is part of the rasterization step of the 
3D image synthesis. Rasterization is the process by which a 
triangle is converted to a two-dimensional image. Three step 
are required: 1 triangle summit normal compute, 2 intensity 
summit compute, 3 color computing for the different pixels of 
the triangle using barycentre interpolation. Barycentric 
coordinates are a set of three numbers �, �, �, each in the range 
[0; 1], with     �+�+�=1. The color « c » of a pixel within the 
triangle (p1, p2, p3) with respective colors (c1, c2, c3) is 
computed using (1). �,�,� are computed using an interpolation 
technique using equation (1) [6].  

321 cccc γβα ++=   (1) 

Color computation depends only on the pixel position 
(barycentric coordinates). There is no correlation between two 
successive pixels color like in Gouraud shading algorithm. So, 
parallel computations can be carried to accelerate this function. 
Two parallelism levels can be noted in color computation. The 
first one is “intra_triangle” parallelism. Within the same 
triangle, several pixels color computation can be carried 
simultaneously since there no correlation. The second 
parallelism is “inter_triangle”. Concurrent triangles color 
computation can also be simultaneous. To fully exploit all 
these parallelism opportunities, a SIMD accelerator can be 
envisaged. Design details about this accelerator will be 
published in future papers.  

D. RTOS overhead reduction 

An RTOS provides responsiveness, determinism and offers 
valuable services. But in return, it consumes consistent CPU 
cycles, thereby imposing a processing overhead as shown in 
table I. As a consequence, the time available for user tasks is 
reduced. To reduce we proposed to hardware accelerate an 
RTOS. The idea is to convert a series of RTOS instructions 
into a simple instruction implemented in hardware. We plan to 
use the same technique as in [8].  

VI. CONCLUSION

In this paper, we detail different step to partially design a 
low cost reconfigurable real time 3D graphic processor based 
on the soft core NIOS II CPU. Two major steps are presented 
in this paper. The first one is the design of a RTOS based on 
µClinux as OS and Xenomai as real time kernel. We also 
present already done steps to design a 3D graphic processor 
based on the NIOS II CPU. The presented step is the analysis 

of the 3D graphic application to choose the most complex 
function for a hardware implementation.  
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